Manipulating Data while It Is Encrypted

Craig Gentry

IBM Watson

Lattice Crypto Day, May 2010

The Goal

A way to delegate <u>processing</u> of my data, without giving away <u>access</u> to it.

Application: Private Google Search

I want to delegate <u>processing</u> of my data, without giving away <u>access</u> to it.

- Do a private Google search
 - You encrypt your query, so that Google cannot "see" it
- Somehow Google processes your encrypted query
 - You get an encrypted response, and decrypt it

Application: Cloud Computing

I want to delegate <u>processing</u> of my data, without giving away <u>access</u> to it.

- You store your files on the cloud
 - Encrypt them to protect your information
- Later, you want to retrieve files containing "cloud" within 5 words of "computing".
 - Cloud should return only these (encrypted) files, without knowing the key
- Privacy combo: Encrypted query on encrypted data

Outline

- Fully homomorphic encryption (FHE) at a high level
- A construction
- Known Attacks
- Performance / Implementation

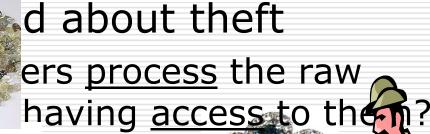
Can we separate processing from access?

Actually, separating <u>processing</u> from <u>access</u> even makes sense in the physical world...

An Analogy: Alice's Jewelry Store

Workers assemble raw materials into jewelry

□ But Alice
How ca
materia



An Analogy: Alice's Jewelry Store

- Alice puts materials in locked glovebox
 - For which only she has the key
- Workers assemble jewelry in the box

Alice unlocks box to get "results"

An Encryption Glovebox?

- Alice delegated <u>processing</u> without giving away <u>access</u>.
- But does this work for encryption?
 - Can we create an "encryption glovebox" that would allow the cloud to process data while it remains encrypted?

Public-key Encryption

- Three procedures: KeyGen, Enc, Dec
 - $(sk,pk) \leftarrow KeyGen(\lambda)$
 - Generate random public/secret key-pair
 - \blacksquare c \leftarrow Enc(pk, m)
 - Encrypt a message with the public key
 - \blacksquare m \leftarrow Dec(sk, c)
 - Decrypt a ciphertext with the secret key

Homomorphic Public-key Encryption

- Another procedure: Eval (for Evaluate)
 - \blacksquare $c \leftarrow Eval(pk, f, c_1,...,c_t)$

function

Encryption of $f(m_1,...,m_t)$. I.e., $Dec(sk, c) = f(m_1, ...m_t)$ Encryptions of inputs m₁,...,m_t to f

- No info about $m_1, ..., m_t$, $f(m_1, ...m_t)$ is leaked
- $f(m_1, ...m_t)$ is the "ring" made from raw materials $m_1, ..., m_t$ inside the encryption box

Concept due to Rivest, Adleman, Dertouzous (1978) Fully Homomorphic Public-key Encryption

- Another procedure: Eval (for Evaluate)
 - ightharpoonup $c \leftarrow Eval(pk, f, c_1,...,c_t)$

function

Encryption of $f(m_1,...,m_t)$. I.e., $Dec(sk, c) = f(m_1, ...m_t)$ Encryptions of inputs m₁,...,m_t to f

- FHE scheme should:
 - Work for any well-defined function f
 - > Be efficient

Back to Our Applications

$$c \leftarrow Eval(pk, f, c_1,...,c_t),$$

 $Dec(sk, c) = f(m_1, ..., m_t)$

- Private Google search
 - Encrypt bits of my query: c_i ← Enc(pk, m_i)
 - Send pk and the c_i's to Google
 - Google expresses its search algorithm as a boolean function f of a user query
 - Google sends $c \leftarrow Eval(pk, f, c_1,...,c_t)$
 - I decrypt to obtain my result f(m₁, ..., m_t)

Back to Our Applications

$$c \leftarrow Eval(pk, f, c_1,...,c_t),$$

 $Dec(sk, c) = f(m_1, ..., m_t)$

- Cloud Computing with Privacy
 - Encrypt bits of my files c_i ← Enc(pk, m_i)
 - Store pk and the ci's on the cloud
 - Later, I send query :"cloud" within 5 words of "computing"
 - Let f be the boolean function representing the cloud's response if data was unencrypted
 - Cloud sends $c \leftarrow Eval(pk, f, c_1,...,c_t)$
 - I decrypt to obtain my result f(m₁, ..., m_t)

FHE: What does "Efficient" Mean?

- \Box c \leftarrow Eval(pk, f, c₁,...,c_t) is efficient:
 - runs in time g(λ) T_f, where g is a polynomial and T_f is the Turing complexity of f
- □ KeyGen, Enc, and Dec are efficient:
 - Run in time polynomial in λ
 - Alice's work should be independent of the complexity of f
 - In particular, ciphertexts output by Eval should look "normal"
 - The point is to delegate processing!!

We had "somewhat homomorphic" schemes in the past

- Eval only works for some functions f
 - RSA works for MULT gates (mod N)
 - Paillier, GM, work for ADD, XOR
 - BGN05 works for quadratic formulas
 - MGH08 works for low-degree polynomials
 - > size of $c \leftarrow Eval(pk, f, c_1,...,c_t)$ grows exponentially with degree of polynomial f.
 - Before 2009, no efficient FHE scheme

A Construction of FHE...

Not my original STOC09 scheme.
Rather, a simpler scheme by
Marten van Dijk, me, Shai Halevi,
and Vinod Vaikuntanathan

Smart and
Vercauteren
described an
optimization of the
STOC09 scheme in
PKC10.

Step 1: Construct a Useful "Somewhat Homomorphic" Scheme

Why a somewhat homomorphic scheme?

- Can't we construct a FHE scheme directly?
 - If I knew how, I would tell you.
 - Later...

somewhat hom. + bootstrappable \rightarrow FHE

- Shared secret key: odd number p
- \square To encrypt a bit m in $\{0,1\}$:
 - Choose at random small r, large q
 - The "noise"

 Output c = m + 2r + pq

- Ciphertext is close to a multiple of p
- m = LSB of distance to nearest multiple of p
- To decrypt c:
 - Output $m = (c \mod p) \mod 2$
 - \rightarrow m = c p [c/p] mod 2
 - $= c [c/p] \mod 2$
 - = LSB(c) XOR LSB([c/p])

- Shared secret key: odd number 101
- \square To encrypt a bit m in $\{0,1\}$:
 - Choose at random small r, large q
 - The "noise"

 Output c = m + 2r + pq

- Ciphertext is close to a multiple of p
- m = LSB of distance to nearest multiple of p
- To decrypt c:
 - Output $m = (c \mod p) \mod 2$
 - \rightarrow m = c p [c/p] mod 2 = c - [c/p] mod 2
 - = LSB(c) XOR LSB([c/p])

- Shared secret key: odd number 101
- \square To encrypt a bit m in $\{0,1\}$: (say, m=1)
 - Choose at random small r, large q
 - The "noise"

 Output c = m + 2r + pq

- Ciphertext is close to a multiple of p
- m = LSB of distance to nearest multiple of p
- To decrypt c:
 - Output $m = (c \mod p) \mod 2$
 - \rightarrow m = c p [c/p] mod 2 = c - [c/p] mod 2
 - = LSB(c) XOR LSB([c/p])

- Shared secret key: odd number 101
- \square To encrypt a bit m in $\{0,1\}$: (say, m=1)
 - Choose at random small r (=5), large q (=9)
 - The "noise"

 Output c = m + 2r + pq

- Ciphertext is close to a multiple of p
- m = LSB of distance to nearest multiple of p
- To decrypt c:
 - Output $m = (c \mod p) \mod 2$
 - \rightarrow m = c p [c/p] mod 2 = c - [c/p] mod 2
 - = LSB(c) XOR LSB([c/p])

- Shared secret key: odd number 101
- \square To encrypt a bit m in $\{0,1\}$: (say, m=1)
 - Choose at random small r (=5), large q (=9)
 The "noise"
 - Output c = m + 2r + pq = 11 + 909 = 920
 - Ciphertext is close to a multiple of p
 - m = LSB of distance to nearest multiple of p
- To decrypt c:
 - Output $m = (c \mod p) \mod 2$
 - \triangleright m = c p [c/p] mod 2
 - $= c [c/p] \mod 2$
 - = LSB(c) XOR LSB([c/p])

- Shared secret key: odd number 101
- \square To encrypt a bit m in $\{0,1\}$: (say, m=1)
 - Choose at random small r (=5), large q (=9)
 - The "noise"

 Output $c = \frac{m + 2r}{m + 2r} + pq = 11 + 909 = 920$
 - Ciphertext is close to a multiple of p
 - m = LSB of distance to nearest multiple of p
- To decrypt c:
 - Output m = (c mod p) mod 2 = 11 mod 2 = 1
 - \rightarrow m = c p [c/p] mod 2
 - $= c [c/p] \mod 2$
 - = LSB(c) XOR LSB([c/p])

Homomorphic Public-Key Encryption

- Secret key is an odd p as before
- Public key is many "encryptions of 0"
 - $\mathbf{x}_{i} = [q_{i}p + 2r_{i}]_{x0} \text{ for } i=1,2,...,n$
- \square Enc_{pk}(m) = [subset-sum(x_i's)+m+2r]_{x0}
- \square $Dec_{sk}(c) = (c mod p) mod 2$

Quite similar to Regev's '04 scheme. Main difference: we use much more aggressive parameters...

Security of E

- Approximate GCD (approx-gcd) Problem:
 - Given many $x_i = s_i + q_i p$, output p
 - Example params: $s_i \sim 2^{\lambda}$, $p \sim 2^{\lambda^2}$, $q_i \sim 2^{\lambda^5}$, where λ is security parameter
 - \triangleright Best known attacks (lattices) require 2^{λ} time
- I'll discuss attacks on approx-gcd later
- Reduction:
 - if approx-gcd is hard, E is semantically secure

Why is E homomorphic?

- Basically because:
 - If you add or multiply two near-multiples of p, you get another near multiple of p...

Why is E homomorphic?

- \Box $c_1 = m_1 + 2r_1 + q_1p$, $c_2 = m_2 + 2r_2 + q_2p$
- Noise: Distance to nearest multiple of p $C_1+C_2 = \frac{(m_1+m_2) + 2(r_1+r_2) + (q_1+q_2)p}{(m_1+m_2) + 2(r_1+r_2)}$
 - $(m_1+m_2)+2(r_1+r_2)$ still much smaller than p
 - $\rightarrow c_1 + c_2 \mod p = (m_1 + m_2) + 2(r_1 + r_2)$
 - \rightarrow (c₁+c₂ mod p) mod 2 = m₁+m₂ mod 2
- \Box $C_1 \times C_2 = (m_1 + 2r_1)(m_2 + 2r_2) + (c_1q_2 + q_1c_2 q_1q_2)p$
 - $(m_1+2r_1)(m_2+2r_2)$ still much smaller than p
 - $\rightarrow c_1 x c_2 \mod p = (m_1 + 2r_1)(m_2 + 2r_2)$
 - \rightarrow (c₁xc₂ mod p) mod 2 = m₁xm₂ mod 2

Why is E homomorphic?

- \Box $c_1 = m_1 + 2r_1 + q_1p$, ..., $c_t = m_t + 2r_t + q_tp$
- Let f be a multivariate poly with integer coefficients (sequence of +'s and x's)
- Let $c = \text{Eval}_{E}(pk, f, c_1, ..., c_t) = f(c_1, ..., c_t)$ Suppose this noise is much smaller than p
 - \blacksquare f(c₁, ..., c_t) = f(m₁+2r₁, ..., m_t+2r_t) + qp
 - Then (c mod p) mod $2 = f(m_1, ..., m_t)$ mod 2

That's what we want!

Why is E somewhat homomorphic?

- \square What if $|f(m_1+2r_1, ..., m_t+2r_t)| > p/2?$
 - $c = f(c_1, ..., c_t) = f(m_1 + 2r_1, ..., m_t + 2r_t) + qp$
 - \triangleright Nearest p-multiple to c is q'p for q' \neq q
 - (c mod p) = $f(m_1+2r_1, ..., m_t+2r_t) + (q-q')p$
 - (c mod p) mod 2
 - = $f(m_1, ..., m_t) + (q-q') \mod 2$ = ???
- We say E can <u>handle</u> f if:
 - $|f(x_1, ..., x_t)| < p/4$
 - whenever all |x_i| < B, where B is a bound on the noise of a fresh ciphertext output by Enc_E

Example of a Function that E Handle

Elementary symmetric poly of degree d:

$$f(x_1, ..., x_t) = x_1 \cdot x_2 \cdot x_d + ... + x_{t-d+1} \cdot x_{t-d+2} \cdot x_t$$

- □ Has (t choose d) < t^d monomials: a lot!!
- \square If $|x_i| < B$, then $|f(x_1, ..., x_t)| < t^{d} \cdot B^{d}$
- E can handle f if:

```
t^{d} \cdot B^{d} < p/4 \rightarrow basically if: d < (log p)/(log tB)
```

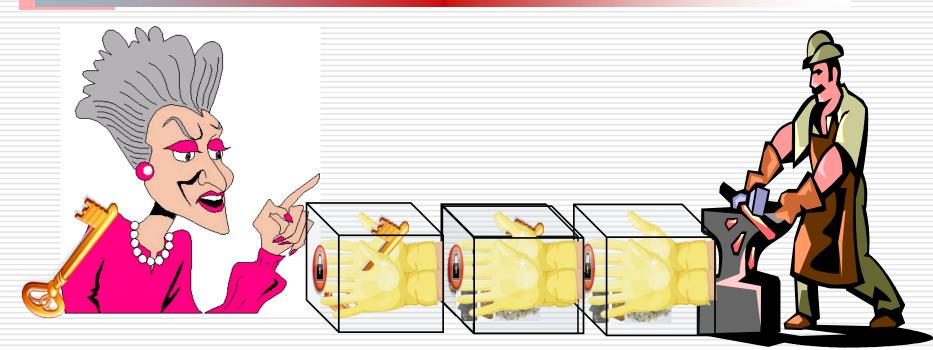
- \square Example params: B $\sim 2^{\lambda}$, p $\sim 2^{\lambda^2}$
 - Eval_E can handle an elem symm poly of degree approximately λ.

Step 2: Somewhat Homomorphic + Bootstrappable → FHE

Back to Alice's Jewelry Store

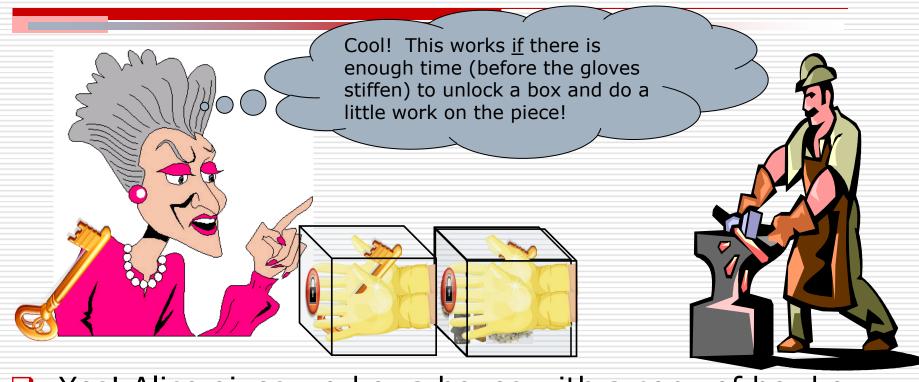
- Suppose Alice's boxes are defective.
 - After the worker works on the jewel for 1 minute, the gloves stiffen!
- Some complicated pieces take 10 minutes to make.
- Can Alice still use her boxes?
- ☐ Hint: you can put one box inside another.

Back to Alice's Jewelry Store



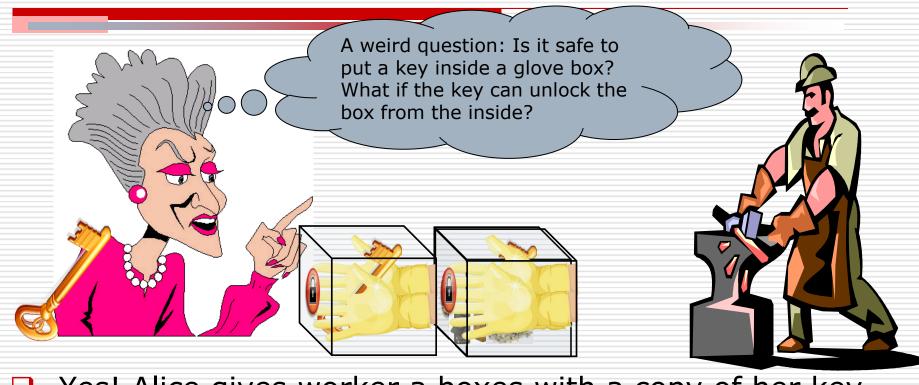
- Yes! Alice gives worker more boxes with a copy of her key
- Worker assembles jewel inside box #1 for 1 minute.
- Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.
- And so on...

Back to Alice's Jewelry Store



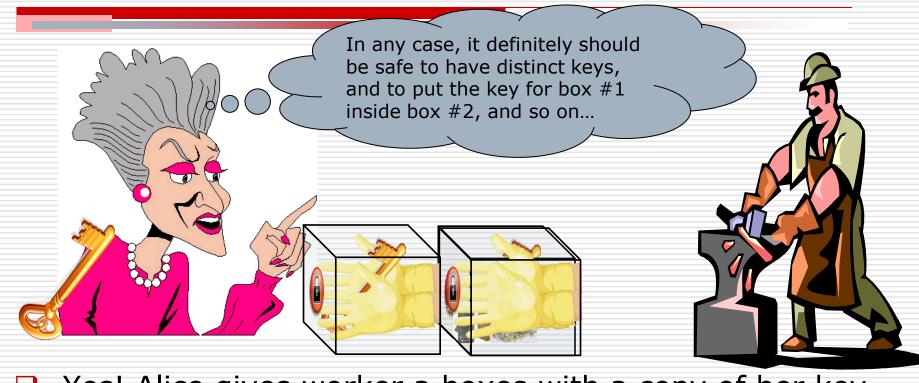
- Yes! Alice gives worker a boxes with a copy of her key
- Worker assembles jewel inside box #1 for 1
- Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.

Back to Alice's Jewelry Store



- Yes! Alice gives worker a boxes with a copy of her key
- Worker assembles jewel inside box #1 for 1
- Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.

Back to Alice's Jewelry Store



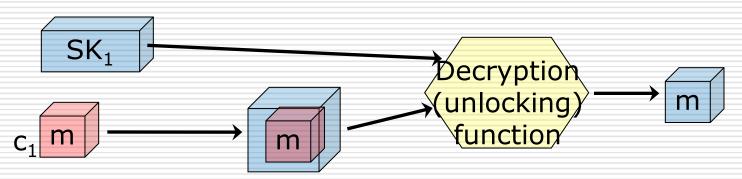
- Yes! Alice gives worker a boxes with a copy of her key
- Worker assembles jewel inside box #1 for 1
- Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.

How is it Analogous?

- Alice's jewelry store: Worker can assemble any piece if gloves can "handle" unlocking a box (plus a bit) before they stiffen
- Encryption:
 - If E can handle Dec_E (plus a bit), then we can use E to construct a FHE scheme E^{FHE}

Warm-up: Applying Eval to Dece

Blue means box #2. It also means encrypted under key PK₂.



Red means box #1. It also means encrypted under key PK₁.

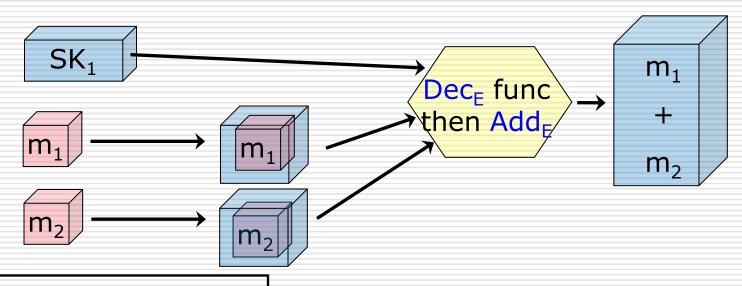
Warm-up: Applying Eval to Dec

- \square Suppose c = Enc(pk, m)
- Dec_E($sk_1^{(1)}$, ..., $sk_1^{(t)}$, $c_1^{(1)}$, ..., $c_1^{(u)}$) = m, where I have split sk and c into bits
- Let $sk_1^{(1)}$ and $c_1^{(1)}$, be ciphertexts that encrypt $sk_1^{(1)}$ and $c_1^{(1)}$, and so on, under pk_2 .
- Then,
- Eval(pk_2 , Dec_E , $sk_1^{(1)}$, ..., $sk_1^{(t)}$, $c_1^{(1)}$, ..., $c_1^{(1)}$) = m

i.e., a ciphertext that encrypts m under pk₂.

Applying Eval to (Dec_E then Add_E)

Blue means box #2. It also means encrypted under key PK₂.

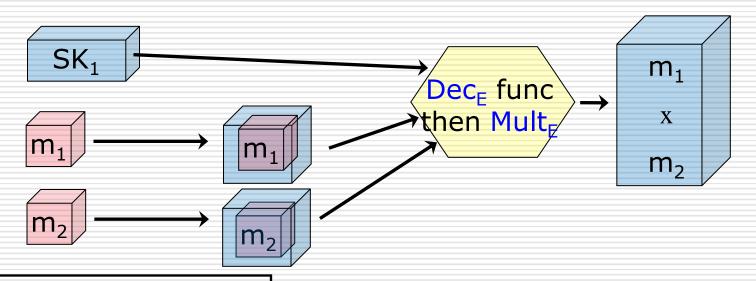


Red means box #1. It also means encrypted under key PK_1 .

Applying Eval to (Dec_E then Mult_E)

Blue means box #2. It also means encrypted under key PK₂.

If E can evaluate (Dec_E then Add_E) and (Dec_E then Mult_E), then we call E "bootstrappable" (a self-referential property).

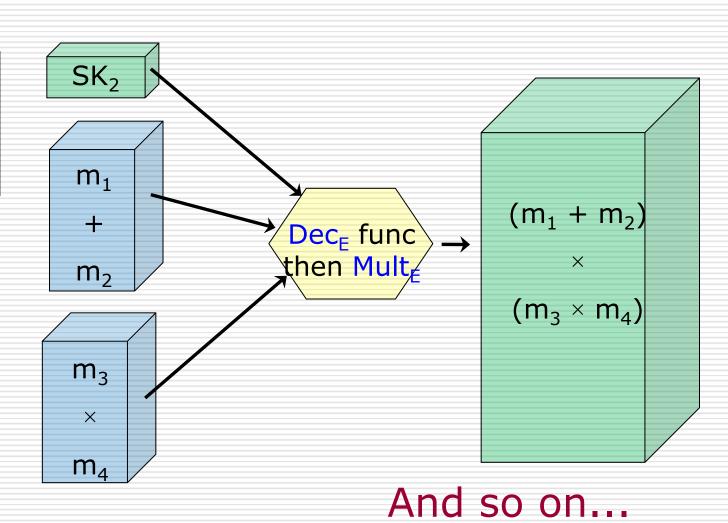


Red means box #1. It also means encrypted under key PK₁.

And now the recursion...

Green means encrypted under PK₃.

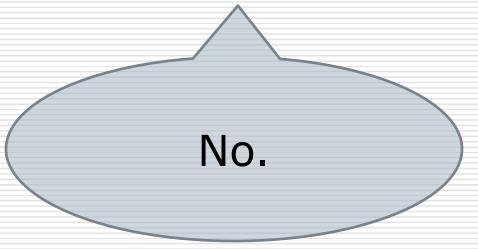
Blue means encrypted under PK₂.



Arbitrary Functions

- Suppose E is bootstrappable i.e., it can handle Dec_E augmented by Add_E and Mult_E efficiently.
- □ Then, there is a scheme E_d that evaluates arbitrary functions with d "levels".
- Ciphertexts: Same size in E_d as in E.
- Public key:
 - Consists of (d+1) E pub keys: pk₀, ..., pk_d
 - and encrypted secret keys: {Enc(pk_i, sk_(i-1))}
 - Size: linear in d. Constant in d, if you assume encryption is "circular secure."
 - The question of circular security is like whether it is "safe" to put a key for box i inside box i.

Step 2b: Is our Somewhat Homomorphic Scheme Already Bootstrappable?



Why not?

 \square The boolean function $Dec_{E}(p,c)$ sets:

$$m = LSB(c) \times LSB([c/p])$$

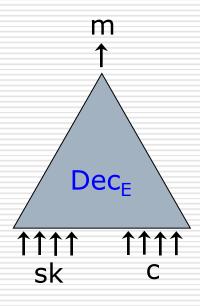
- Unfortunately, $f(c,p^{-1}) = LSB([c \times p^{-1}])$ is a high degree formula in the bits of c and p^{-1} .
 - If c and p each have t > log p bits, the degree is more than t.
 - But if f has degree > log p, then |f(x₁, ..., x_t)| could definitely be bigger than p
 - And E can handle f only with guarantee that $|f(x_1, ..., x_t)| < p/4$
- ☐ E is not bootstrappable. ⊗

Step 3 (Final Step): Modify our Somewhat Homomorphic Scheme to Make it Bootstrappable

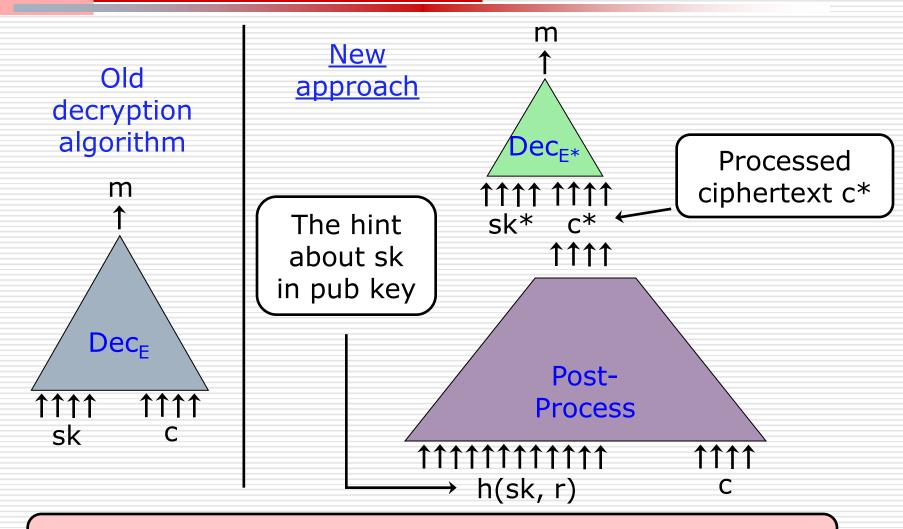
The Goal

- \square Modify E \rightarrow get E* that is bootstrappable.
- Properties of E*
 - E* can handle any function that E can
 - Dec_{E*} is a lower-degree poly than Dec_E, so that E* can handle it

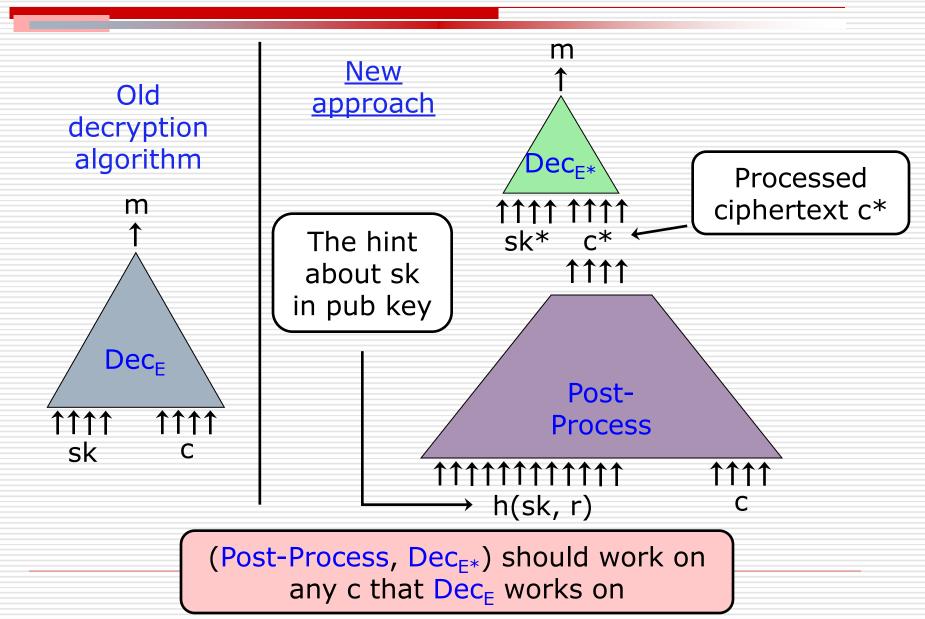
Old decryption algorithm

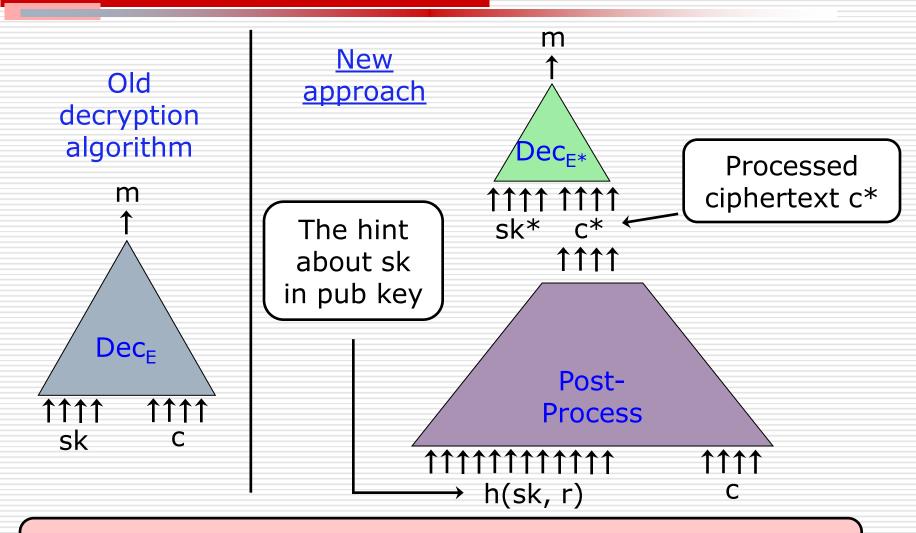


- Crazy idea: Put <u>hint</u> about sk in E* public key! Hint lets anyone <u>post-process</u> the ciphertext, leaving less work for <u>Dec_{E*}</u> to do.
- This idea is used in server-aided cryptography.



Hint in pub key lets anyone <u>post-process</u> the ciphertext, leaving less work for <u>Dec_{F*}</u> to do.





 E^* is semantically secure if E is, if h(sk,r) is computationally indistinguishable from h(0,r') given sk, but not sk*.

Concretely, what is hint about p?

- E*'s pub key includes real numbers
 - $r_1, r_2, ..., r_n \in [0,2]$
 - \blacksquare 3 sparse subset S for which $\Sigma_{i \in S} r_i = 1/p$
- ☐ Security: Sparse Subset Sum Prob (SSSP)
 - Given integers x_1 , ..., x_n with a subset S with $\Sigma_{i \in S} x_i = 0$, output S.
 - Studied w.r.t. server-aided cryptosystems
 - \triangleright Potentially hard when n > log max{|x_i|}.
 - Then, there are exponentially many subsets T (not necessarily sparse) such that $\Sigma_{i \in S} x_i = 0$
 - \triangleright Params: n \sim λ⁵ and |S| \sim λ.
 - Reduction:
 - If SSSP is hard, our hint is indist. from h(0,r)

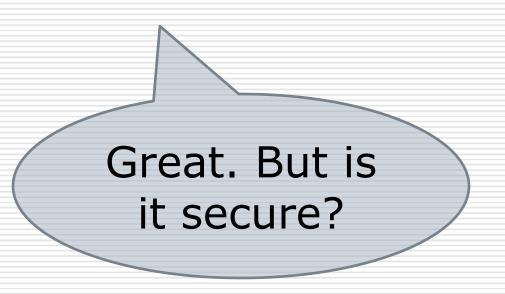
How E* works...

- \square Post-processing: output ψ_i =c x r_i
 - Together with c itself
 - The ψ_i have about log n bits of precision
- \square New secret key is bit-vector $s_1,...,s_n$
 - \blacksquare $s_i=1$ if $i \in S$, $s_i=0$ otherwise
- \square Dec_{E*}(s,c)= LSB(c) XOR LSB([$\Sigma_i s_i \psi_i$])
- E* can handle any function E can:
 - \blacksquare c/p = c Σ_i s_ir_i = Σ_i s_i ψ_i , up to precision
 - Precision errors do not changing the rounding
 - \triangleright Precision errors from ψ_i imprecision < 1/8
 - c/p is with 1/4 of an integer

Are we bootstrappable yet?

- \square Dec_{E*}(s,c)= LSB(c) XOR LSB([$\Sigma_i s_i \psi_i$])
- Notice: s has low Hamming weightnamely |S|
- □ We can compute LSB([$\Sigma_i s_i \psi_i$]) as a low-degree poly (about |S|).
- To bootstrap:
 - Just make |S| smaller than the degree (about λ) that our scheme E* can handle!

Yay! We have a FHE scheme!



Known Attacks...

Two Problems We Hope Are Hard

- Approximate GCD (approx-gcd) Problem:
 - Given many $x_i = s_i + q_i p$, output p
 - Example params: $s_i \sim 2^{\lambda}$, $p \sim 2^{\lambda^2}$, $q_i \sim 2^{\lambda^5}$, where λ is security parameter
- Sparse Subset Sum Problem (SSSP)
 - Given integers x_1 , ..., x_n with a subset S with $\Sigma_{i \in S} x_i = 0$, output S.
 - **Example params:** $n \sim \lambda^5$ and $|S| \sim \lambda$.
 - (Studied by Phong and others in connection with server-aided cryptosystems.)

Hardness of Approximate-GCD

- Several lattice-based approaches for solving approximate-GCD
 - Related to Simultaneous Diophantine Approximation (SDA)
 - Studied in [Hawgrave-Graham01]
 - We considered some extensions of his attacks
- □ All run out of steam when $|q_i| > |p|^2$, where |p| is number of bits of p
 - In our case $|p| \sim \lambda^2$, $|q_i| \sim \lambda^5 \gg |p|^2$

Relation to SDA

- $\Box x_i = q_i p + r_i (r_i \ll p \ll q_i), i = 0,1,2,...$
 - $y_i = x_i/x_0 = (q_i+s_i)/q_0, s_i \sim r_i/p \ll 1$
 - y_1, y_2, \dots is an instance of SDA
 - q₀ is a denominator that approximates all y_i's
- Use Lagarias's algorithm:
 - Consider the rows of this matrix:
 - Find a short vector in the lattice that they span
 - = $<q_0,q_1,...,q_t>\cdot L$ is short
 - Hopefully we will find it

$$= \begin{pmatrix} R & x_1 & x_2 & \dots & x_t \\ -x_0 & & & \\ & -x_0 & & & \\ & & & -x_0 \end{pmatrix}$$

Relation to SDA (cont.)

- When will Lagarias' algorithm succeed?
 - - \triangleright In particular shorter than \sim det(L)^{1/t+1}
 - This only holds for $t > |q_0|/|p|$

- Minkowski _bound__
- The dimension of the lattice is t+1
- Quality of lattice-reduction deteriorates exponentially with t
- When |q₀| > (|p|)² (so t>|p|), LLL-type reduction isn't good enough anymore

Relation to SDA (cont.)

- When will Lagarias' algorithm succeed?
 - - In particular shorter than ~det(L)^{1/t+1}
 - This only holds for t > log Q/log P Minkowski
 - The dimension of the lattice is t+1
 - Rule of thumb: takes 2^{t/k} time to get 2^k approximation of SVP/CVP in lattice of dim t.
 - $ightharpoonup 2^{|q_0|/|p|^2} = 2^{\lambda}$ time to get $2^{|p|} = p$ approx.

Bottom line: no known eff. attack on approx-gcd

Lattice-based scheme seems "more secure"

- □ The security of the somewhat homomorphic scheme (quantumly) can be based on the worst-case hardness of SIVP over ideal lattices. (Crypto `10)
- □ This worst-case / average-case reduction is quite different from the reduction for ring-LWE [LPR EC'10]

A working implementation!!!

... and its surprisingly not-entirely-miserable performance

Performance

- Well, a little slow...
 - In E, a ciphertext is c_i is about λ^5 bits.
 - Dec_{F*} works in time quasi-linear in λ^5 .
 - Applying $Eval_{E^*}$ to Dec_{E^*} takes quasi- λ^{10} .
 - To bootstrap E* to E*FHE, and to compute Eval_{E*FHE}(pk, f, c₁, ..., c_t), we apply Eval_{E*} to Dec_{E*} once for each Add and Mult gate of f.
 - ightharpoonup Total time: quasi- $λ^{10} \cdot S_f$, where S_f is the circuit complexity of f.

Performance

- STOC09 lattice-based scheme performs better:
 - Originally, applying Eval to Dec took $\tilde{O}(\lambda^6)$ computation if you want 2^{λ} security against known attacks.
 - Stehle and Steinfeld recently got the complexity down to $\tilde{O}(\lambda^3)!$

So what. Regev said $O(\lambda^2)$ is horrible in practice...

Ongoing work with Shai Halevi

But we have an implementation!

- □ Somewhat similar to [Smart-Vercauteren PKC'10]. But maybe better. ©
- Initially planned to use IBM's Blue-Gene, but ended up not needing it Xeon E5440 / 2022 CH2 (64)
 - Implementation using NTL/GMP

2.83 GHz (64bit, quad-core) 24 GB memory

- Timing on a "strong" 1-CPU machine
- Gen'ed/tested instances in 4 dimensions:
- \square Toy(29), Small(211), Med(213), Large(215)

Underlying Somewhat HE

□ PK is 2 integers, SK is one integer

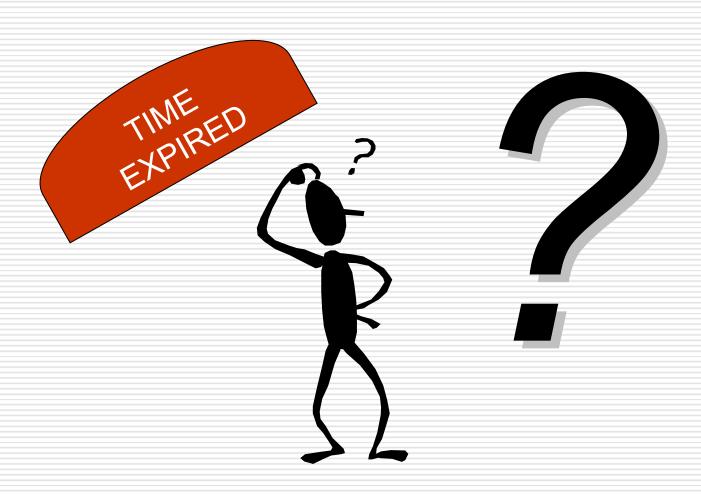
Dimension	KeyGen	Enc (amortized)	Dec	Degree
512 200,000-bit integers	0.16 sec	4 millisec	4 millisec	~200
2048 800,000-bit integers	1.25 sec	60 millisec	23 millisec	~200
8192 3,200,000-bit integers	10 sec	0.7 sec	0.12 sec	~200
32728 13,000,000-bit integers	95 sec	5.3 sec	0.6 sec	~200

Fully Homomorphic Scheme

Re-Crypt polynomial of degree 15

Dimension	KeyGen	PK size	Re-Crypt
512 200,000-bit integers	2.4 sec	17 MByte	6 sec
2048 800,000-bit integers	40 sec	70 MByte	31 sec
8192 3,200,000-bit integers	8 min	285 MByte	3 min
32728 13,000,000-bit integers	2 hours	2.3 GByte	30 min

Thank You! Questions?



Can Eval_E handle Dec_E?

 \square The boolean function $Dec_{F}(p,c)$ sets:

$$m = LSB(c) \times LSB([c/p])$$

- Can E handle (i.e., Evaluate) Dec_E followed by Add_E or Mult_E?
 - If so, then E is bootstrappable, and we can use E to construct an FHE scheme EFHE.
- Most complicated part:

$$f(c,p^{-1}) = LSB([c \times p^{-1}])$$

■ The numbers c and p^{-1} are in binary rep.

Multiplying Numbers $f(c,p^{-1}) = LSB([c \times p^{-1}])$

Let's multiply a and b, rep'd in binary:

$$(a_t, ..., a_0) \times (b_t, ..., b_0)$$

☐ It involves adding the t+1 numbers:

		a_0b_t	a_0b_{t-1}	 a_0b_1	a_0b_0
	a_1b_t	a_1b_{t-1}	a1b _{t-2}	 a_1b_1	0
a _t b _t	 a _t b ₁	a_tb_0	0	 0	0

Adding Two Numbers $f(c,p^{-1}) = LSB([c \times p^{-1}])$

$$f(c,p^{-1}) = LSB([c \times p^{-1}])$$

<u>Carries</u> :	$x_1y_1 + x_1x_0y_0 + y_1x_0y_0$	x_0y_0	
	X_2	X_1	X_0
	y ₂	y ₁	y ₀
<u>Sum</u> :	$x_2 + y_2 + x_1 y_1 + x_1 x_0 y_0 + y_1 x_0 y_0$	$x_1+y_1+x_0y_0$	x_0+y_0

- Adding two t-bit numbers:
 - Bit of the sum = up to t-degree poly of input bits

Adding Many Numbers $f(c,p^{-1}) = LSB([c \times p^{-1}])$

- □ 3-for-2 trick:
 - 3 numbers → 2 numbers with same sum
 - Output bits are up to degree-2 in input bits

	X_2	X_1	x_0
	y ₂	y_1	y ₀
	Z_2	Z ₁	z_0
	$x_2 + y_2 + z_2$	$x_1+y_1+z_1$	$x_0 + y_0 + z_0$
$x_2y_2+x_2z_2$	$x_1y_1+x_1z_1$	$x_0y_0 + x_0z_0$	
$+y_2z_2$	$+y_1Z_1$	$+y_0z_0$	

- t numbers → 2 numbers with same sum
 - Output bits are degree 2^{log_{3/2} t} = t^{log_{3/2} 2} = t^{1.71}

Back to Multiplying

 $f(c,p^{-1}) = LSB([c \times p^{-1}])$

- Multiplying two t-bit numbers:
 - Add t t-bit numbers of degree 2
 - 3-for-2 trick \rightarrow two t-bit numbers, deg. 2t^{1.71}.
 - Adding final 2 numbers \rightarrow deg. $t(2t^{1.71}) = 2t^{2.71}$.
- $\Box Consider f(c,p^{-1}) = LSB([c \times p^{-1}])$
 - p⁻¹ must have log c > log p bits of precision to ensure the rounding is correct
 - So, f has degree at least 2(log p)^{2.71}.
- Can our scheme E handle a polynomial f of such high degree?
 - Unfortunately, no.

 $f(c,p^{-1}) = LSB([c \times p^{-1}])$

Why Isn't E Bootstrappable?

- Recall: E can <u>handle</u> f if:
 - $|f(x_1, ..., x_t)| < p/4$
 - whenever all |x_i| < B, where B is a bound on the noise of a fresh ciphertext output by Enc_F
- ☐ If f has degree > log p, then $|f(x_1, ..., x_t)|$ could definitely be bigger than p
 - E is (apparently) not bootstrappable...

 \square Dec_{E*}(s,c)= LSB(c) XOR LSB([$\Sigma_i s_i \psi_i$])

 \square Dec_{E*}(s,c)= LSB(c) XOR LSB([$\Sigma_i s_i \psi_i$])

a _{1,0}	a _{1,-1}	***	a _{1,-log n}
a _{2,0}	a _{2,-1}		a _{2,-log n}
a _{3,0}	a _{3,-1}		a _{3,-log n}
a _{4,0}	a _{4,-1}		a _{4,-log n}
a _{5,0}	a _{5,-1}		a _{5,-log n}
a _{n,0}	a _{n,-1}		a _{n,-log n}

 \square Dec_{E*}(s,c)= LSB(c) XOR LSB([$\Sigma_i s_i \psi_i$])

Let b₀ be the binary rep of Hamming weight

/	a _{1,0}	a _{1,-1}		a _{1,-log n}
/	a _{2,0}	a _{2,-1}		a _{2,-log n}
	a _{3,0}	a _{3,-1}		a _{3,-log n}
	a _{4,0}	a _{4,-1}		a _{4,-log n}
	a _{5,0}	a _{5,-1}		a _{5,-log n}
\			•••	
1	$a_{n,0}$	a _{n,-1}		a _{n,-log n}

b _{0,log n}	 b _{0,1}	b _{0,0}		

 \square Dec_{E*}(s,c)= LSB(c) XOR LSB([$\Sigma_i s_i \psi_i$])

Let b₋₁ be the binary rep of Hamming weight

a _{1,0}	/a _{1,-1}	 a _{1,-log n}
a _{2,0}	a _{2,-1}	 a _{2,-log n}
a _{3,0}	a _{3,-1}	 a _{3,-log n}
a _{4,0}	a _{4,-1}	 a _{4,-log n}
a _{5,0}	a _{5,-1}	 a _{5,-log n}
a _{n,0}	a _{n,-1}	 a _{n,-log n}

b _{0,log n}	***	b _{0,1}	b _{0,0}	
	b _{-1,log n}		b _{-1,1}	b _{-1,0}

 \square Dec_{E*}(s,c)= LSB(c) XOR LSB([$\Sigma_i s_i \psi_i$])

Let b_{-log n} be the binary rep of Hamming weight

a _{1,0}	a _{1,-1}		1,-log n
a _{2,0}	a _{2,-1}	•••	a _{2,-log n}
a _{3,0}	a _{3,-1}		a _{3,-log n}
a _{4,0}	a _{4,-1}		a _{4,-log n}
a _{5,0}	a _{5,-1}		a _{5,-log n}
			\ /
a _{n,0}	a _{n,-1}	•••	a _{n,-log n}

b _{0,log n}		b _{0,1}	b _{0,0}			
	b _{-1,log n}		b _{-1,1}	b _{-1,0}		
			b _{-log n,log n}	•••	b _{-log n,1}	b _{-log n,0}

 \square Dec_{E*}(s,c)= LSB(c) XOR LSB([$\Sigma_i s_i \psi_i$])

Only log n numbers with log n bits of precision. Easy to handle.

a _{1,0}	a _{1,-1}	•••	a _{1,-log n}
a _{2,0}	a _{2,-1}		a _{2,-log n}
a _{3,0}	a _{3,-1}		a _{3,-log n}
a _{4,0}	a _{4,-1}		a _{4,-log n}
a _{5,0}	a _{5,-1}		a _{5,-log n}
$a_{n,0}$	a _{n,-1}		a _{n,-log n}

b _{0,log n}	•••	b _{0,1}	b _{0,0}			
	b _{-1,log n}		b _{-1,1}	b _{-1,0}		
			b _{-log n,log n}		b _{-log n,1}	b _{-log n,0}

Computing Sparse Hamming Wgt.

a _{1,0}	a _{1,-1}	 a _{1,-log n}
a _{2,0}	a _{2,-1}	 a _{2,-log n}
a _{3,0}	a _{3,-1}	 a _{3,-log n}
a _{4,0}	a _{4,-1}	 a _{4,-log n}
a _{5,0}	a _{5,-1}	 a _{5,-log n}
\		
$a_{n,0}$	a _{n,-1}	 a _{n,-log n}

Computing Sparse Hamming Wgt.

a _{1,0}	a _{1,-1}	 a _{1,-log n}
0	0	 0
0	0	 0
a _{4,0}	a _{4,-1}	 a _{4,-log n}
0	0	 0
\ /		
$a_{n,0}$	a _{n,-1}	 a _{n,-log n}

Computing Sparse Hamming Wgt.

 a_1

0

 $a_{4,0}$

0

- \square $Dec_{E^*}(s,c) = LSB(c) XOR LSB([\Sigma_i s_i \psi_i])$
- ☐ Binary rep of Hamming wgt of $\mathbf{x} = (x_1, ..., x_n)$ in $\{0,1\}^n$ given by:
- $e_{2^{\lceil \log n \rceil}}(\mathbf{x})$ mod2, ..., $e_2(\mathbf{x})$ mod2, $e_1(\mathbf{x})$ mod2 where e_k is the elem symm poly of deg k
- Since we know a priori that Hamming wgt is |S|, we only need
- $e_{2^{\lceil \log |S| \rceil}}(\mathbf{x}) \mod 2, ..., e_2(\mathbf{x}) \mod 2, e_1(\mathbf{x}) \mod 2$ up to deg < |S|
- \square Set $|S| < \lambda$, then E* is bootstrappable.