Publications by Mark Schmidt
2013
-
Block-Coordinate Frank-Wolfe Optimization for Structural SVMs.
S. Lacoste-Julien, M. Jaggi, M. Schmidt, P. Pletscher. ICML, 2013.
[pdf]
[poster]
[slides]
[short version]
2012
-
A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets.
N. Le Roux, M. Schmidt, F. Bach. NIPS, 2012.
[pdf]
[poster]
[slides]
[talk]
[appendix]
-
Hybrid Deterministic-Stochastic
Methods for Data Fitting.
M. Friedlander, M. Schmidt.
SISC, 2012.
[pdf]
[slides]
[code]
[addendum]
-
A simpler approach to obtaining an O(1/t) convergence rate for projected stochastic subgradient descent.
S. Lacoste-Julien, M. Schmidt, F. Bach. arXiv, 2012.
[pdf]
-
On Sparse, Spectral and Other Parameterizations of Binary Probabilistic
Models.
D. Buchmann, M. Schmidt, S. Mohamed, D. Poole, N. de Freitas.
AISTATS, 2012.
[pdf]
[poster]
[code].
2011
-
Convergence Rates of Inexact Proximal-Gradient Methods for Convex
Optimization.
M. Schmidt, N. Le Roux, F. Bach.
NIPS, 2011.
[pdf]
[poster]
[slides]
[talk]
[code]
-
Projected Newton-type Methods in Machine Learning.
M. Schmidt, D. Kim, S. Sra.
Optimization for Machine Learning (S. Sra, S. Nowozin, S.Wright), MIT Press 2011.
[pdf]
[slides]
[talk]
[code]
-
Generalized Fast Approximate Energy Minimization via Graph Cuts:
Alpha-Expansion Beta-Shrink Moves.
M. Schmidt, K. Alahari.
UAI, 2011.
[pdf]
[poster]
[code]
2010
-
Graphical Model Structure Learning with L1-Regularization.
M. Schmidt.
PhD Thesis, 2010.
[pdf]
[slides]
[code]
- Convex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials.
M. Schmidt, K. Murphy.
AISTATS, 2010.
[pdf]
[slides]
[talk]
[code]
- Modeling annotator expertise: Learning when everybody knows a bit of something.
Y. Yan, R. Rosales, G. Fung, M. Schmidt, G. Hermosillo, L. Bogoni, L. Moy, J. Dy.
AISTATS, 2010.
[pdf]
[talk]
- Causal Learning without DAGs.
D. Duvenaud, D. Eaton, K. Murphy, M. Schmidt.
JMLR W&CP, 2010.
[pdf]
[poster]
[code]
2009
- Optimizing Costly Functions with Simple Constraints: A Limited-Memory Projected
Quasi-Newton Algorithm.
M. Schmidt, E. van den Berg, M. Friedlander, K. Murphy.
AISTATS, 2009 (Best Paper Award)
[pdf]
[slides]
[code]
[examples]
- Group Sparse Priors for Covariance Estimation.
B. Marlin, M. Schmidt, K. Murphy.
UAI, 2009.
[pdf]
[poster]
- Modeling Discrete Interventional Data using Directed Cyclic Graphical Models.
M. Schmidt, K. Murphy.
UAI, 2009.
[pdf]
[slides]
[code]
[addendum]
- Increased Discrimination in Level Set Methods with Embedded Conditional Random Fields.
D. Cobzas, M. Schmidt.
CVPR, 2009.
[pdf]
[poster]
- Optimization Methods for L1-Regularization.
M. Schmidt, G. Fung, R. Rosales.
UBC Technical Report, 2009.
[pdf]
[code]
[examples]
2008
- Structure Learning in
Random Fields for Heart Motion Abnormality Detection.
M. Schmidt, K. Murphy, G. Fung, R. Rosales.
CVPR, 2008.
[pdf]
[poster]
[code]
[addendum]
- Group
Sparsity via Linear-Time Projection.
E. van den Berg, M. Schmidt. M. Friedlander, K. Murphy.
UBC Technical Report, 2008.
[pdf]
[code]
- An interior-point stochastic approximation method and an L1-regularized delta rule.
P. Carbonetto, M. Schmidt, N. de Freitas.
NIPS, 2008.
[pdf]
[slides]
[code]
2007
- Fast Optimization Methods for L1-Regularization: A Comparative Study
and 2 New Approaches.
M. Schmidt, G. Fung, R. Rosales.
ECML, 2007.
[pdf]
[slides]
[talk]
[code]
[examples]
[addendum]
[extended version]
- Learning Graphical Model Structure using
L1-Regularization Paths.
M. Schmidt,
A. Niculescu-Mizil, K Murphy.
AAAI, 2007.
[pdf]
[code]
[addendum]
- 3D Variational Brain Tumor Segmentation using a High Dimensional Feature
Set.
D. Cobzas, N. Birkbeck, M. Schmidt, M. Jagersand, A. Murtha.
MMBIA, 2007.
[pdf]
[online
material]
2006
- Accelerated Training
of Conditional Random Fields
with Stochastic Gradient Methods.
S. Vishwanathan,
N. Schraudolph,
M. Schmidt,
K. Murphy.
ICML, 2006.
[pdf]
[1d code]
[2d code]
[slides]
- A
Classification-based Glioma Diffusion Model Using MRI Data.
M. Morris,
R. Greiner,
J. Sander,
A. Murtha,
M. Schmidt.
CAI, 2006.
[pdf]
2005
- Segmenting
Brain Tumors using Conditional Random Fields and Support Vector Machines.
C.-H. Lee, M. Schmidt, A. Murtha, A. Bistritz, J. Sander, R. Greiner.
CVBIA, 2005.
[pdf]
[poster]
- Segmenting
Brain Tumors using Alignment-Based Features.
M. Schmidt, I. Levner, R. Greiner, A. Murtha, A. Bistritz.
ICMLA, 2005.
[pdf]
- Support Vector Random Fields for Spatial Classification.
C.-H. Lee, R. Greiner, M. Schmidt.
PKDD, 2005.
[pdf]
[presentation]
- Automatic Brain Tumor Segmentation.
M. Schmidt.
MSc Thesis, 2005.
[pdf]
Notes
Mark Schmidt > Publications