
Static Analysis of Run-Time Errors in
Embedded Critical Parallel C Programs?

Antoine Miné

CNRS & École Normale Supérieure
45, rue d’Ulm

75005 Paris, France
mine@di.ens.fr

Abstract. We present a static analysis by Abstract Interpretation to
check for run-time errors in parallel C programs. Following our work on
Astrée, we focus on embedded critical programs without recursion nor
dynamic memory allocation, but extend the analysis to a static set of
threads. Our method iterates a slightly modified non-parallel analysis
over each thread in turn, until thread interferences stabilize. We prove
the soundness of the method with respect to a sequential consistent se-
mantics and a reasonable weakly consistent memory semantics. We then
show how to take into account mutual exclusion and thread priorities
through partitioning over the scheduler state. We present preliminary ex-
perimental results analyzing a real program with our prototype, Thésée,
and demonstrate the scalability of our approach.

Keywords: Parallel programs, static analysis, Abstract Interpretation,
run-time errors.

1 Introduction

Ensuring the safety of critical embedded software is important as a single “bug”
can have catastrophic consequences. Previous work on the Astrée analyzer [5]
demonstrated that static analysis by Abstract Interpretation could help, when
specializing an analyzer to a class of programs (synchronous control/command
avionics C software) and properties (run-time errors). In this paper, we describe
ongoing work to achieve similar results for parallel embedded programs. We wish
to match the current trend in critical embedded systems to switch from large
numbers of single-program processors communicating through a common bus to
single-processor multi-threaded applications communicating through a shared
memory (for instance, in the context of Integrated Modular Avionics). We focus
on detecting the same kinds of run-time errors as Astrée does (arithmetic and
memory errors) and take data-races into account (as they may cause such errors),
but we ignore other concurrency errors (such as dead-locks, live-locks, or priority
inversions), which are orthogonal.
? This work is supported by the INRIA project “Abstraction” common to CNRS and

ENS in France.

Our method is based on Abstract Interpretation [7], a general theory of the
approximation of semantics, which allows designing static analyzers that are
sound by construction, i.e., consider a superset of all program behaviors and thus
cannot miss any bug, but can cause spurious alarms due to over-approximations.
At its core, our method performs an analysis of each thread considering an
abstraction of the effects of the other threads (called interferences). Each analysis
generates a new set of interferences, and threads are re-analyzed until a fixpoint
is reached. Thus, few modifications are required for a non-parallel analyzer to
analyze parallel programs. Moreover, we show that few thread re-analyses are
required in practice, resulting in a scalable analysis.

As we target embedded software, we can safely assume that there is no re-
cursion nor dynamic allocation of memory, threads, or locks, which makes the
analysis easier. In return, we handle two subtle points. Firstly, we consider a
weakly consistent memory model: memory accesses not protected by mutual ex-
clusion may cause behaviors that are not the result of any thread interleaving
to appear, as they expose to concurrent threads compiler optimizations that are
transparent on non-parallel programs. We handle this by proving that our se-
mantics is invariant by some classes of program transformations. Secondly, we
take into account the effect of a real-time scheduler that schedules the threads on
a single processor according to strict, fixed priorities: only the unblocked thread
of highest priority may run. This ensures some mutual exclusion properties that
our target program exploits, and so should our analysis. This is achieved by
partitioning with respect to an abstraction of the global scheduling state.

Our paper is organized as follows: Sec. 2 presents a classic non-parallel se-
mantics, Sec. 3 considers threads in a shared memory, and Sec. 4 adds support
for locks and priorities; Sec. 5 presents our prototype and experimental results,
Sec. 6 discusses related work, and Sec. 7 concludes and envisions future work.
We alternate between two kinds of semantics: semantics based on control paths,
that can model precisely thread interleavings, and semantics by structural in-
duction on the syntax, that give rise to effective abstract interpreters. Figure 1
summarizes the semantics introduced in the paper, using ⊆ to denote the “is
less abstract than” relation. Our analysis has already been mentioned, briefly
and informally, in [4, § VI]. We offer here a formal, rigorous treatment.

2 Non-parallel Programs

This section recalls a classic static analysis by Abstract Interpretation of the run-
time errors of non-parallel programs, as performed for instance by Astrée [5].
The formalization introduced here will be extended later to parallel programs,
and it will be apparent that an analyzer for parallel programs can be constructed
by extending an analyzer for non-parallel programs with few changes.

2.1 Syntax

For the sake of exposition, we reason on a vastly simplified programming lan-
guage. However, the results extend naturally to a realistic language, such as the

non-parallel semantics parallel semantics

P
(§2.2)

⊆ // P]

(§2.3)

�

(§2.4)

=

PI
(§3.2)

⊆ // P]
I

(§3.3)

non-scheduled
structured
semantics

P∗
(§3.1)

⊆
;;wwwwww

P′∗
(§3.4)

⊆

OO

non-scheduled
path-based
semantics

PC
(§4.4)

⊆ //

⊆

^^

P]
C

(S4.5)

scheduled
structured
semantics

PH
(§4.2)

⊆
;;wwwwww

⊆

OO

P′H
(§4.3)

⊆

OO
⊆

AA

scheduled
path-based
semantics

Fig. 1. Semantics defined in this paper.

subset of C excluding recursion and dynamic memory allocation. We assume
a fixed, finite set V of variables and F of function names. A program has an
entry-point entry ∈ F and associates to each function name f ∈ F a structured
statement body(f) ∈ stat in the following grammar:

stat ::= X ← expr (assignment, X ∈ V)
| if expr then stat (conditional)
| while expr do stat (loop)
| stat ; stat (sequence)
| f() (function call, f ∈ F)

expr ::= X | [c1, c2] | expr �` expr
where X ∈ V, c1, c2 ∈ R ∪ {±∞}, � ∈ {+,−,×, / }, ` ∈ L

(1)

For the sake of simplicity, we do not handle local variables (all variables are
visible at all program points) nor function arguments and returns. Due to the
absence of recursion, these could be easily simulated by using a finite set of global
variables. Our toy language is limited to a single data-type (real numbers in R)
and numeric expressions. Constants are actually constant intervals [c1, c2], which
return a fresh value between c1 and c2 when evaluated. This allows modeling
non-deterministic expressions and inputs from the environment. Each operator
�` is tagged with a syntactic location ` and we denote by L the finite set of all
syntactic locations. The output of an analyzer will be the set of locations ` with
errors (or rather, a superset of them, due to approximations).

2.2 Concrete Structured Semantics P

We present a concrete semantics, that is, the most precise mathematical expres-
sion of program semantics we consider. As it is undecidable, it will be abstracted
in the next section to obtain a sound static analysis.

A program environment ρ ∈ E maps each variable to a value, i.e., E def= V →
R. The semantics EJ e K of an expression e ∈ expr maps an environment to a set

of values in P(R) (sets accounting for non-determinism) and a set of run-time
error locations in P(L) (in our simple case, only for divisions by zero). It is
defined by structural induction as follows:

∀e ∈ expr , EJ e K : E → (P(R)× P(L))
EJX Kρ def= ({ ρ(X) }, ∅)
EJ [c1, c2] Kρ def= ({ c ∈ R | c1 ≤ c ≤ c2 }, ∅)
EJ e1 �` e2 Kρ def=

let (V1, Ω1) = EJ e1 Kρ in
let (V2, Ω2) = EJ e2 Kρ in
({x1 � x2 |x1 ∈ V1, x2 ∈ V2, � 6= / ∨ x2 6= 0 },
Ω1 ∪Ω2 ∪ { ` | � = / ∧ 0 ∈ V2 })

where � ∈ {+,−,×, / }

(2)

We now consider the complete lattice D def= P(E)×P(L) with partial order v de-
fined as the pairwise set inclusion (A,B) v (A′, B′) def⇐⇒ A ⊆ A′∧B ⊆ B′. We
denote by t the associated join, i.e., pairwise set union. The structured seman-
tics SJ s K of a statement s is a morphism in D that, given a set of environments
R and errors Ω before a statement s, returns the reachable environments after
s as well as Ω enriched with the errors encountered during the execution of s:
∀s ∈ stat , SJ s K : D → D
SJX ← e K(R,Ω) def=

(∅, Ω) t
⊔
ρ∈R let (V,Ω′) = EJ e Kρ in ({ ρ[X 7→ v] | v ∈ V }, Ω′)

SJ s1; s2 K(R,Ω) def= (SJ s2 K ◦ SJ s1 K)(R,Ω)
SJ if e then s K(R,Ω) def= (SJ s K ◦ SJ e 6= 0? K)(R,Ω) t SJ e = 0? K(R,Ω)
SJ while e do s K(R,Ω) def=

SJ e = 0? K(lfpλX. (R,Ω) t (SJ s K ◦ SJ e 6= 0? K)X)
SJ f() K(R,Ω) def= SJ body(f) K(R,Ω)
SJ e ./ 0? K(R,Ω) def=

(∅, Ω) t
⊔
ρ∈R let (V,Ω′) = EJ e Kρ in ({ ρ | ∃v ∈ V, v ./ 0 }, Ω′)

with ./ ∈ {=, 6= }

(3)

where ρ[X 7→ x] is the environment that maps X to x, and elements Y 6= X
to ρ(Y). Loops and conditionals use the synthetic “guard” statements e = 0?
and e 6= 0? that filter their argument and keep only those environments that
may evaluate, respectively, to null (i.e., false) or non-null (i.e., true) values.
Guards and assignments are collectively called atomic statements. The semantics
of loops uses a least fixpoint operator lfp to compute a loop invariant. We have
the following property:

Theorem 1. ∀s, SJ s K is well defined and a strict, complete t−morphism.

We can now define the concrete structured semantics of the program as follows:

P def= Ω, where (−, Ω) = SJ entry() K(E0, ∅) (4)

where E0 ⊆ E is a set of initial environments (e.g., E0
def= { ρ0 } where ∀X ∈

V, ρ0(X) = 0). Thus, we observe the set of run-time errors that can appear in

executions starting at the beginning of entry in an initial environment. Note
that, as ∀s, SJ s K(∅, Ω) = (∅, Ω), we also observe errors occurring in executions
that loop forever or halt before the end of entry .

2.3 Abstract Structured Semantics P]

The semantics P is not computable as it involves least fixpoints in an infinite-
height domain D. An effective analysis will instead compute an abstract se-
mantics over-approximating the concrete one. This semantics is parametrized
by an abstract domain of environments, i.e., a set E] of computer-representable
abstract elements, with a partial order ⊆]. Each abstract element represents
a set of concrete environments through a monotonic concretization function
γE : E] → P(E). In particular, there is an element E]0 ∈ E] representing ini-
tial environments: γE(E]0) ⊇ E0. We also require a sound and effective abstract
version of every concrete operator:

∪]E : (E] × E])→ E]
with ∀A], B] ∈ E], γE(A] ∪]E B]) ⊇ γE(A]) ∪ γE(B])

and, for atomic statements s, i.e., s ∈ {X ← e, e = 0?, e 6= 0? }:
SJ s K] : (E] × P(L))→ (E] × P(L))
with ∀(R], Ω), (SJ s K ◦ γ)(R], Ω) v (γ ◦ SJ s K])(R], Ω)
where γ(R], Ω) def= (γE(R]), Ω)

i.e., the soundness condition requires an abstract operator to output supersets
of the environments and error locations returned by the concrete one. Finally,
when E] has infinite strictly increasing chains, we require a widening operator
OE to ensure the convergence of abstract fixpoint computations in finite time:

OE : (E] × E])→ E]
with ∀A], B] ∈ E], γE(A] OE B]) ⊇ γE(A]) ∪ γE(B])
and ∀(Y]i)i∈N, the sequence X]

0
def= Y]0 , X

]
i+1

def= X]
i OE Y

]
i+1

reaches a fixpoint X]
k = X]

k+1 for some k ∈ N.
There exist many such abstract domains, for instance the interval domain [7],
where an element of E] associates an interval to each variable, or the octagon
domain [17], where an element of E] is a conjunction of constraints of the form
±X ± Y ≤ c with X,Y ∈ V, c ∈ R.

Given an abstract domain, we can provide an abstract semantics for non-
atomic statements by induction, similarly to the concrete semantics (3), except
that loops use the widening operator OE :

SJ s1; s2 K](R], Ω) def= (SJ s2 K] ◦ SJ s1 K])(R], Ω)
SJ if e then s K](R], Ω) def=

(SJ s K] ◦ SJ e 6= 0? K])(R], Ω) ∪] SJ e = 0? K](R], Ω)
SJ while e do s K](R], Ω) def=

SJ e = 0? K](lfpλX.X O ((R], Ω) ∪] (SJ s K] ◦ SJ e 6= 0? K])X))
SJ f() K](R], Ω) def= SJ body(f) K](R], Ω)

(5)

where (R]1, Ω1) ∪] (R]2, Ω2) def= (R]1 ∪
]
E R

]
2, Ω1 ∪Ω2) and (R]1, Ω1)O (R]2, Ω2) def=

(R]1 OE R
]
2, Ω1 ∪Ω2). The program semantics is, similarly to (4):

P] def= Ω, where (−, Ω) = SJ entry() K](E]0, ∅) . (6)
The following theorem states the soundness of the abstract semantics:

Theorem 2. P ⊆ P].

As our programs have no recursive procedures, the recursion in SJ · K] is
bounded and we obtain an effective and sound static analysis. It is flow-sensitive
and fully context-sensitive (behaving as if all function calls were inlined). It is
relational whenever E] is (e.g., with octagons [17]). Moreover, the number of
abstract elements to keep in memory does not depend on the program size but
on the maximum nesting of conditionals and loops: the analyzer is thus very
memory friendly, which is critical to analyze large programs, as in Astrée [5].

2.4 Concrete Path-Based Semantics �

We now propose an alternative concrete semantics based on control paths, which
will come handy when considering parallel programs interleaving several threads.
For non-parallel programs, its output is equal to that of the structured one.

A control path p is a finite sequence of atomic statements (i.e., X ← e,
e = 0?, e 6= 0?). We denote by Π the set of all control paths. The set of paths
π(s) ⊆ Π of a statement s is defined as follows:

π(X ← e) def= {X ← e }
π(s1; s2) def= π(s1);π(s2)
π(if e then s) def= ({ e 6= 0? };π(s)) ∪ { e = 0? }
π(while e do s) def= (lfpλX. { ε } ∪ (X; { e 6= 0? };π(s))); { e = 0? }
π(f()) def= π(body(f))

(7)

where ε denotes then empty path, and ; denotes path concatenation (by analogy
with statement sequencing s1; s2) and is naturally extended to sets of paths.
When s contains a loop, π(s) is infinite, although many paths may be infeasible,
i.e., have no corresponding execution (e.g., if all loops have a static bound).

Using the definitions from the structured semantics (3), we can define the
semantics �JP K of a set of paths P ⊆ Π as:

�JP K(R,Ω) def=
⊔
{SJ s1; . . . ; sn K(R,Ω) | s1; . . . ; sn ∈ P } (8)

which is similar to the standard meet over all paths solution1 of data-flow prob-
lems [18, § 2], but for concrete executions in the infinite-height lattice D. The
meet over all paths and maximum fixpoint solutions of data-flow problems are
equal for distributive frameworks; similarly, our structured and path-based con-
crete semantics (based on complete t−morphisms) are equal:

Theorem 3. ∀s ∈ stat , �Jπ(s) K = SJ s K.
1 The lattices used in data-flow analysis and abstract interpretation are dual: the

former uses a meet to join paths while we employ a join.

3 Parallel Programs in Shared Memory

In this section, we consider several threads that communicate through a shared
memory, without any synchronization primitive. We also discuss memory con-
sistency models and their effect on the semantics and static analysis.

A program has now a fixed, finite set T of threads. Each thread t ∈ T has
an entry-point function entryt ∈ F . All the variables in V are shared and can
be accessed by all threads.2

3.1 Concrete Interleaving Semantics P∗

The simplest and most natural model of parallel program execution considers
all possible interleavings of control paths from all threads. These correspond to
sequentially consistent executions, as coined by Lamport [15]. A parallel control
path p is a finite sequence of pairs (s, t), where s is an atomic statement and
t ∈ T . The semantics �∗JP K of a set of parallel control paths P is:

�∗JP K(R,Ω) def=
⊔
{ SJ s1; . . . ; sn K(R,Ω) | (s1,−); . . . ; (sn,−) ∈ P } (9)

We denote by π∗ the set of all parallel control paths in the program:

π∗
def= { p | ∀t ∈ T , projt(p) ∈ π(body(entryt)) } (10)

where projt(p) projects p on a thread t by extracting the maximal path s1; . . . ; sn
such that (s1, t); . . . ; (sn, t) is a sub-path of p. The semantics P∗ of the parallel
program is then:

P∗
def= Ω, where (−, Ω) = �∗Jπ∗ K(E0, ∅) . (11)

3.2 Concrete Interference Semantics PI

Because it reasons on infinite sets of paths, the interleaving concrete semantics
is not easily amenable to flow-sensitive abstractions. We propose here a more
abstract semantics that can be expressed by induction on the syntax and will
lead to an effective static analysis after further abstraction.

We start by enriching the non-parallel semantics of Sec. 2.2 with a notion of
interference. We call interference a triple (t,X, v) ∈ I, where I def= T × V × R,
indicating that the thread t can set the variable X to the value v. The semantics
of expressions is updated to take as extra arguments the current thread t and
an interference set I ⊆ I. When fetching a variable X ∈ V, each interference on
X from other threads is applied:

EIJX K(t, ρ, I) def= ({ ρ(X) } ∪ { v | (t′, X, v) ∈ I, t 6= t′ }, ∅) (12)
while other functions are not changed with respect to (2), apart from propa-
gating t and I recursively. As the interference is chosen non-deterministically,
distinct occurrences of X in an expression may evaluate to different values. The
semantics of statements is also enriched with interferences and is now a complete
2 As the set of threads is finite, thread-local variables, such as function locals and pa-

rameters, could be handled by duplicating the functions and renaming the variables.

E0 : flag1 = flag2 = 0

flag1 ← 1; flag2 ← 1;

if (flag2 = 0) if (flag1 = 0)

critical section critical section

(a) Mutual Exclusion Algorithm.

E0 : x = y = 0

x ← x + 1; x ← x + 1;

y ← x;

(b) Parallel Incrementation.

Fig. 2. Incompleteness examples for the interference semantics.

t−morphism in the complete lattice DI
def= P(E)×P(L)×P(I). The semantics

of an assignment in a thread t both uses and enriches the interference set:

SIJX ← e, t K(R,Ω, I) def=
(∅, Ω, I) t

⊔
ρ∈R ({ ρ[X 7→ v] | v ∈ V }, Ω′, { (t,X, v) | v ∈ V })

where (V,Ω′) = EIJ e K(t, ρ, I) .

(13)

The other functions (not presented here) are easily derived: guards e ./ 0? pass
I to EIJ e K and return I unchanged, while non-atomic statements are similar to
(3), replacing SJ · K with SIJ · K. Moreover, using SIJ · K in (8) defines a path-based
semantics with interference �IJP, t K. Theorem 3 naturally becomes:

Theorem 4. ∀t ∈ T , s ∈ stat , �IJπ(s), t K = SIJ s, t K.

The semantics SIJ s, t K still considers a statement s from a single thread t.
To take into account multiple threads, we iterate the analysis of all threads until
errors and interferences are stable:
PI

def= Ω, where (Ω,−) def=
lfpλ(Ω, I).

⊔
t∈T let (−, Ω′, I ′) = SIJ entryt(), t K(E0, Ω, I) in (Ω′, I ′) .

(14)

The interference semantics is sound with respect to the interleaving one (11):

Theorem 5. P∗ ⊆ PI .

However, it is generally not complete. Consider, for instance the program frag-
ment in Fig. 2(a) inspired from Dekker’s mutual exclusion algorithm. According
to the interleaving semantics, both threads can never be in their critical section
simultaneously. The interference semantics, however, allows thread 1 to read
flag2 as either 0 (from E0) or 1 (from interferences) at any program point,
and likewise for thread 2 and flag1, and so, there is no mutual exclusion. In
Fig. 2(b), two threads increment the same zero-initialized variable x. According
to the interleaving semantics, either the value 1 or 2 is stored into y. However,
in the interference semantics, the fixpoint builds a growing set of interferences,
up to { (t, x, i) | t ∈ T , i ∈ N }, as each thread increments the possible values
written by the other thread, resulting in any positive value being written into y.

3.3 Abstract Interference Semantics P]
I

The concrete interference semantics is defined by structural induction. It can
thus be easily abstracted. We assume, as in Sec. 2.3, the existence of an abstract

domain E] abstracting sets of environments, with a concretization γE and an
element E]0 abstracting E0. Additionally, we assume the existence of an abstract
domain N] that abstracts sets of reals. It is equipped with a concretization
γN : N] → P(R), a least element ⊥]N such that γN (⊥]N) = ∅, an abstract join
∪]N and, if it has strictly increasing infinite chains, a widening ON . Interferences
are then abstracted using the domain I] def= (T ×V)→ N], with concretization
γI(I]) def= { (t,X, v) | v ∈ γN (I](t,X)) }, and ∪]I and OI defined point-wise.
Abstract semantic functions now have the form: SIJ · K] : D]I → D

]
I with D]I

def=
E] × P(L)× I], and the soundness condition becomes:

(SIJ s, t K ◦ γ)(R], Ω, I]) v (γ ◦ SIJ s, t K])(R], Ω, I])
where γ(R], Ω, I]) def= (γE(R]), Ω, γI(I])), i.e., the abstract function over-
approximates environment, error, and interference sets.

Classic abstract domains can be easily converted to the interference seman-
tics. Consider, for instance, the case of an assignment (R]′, Ω′, I]′) = SIJX ←
e, t K](R], Ω, I]), when N] is the interval domain [7] and E] is an arbitrary
domain. For each variable Y occurring in e, we compute its abstract inter-
ference: Y] def=

⋃]
N { I](t′, Y) | t 6= t′ }. If Y] 6= ⊥]N , then Y is substi-

tuted in e with the interval constant Y] ∪]N itvY (R]) (where itvY (R]) ex-
tracts the bounds of Y in the abstract environment R]) to get an expression
e′. The result abstract environment and error set can now be computed us-
ing the native operators on E] as (R]′, Ω′) = SJX ← e′ K](R], Ω). Finally,
I]′ = I][(t,X) 7→ itvX(R]′) ∪]N I](t,X)]. Note that I] is not isomorphic to the
interval domain [7]: the former abstracts V → P(R) and the later P(V → R).
Sound abstractions for atomic statements then lift by induction on the syntax
to sound abstractions for all statements, as in (5). Finally, an abstraction of the
interference fixpoint (14) can be computed by iteration on abstract interferences,
using a widening to ensure termination:

P]I
def= Ω, where (Ω,−) def=

lfpλ(Ω, I]).∀t ∈ T , let (−, Ω′t, I
]
t
′) = SIJ entryt(), t K](E

]
0, Ω, I

]) in
(
⋃
t∈T Ω′t, I

] OI
⋃]
I { I

]
t
′ | t ∈ T }) .

(15)

The following theorem states the soundness of the analysis:

Theorem 6. PI ⊆ P]I .

The obtained analysis remains flow-sensitive and can be relational (provided
that E] is relational) within each thread, but abstracts interferences in a flow-
insensitive and non-relational way. It is expressed as an outer iteration that
completely re-analyzes each thread until the abstract interferences stabilize, and
so, can be implemented easily on top of existing non-parallel analyzers. Com-
pared to a non-parallel program analysis, the cost is multiplied by the number of
outer iterations required to stabilize interferences. This number remained very
low in our experiments (Sec. 5). More importantly, the overall cost is not related
to the (combinatorial) number of interleavings, but rather to the amount of ab-
stract interferences I], i.e., of actual communications between the threads. The
speed of convergence can be controlled by adapting the widening ON .

3.4 Weakly Consistent Memory Semantics P′∗

The interleaving concrete semantics P∗ of Sec. 3.1, while simple, is not realistic.
A first issue is that, as noted by Reynolds in [21], such a semantics requires
choosing a level of granularity, i.e., some basic set of operations that are assumed
to be atomic. In our case, we assumed assignments and guards to be atomic. In
contrast, an actual system may schedule a thread within an assignment and
cause x to be 1 at the end of the program in Fig. 2(b) instead of the expected
value, 2. A second issue, noted by Lamport in [14], is that the latency of loads
and stores in a shared memory may break the sequential consistency in true
multiprocessor systems: threads running on different processors may not agree
on the value of a shared variable. E.g., in Fig. 2(a), each thread may acknowledge
the change of value of a flag after it has tested the other one, causing both critical
sections to be entered simultaneously. Moreover, Lamport noted in [15] that
reordering of independent loads and stores in one thread by the processor can
also break sequential consistency (for instance performing the load from flag2
after the store to flag1 instead of before in the left thread of Fig. 2(a)). More
recently, it has been observed [16] that optimizations in modern compilers have
the same ill-effect even on mono-processor systems: program transformations
that are perfectly safe on a thread considered in isolation (for instance, reordering
the assignment flag1← 1 and the test flag2 = 0) can cause non sequentially
consistent behaviors to appear. In this section, we show that the interference
semantics correctly handles these issues, by proving that it is invariant under a
“reasonable” class of program transformations.

Acceptable program transformations of a thread are defined with respect
to the path-based semantics � of Sec. 2.4. A transformation of a thread t is
acceptable if it gives rise to a set π′(t) ⊆ Π of control paths such that every
path p′ ∈ π′(t) can be obtained from a path p ∈ π(body(entryt)) by a sequence
of elementary transformations from Def. 1 below, q q′ indicating that the
statement sequence q in a path can be replaced with q′. These transformations
can only reduce the amount of errors and interferences, so that an analysis of
the original program is sound with respect to the transformed one. In Def. 1,
we say that X ∈ V is fresh if it does not occur in any thread; X ∈ V is local if
it occurs in the current thread only; s[e′/e] is the statement s where some but
not necessarily all occurrences of expression e may be changed into e′; var(e) is
the set of variables appearing in e; lval(s) is the set of variables modified by s;
nonblock(e) hods if evaluating e cannot block the program: ∀ρ, EJ e Kρ = (V,−)
with V 6= ∅; e is deterministic if, moreover, |V | = 1; noerror(e) holds if evaluating
e is always error-free: ∀ρ, EJ e Kρ = (−, ∅).

Definition 1 (Elementary path transformations).

1. Redundant store elimination: X ← e1;X ← e2 X ← e2
when X /∈ var(e2) and nonblock(e1).

2. Identity store elimination X ← X ε.
3. Reordering of assignments: X1 ← e1;X2 ← e2 X2 ← e2;X1 ← e1

when X1 /∈ var(e2), X2 /∈ var(e1), and nonblock(e1).

4. Reordering of guards: e1 ./ 0?; e2 ./ 0? e2 ./ 0?; e1 ./ 0?
when noerror(e2).

5. Reorder guard before assignment: X1 ← e1; e2 ./ 0? e2 ./ 0?;X1 ← e1
when X1 /∈ var(e2) and either nonblock(e1) or noerror(e2).

6. Reorder assignment before guard: e1 ./ 0?;X2 ← e2 X2 ← e2; e1 ./ 0?
when X2 /∈ var(e1), X2 is local, and noerror(e2).

7. Assignment propagation: X ← e; s X ← e; s[e/X]
when X /∈ var(e), var(e) are local, and e is deterministic.

8. Sub-expression elimination: s1; . . . ; sn X ← e; s1[X/e]; . . . ; sn[X/e]
when X is fresh, ∀i, var(e) ∩ lval(si) = ∅, and noerror(e).

9. Expression simplification: s s[e′/e]
when ∀ρ, I, EIJ e K(t, ρ, I) w EIJ e′ K(t, ρ, I).

Store latency can be simulated using rules 8 and 3. Breaking a statement into
several ones (i.e., reducing the granularity of atomicity) is possible with rules
7 and 8. Global optimizations, such as constant propagation and folding, can
be achieved using rules 7 and 9, while rules 1–6 allow peephole optimizations.
Additionally, thread transformations that respect the set of control paths (such
as loop unrolling or function inlining) are acceptable.

Given the set of transformed paths π′(t), the interleaved executions π′∗ and
the semantics P′∗ can be defined as in (10), (11):

π′∗
def= { p | ∀t ∈ T , projt(p) ∈ π′(t) }

P′∗
def= Ω, where (−, Ω) = �∗Jπ′∗ K(E0, ∅) .

(16)

The following theorem extends Thm. 5 to transformed programs:

Theorem 7. P′∗ ⊆ PI .

However, it is not complete. The two semantics coincide, for instance, in the
program of Fig. 2(a). However, in the case of Fig. 2(b), the interference semantics
assumes that y can take any positive value, while the interleaving semantics
after program transformation still only allows the values 1 and 2. Note also that
Thm. 7 holds for our “reasonable” collection of program transformations, but
may not hold when considering “unreasonable” ones. For instance, flag1 ← 1
should not be replaced (e.g., by a misguided prefetching optimizer) with flag1
← 42; flag1 ← 1 in Fig. 2(a), as this would cause the value 42 to be possibly
seen by the other thread. Our interference semantics disallows such “out-of-thin-
air” values to be introduced. This is consistent with other semantics, such as the
Java one [16,22]. Another example of invalid transformation is the reordering of
assignments X1 ← e1;X2 ← e2 X2 ← e2;X1 ← e1 when e1 may block the
program (e.g., due to a division by 0) as the transformed program could expose
errors in e2 that cannot occur in the original program. Nevertheless, Def. 1 is not
exhaustive and could be extended with some other “reasonable” transformations.

4 Parallel Programs With a Scheduler

The language and semantics of the preceding section are now extended to handle
explicit synchronization primitives and a real-time scheduler.

4.1 Priorities and Synchronization Primitives

We denote by M a finite, fixed set of non-recursive mutual exclusion locks, so-
called mutexes. The language (1) of Sec. 2.1 is enriched with primitives to control
mutexes and scheduling as follows:

stat ::= lock(m) (mutex locking, m ∈M)
| unlock(m) (mutex unlocking, m ∈M)
| X ← islocked(m) (mutex testing, X ∈ V, m ∈M)
| yield (thread pause)

(17)

These new statements are considered to be atomic and the set of paths of a
program (7) is extended by stating π(s) def= { s } for them. We also assume that
threads have fixed and distinct priorities. Thus, we denote threads in T simply
by numbers from 1 to |T |, being understood that thread t has a strictly higher
priority than thread t′ when t > t′.

Our scheduling model is that of real-time processes, found in embedded sys-
tems (e.g, the ARINC 653 specification [2]) and as an extension to POSIX
threads. Moreover, we consider that a single thread can execute at a given time
(e.g., when all threads share a single processor). In this model, the unblocked
thread with the highest priority always runs. All threads start unblocked but
may block voluntarily by locking a mutex that is already locked or by yielding,
which allows lower priority threads to run. Yielding denotes blocking for a non-
deterministic amount of time, which is useful to model timers (as we abstract
away actual time) or waiting for some external resource. A lower priority thread
can be preempted when unlocking a mutex if a higher priority thread is waiting
for this mutex. It can also be preempted at any point by a yielding higher pri-
ority thread that wakes up non-deterministically. Thus, we cannot assume that
a blocked thread is necessarily waiting at a synchronization statement.

This scheduling model is precise enough to take into account fine mutual
exclusion properties that would not hold if we considered arbitrary preemption
or true parallel executions on concurrent processors (as found, e.g, in desktops).
For instance, in Fig. 3, the high priority thread avoids a call to lock / unlock by
testing with islocked whether the low priority thread acquired the lock and, if
not, executes its critical section (modifying Y and Z) confident that the low pri-
ority thread cannot execute and enter its critical section before the high priority
thread explicitly yields. Such reasoning is required to analyze precisely our tar-
get application (Sec. 5), and requires the real-time scheduler and single-processor
hypotheses assumed in this section.

4.2 Concrete Scheduled Interleaving Semantics PH

We now refine the semantics of Sec. 3 to take scheduling into account, starting
with the concrete interleaving semantics P∗ of Sec. 3.1. Interleavings that do
not respect mutual exclusion or priorities are excluded, and thus, we observe
fewer behaviors. This is materialized by the dotted ⊆ arrows between concrete
semantics in Fig. 1 (no such property holds for abstract semantics as they are
generally non-monotonic due to the use of widenings).

low priority high priority

lock(m); X ← islocked(m);
Y ← 1; if X = 0 then
Z ← 1; Z ← 2;
T ← Y − Z; Y ← 2;
unlock(m); yield;

Fig. 3. Using priorities to ensure mutual exclusion.

We define a domain of scheduler states H that associates to each thread
whether it is ready, yielding, or waiting for some mutex, as well as the set of
mutexes it holds:H def= (T → { ready , yield ,wait(m) |m ∈M})×(T → P(M)).
The domain of statements becomes: DH

def= P(H×E)×P(L). The semantics of
atomic statements is decomposed into three steps. Firstly, the function enabledt :
DH → DH that keeps only the states where a given thread t can run:

enabledt(R,Ω) def= ({ ((b, l), ρ) ∈ R | b(t) = ready ∧ ∀t′ > t, b(t′) 6= ready }, Ω) .
Secondly, the semantic function S′HJ s, t K for atomic statements s in thread t:

S′HJ yield, t K(R,Ω) def= ({ ((b[t 7→ yield], l), ρ) | ((b, l), ρ) ∈ R }, Ω)
S′HJ lock(m), t K(R,Ω) def= ({ ((b[t 7→ wait(m)], l), ρ) | ((b, l), ρ) ∈ R }, Ω)
S′HJ unlock(m), t K(R,Ω) def= ({ ((b, l[t 7→ l(t) \ {m }]), ρ) | ((b, l), ρ) ∈ R }, Ω)
S′HJX ← islocked(m), t K(R,Ω) def=

({ ((b, l), ρ[X 7→ 0]) | ((b, l), ρ) ∈ R, ∀t′ ∈ T , m /∈ l(t′) } ∪
{ ((b, l), ρ[X 7→ 1]) | ((b, l), ρ) ∈ R, ∃t′ ∈ T , m ∈ l(t′) }, Ω)

S′HJ s, t K(R,Ω) def=
({ ((b, l), ρ′) | ((b, l), ρ) ∈ R, (R′,−) = SJ s K({ ρ }, Ω), ρ′ ∈ R′ }, Ω′)
where (−, Ω′) = SJ s K(R,Ω), for all other statements s, using (3).

Thirdly, a scheduler step that wakes up yielding threads non-deterministically
and gives each available mutex to the highest priority thread waiting for it:

sched(R,Ω) def= ({ ((b′, l′), ρ) | ((b, l), ρ) ∈ R }, Ω), where
∀t, if b(t) = wait(m) ∧ ∀t′ 6= t, m /∈ l(t′) ∧ ∀t′ > t, b(t′) 6= wait(m)

then b′(t) = ready and l′(t) = l(t) ∪ {m }
else l′(t) = l(t) and b′(t) = b(t) ∨ (b′(t) = ready ∧ b(t) = yield) .

The semantics of an atomic statement s in a thread t combines all three steps:

SHJ s, t K def= sched ◦ S′HJ s, t K ◦ enabledt . (18)
The semantics �HJP K of a set P of interleaved paths and the semantics PH of
the program are then defined, similarly to Sec. 3.1, (9)–(11), as:

�HJP K(R,Ω) def=⊔
{ (SHJ sn, tn K ◦ · · · ◦ SHJ s1, t1 K)(R,Ω) | (s1, t1); . . . ; (sn, tn) ∈ P }

PH
def= Ω, where (−, Ω) = �HJπ∗ K({h0} × E0, ∅)

(19)

where h0
def= (λt. ready , λt. ∅) denotes the initial scheduler state. As in Sec. 3.1,

many control paths in π∗ are unfeasible, i.e., return an empty set of environments,

W W

lock(m) unlock(m)

lock(m) unlock(m)

RWRR

W

thread 2

thread 1

(a) Weakly consistent interferences.

unlock(m)lock(m)

unlock(m)lock(m)

W W W

R R W R

thread 1

thread 2

(b) Well synchronized interferences.

Fig. 4. Weakly consistent versus well synchronized scheduled interferences.

some of which are now ruled-out by the enabledt function. Nevertheless, errors
from a feasible prefix of an unfeasible path are still taken into account. This
includes, in particular, any error that occurs before a deadlock.

4.3 Scheduled Weakly Consistent Memory Semantics P′H
In addition to restricting the interleaving of threads, synchronization primitives
also have an effect when considering weakly consistent memory semantics: they
enforce some form of sequential consistency at a coarse granularity level. More
precisely, the compiler and processor handle synchronization statements spe-
cially, introducing the necessary flushes into memory and register reloads, and
refraining from optimizing across them.

We thus adapt the semantics P′∗ of Sec. 3.4 as follows. We consider a trans-
formed thread as a set of paths π′(t) obtained from π(body(entryt)) using elemen-
tary path transformations from Def. 1, but no transformation should cross any
synchronization primitive lock(m), unlock(m), yield or X ← islocked(m). Let
π′∗ be defined as before as the interleaving of paths from all π′(t). The scheduled
weakly consistent memory semantics is, based on (19):

P′H
def= Ω, where (−, Ω) = �HJπ′∗ K({h0} × E0, ∅) . (20)

4.4 Concrete Scheduled Interference Semantics PC
We now provide a structured version of the scheduled interleaving semantics
PH. Similarly to Sec. 3.2, it is based on a notion of interferences, and it is not

complete. To avoid considering interferences between parts of threads that are
in mutual exclusion, interferences are partitioned with respect to a thread-local
view of scheduler configurations. The finite set of configurations C is defined as:

C def= P(M)× P(M)× {weak , sync(m) |m ∈M}
where the first subset of M denotes the mutexes locked by the thread while
the second one denotes the mutexes held by no thread at all (as tested with
islocked). The last component in C allows distinguishing between two kinds of
interferences, which are depicted in Fig. 4: weakly consistent interferences (weak
component in C) corresponding to read / write pairs not protected by mutual
exclusion (Fig. 4.(a)), and well synchronized interferences (sync(m) component
in C) where both the read and the write are protected by the same mutex m
(Fig. 4.(b)). Weakly consistent interferences behave as in Sec. 3.2. For well syn-
chronized accesses, only the last write before unlocking a mutex affects a read,
and only until the variable read is overwritten while the mutex is held. The
partitioned domain of interferences is then: I def= T × C × V × R.

The semantics of a variable X read from an environment ρ ∈ E by a thread
t is similar to (12), but we only apply the weakly consistent interferences from
I ⊆ I that are not in mutual exclusion with a current configuration c ∈ C:

ECJX K(t, c, ρ, I) def=
({ ρ(X) } ∪ { v | (t′, c′, X, v) ∈ I, t 6= t ∧ excl(c, c′) }, ∅)

where excl((l, u, s), (l′, u′, s′)) def⇐⇒ l ∩ l′ = u ∩ l′ = u′ ∩ l = ∅ ∧ s = s′ .

(21)

Other constructions are handled as in (2), where t, c, I are passed unused and
unchanged. To handle precisely the islocked primitive in code similar to Fig. 3, it
is necessary to represent some relationship between environments and scheduler
states. Hence, environments are also partitioned with respect to C, although
the third component of configurations is not used and always set to weak . The
semantic domain of statements is now DC

def= P(C ×E)×P(L)×P(I), partially
ordered by point-wise set inclusion. The semantics of assignments is similar to
that of (13), applied point-wise to each configuration:

SCJX ← e, t K(R,Ω, I) def= (∅, Ω, I) t⊔
(c,ρ)∈R ({ (c, ρ[X 7→ v]) | v ∈ V }, Ω′, { (t, c,X, v) | v ∈ V })

where (V,Ω′) = ECJ e K(t, c, ρ, I) .

The semantics of synchronization primitives is as follows:

SCJ lock(m), t K(R,Ω, I) def=
({ ((l ∪ {m }, ∅, s), ρ′) | ((l,−, s), ρ) ∈ R, ρ′ ∈ in(t, l,m, ρ, I) },
Ω, I ∪

⋃
{ out(t, l,m′, ρ) | ((l, u,−), ρ) ∈ R, m′ ∈ u })

SCJ unlock(m), t K(R,Ω, I) def=
({ ((l \ {m }, u, s), ρ) | ((l, u, s), ρ) ∈ R },
Ω, I ∪

⋃
{ out(t, l \ {m },m, ρ) | ((l,−,−), ρ) ∈ R })

SCJ yield, t K(R,Ω, I) def=
({ ((l, ∅, s), ρ) | ((l,−, s), ρ) ∈ R },
Ω, I ∪

⋃
{ out(t, l,m′, ρ) | ((l, u,−), ρ) ∈ R, m′ ∈ u })

(22)

SCJX ← islocked(m), t K(R,Ω, I) def=
({ ((l, u ∪m∗t , s), ρ′[X 7→ 0]) | ((l, u, s), ρ) ∈ R, ρ′ ∈ in(t, l,m, ρ, I) }∪
{ ((l, u \ {m }, s), ρ[X 7→ 1]) | ((l, u, s), ρ) ∈ R },
Ω, I ∪ { (t, c,X, v) | v ∈ { 0, 1 }, (c,−) ∈ R })

where m∗t
def= {m } if no thread t′ > t can lock m, and ∅ otherwise

in(t, l,m, ρ, I) def=
{ ρ′ | ∀X ∈ V, ρ′(X) = ρ(X) ∨ (t′, (l′, ∅, sync(m)), X, ρ′(X)) ∈ I,
t 6= t′, l ∩ l′ = ∅ }

out(t, l,m, ρ) def= { (t, (l, ∅, sync(m)), X, ρ(X)) |X ∈ V } .
The functions in(t, l,m, ρ, I) and out(t, l,m, ρ) respectively model entering and
exiting a critical section protected by a mutex m in a thread t that also holds
the mutexes in l: out collects a set of well synchronized interferences from an
environment, while in applies them to an environment. Obviously, lock(m) uses
in on m, while unlock uses out . Additionally, X ← islocked(m) creates two
partitions: one where X = 1, and one where X = 0 and m is assumed to be
unlocked, which is remembered in u. However, the assumption that m is unlocked
only stands if the thread cannot be preempted at any point by a higher priority
thread locking m, hence the side-condition on m∗t — in practice, this condition is
checked by remembering in the semantics which locks are issued by each thread;
we do not present this for lack of space. Moreover, it stands only until the thread
calls a blocking primitive (i.e., lock or yield), which gives the opportunity to a
lower priority thread to lock m. Thus, blocking primitives use out to exit critical
sections protected by all m ∈ u. Note that by replacing X ← islocked(m) with
X ← [0, 1], we would obtain a less precise semantics, but which is also sound for
true parallel or non real-time systems. We do not show the semantics of guards
and non-atomic statements; they can be derived from (3) easily. The semantics
PC of a program has the same fixpoint form as (14):

PC
def= Ω, where (Ω,−) def= lfpλ(Ω, I).⊔

t∈T let (−, Ω′, I ′) = SCJ entryt(), t K({c0} × E0, Ω, I) in (Ω′, I ′)
(23)

where the initial configuration is c0
def= (∅, ∅,weak) ∈ C.

The semantics is sound with respect to that of Secs. 4.2–4.3:

Theorem 8. PH ⊆ PC and P′H ⊆ PC .
As in Sec. 3.4, this semantics is not complete. An additional loss of precision
comes from the handling of well synchronized accesses. A main limitation is that
such accesses are handled in a non-relational way, hence PC cannot represent
relations enforced at the boundaries of critical sections but broken within, while
PH can. For instance, in Fig. 3, we cannot prove that Y = Z holds outside critical
sections, but only that Y, Z ∈ [1, 2]. This shows in particular that even programs
without data-races have behaviors in PC outside the sequentially consistent ones.
Yet, we can prove that T = 0, i.e., the assignment to T is free from interference.
Our implementation is actually a little smarter than (22) and uses a modified out
that does not consider interferences for variables not modified while m is held.
Finally, our implementation can also report data-races by simply inspecting the
set of interferences during each assignment.

4.5 Abstract Scheduled Interference Semantics P]
C

The interference semantics with scheduler PC can be abstracted similarly to PI .
As in Sec. 3.3, we assume the existence of two abstract domains E] and N]

abstracting respectively P(E) and P(R). We lift these domains by partitioning
under C: D]C

def= (C → E]) × P(L) × I], where abstract interferences are in
I] def= (T × C × V) → N]. The concretization is: γ(R], Ω, I]) def= ({ (c, ρ) | ρ ∈
γE(R](c)) }, Ω, { (t, c,X, v) | v ∈ γN (I](t, c,X)) }). Sound abstract transfer func-
tions can be derived easily from those in E] and N]. For instance, the assignment
is similar to that of Sec. 3.3, except that it is applied point-wise to each R](c)
and it only considers the abstract interferences from the configurations not in
mutual exclusion with c. Synchronisation primitives are implemented mostly by
joining partitions (using ∪]E) and copying non-relational information between
E] and N] (for in and out). Transfer functions for non-atomic statements are
derived as in (5). Finally, the abstract analysis P]C computes a fixpoint over the
interferences identical to (15). The resulting analysis is sound:

Theorem 9. PC ⊆ P]C .

Due to partitioning, P]C is less efficient than P]I . However, partitioned environ-
ments are mostly empty: Sec. 5 shows that, in practice, at most program points,
R](c) = ⊥]E except for a few of configurations. Partitioned interferences are less
sparse because, being flow-insensitive, they accumulate information for configu-
rations reachable from any program point. However, this is not problematic: as
interferences are non-relational, a large number of partitions can be manipulated
efficiently. Thanks to partitioning, the precision of P]C is much better than P]I in
the presence of locks and priorities. For instance, P]C can discover that T = 0 in
Fig. 3, while the analysis of Sec. 3.3 would only discover that T ∈ [−1, 1] due to
spurious interferences from the high priority thread.

5 Experimental Results

The abstract analysis of Sec. 4.5 has been implemented in Thésée, our proto-
type analyzer. It analyzes C without recursion nor dynamic memory allocation.
It is sound, and checks for integer and float arithmetic overflows, divisions by
zero, invalid array and pointer accesses, and assertion failures. It also reports
data-races, but ignores other parallel-related hazards. In particular, it does not
check for dead-locks nor unbounded priority inversions. In fact, they cannot oc-
cur in our target application as all locks have a timeout. Thésée is based on
Astrée [5], a static analyzer for synchronous embedded C software, which was
successfully applied to prove the absence of run-time errors in large critical con-
trol/command software from Airbus [10]. Thésée benefited directly from Astrée’s
numerous abstract domains and iteration strategies targeting embedded C code.
The adaptation to the analysis of parallel programs, including the addition of
the interference fixpoint iterator and the scheduler partitioning domain, required

adding approximately 6 KLines of code to the 100 KLines analyzer, and did not
require any structural change.

Our target parallel application is another large program from Airbus consist-
ing of 1.6 MLines of C code and 15 threads. It runs under an ARINC 653 real-
time OS [2]. The code is quite complex as it mixes string formatting, list sorting,
network protocols (e.g., TFTP), and automatically generated synchronous logic.
The program was completed with a 2 500 line hand-written model of the ARINC
653 OS implementing the various API calls, in C enriched with analyzer-specific
intrinsics (mutex lock, unlock, etc.).

The analysis currently takes 14h on our 2.66 GHz 64-bit intel server using
one core. An important result is that only four iterations are required to stabi-
lize abstract interferences. Moreover, there are a maximum of 52 partitions for
abstract interferences and 4 partitions for abstract environments, so that the
analysis fits in 32 GB of memory. The analysis generates around 7600 alarms.
This high number is understandable: Thésée is naturally tuned for avionic con-
trol/command software as it inherits abstract domains E], N] from Astrée, but
the analyzed program is not limited to control/command processing. We started
adapting these domains and can already report some improvements compared
to earlier experimental results (50h and 12000 alarms [4, § VI]), using the same
iterator and scheduler partitioning. However, independently from the choice of
abstract domains E], N], a better treatment of well synchronized interferences
will surely be required to achieve zero false alarms. Following the design-by-
refinement of Astrée [5], we have focused on the analysis of a single (albeit large
and complex) real-life software and started refining the analyzer to lower the
number of alarms.

6 Related Work

There are far too many works on the semantics and analysis of parallel programs
to provide a fair survey and comparison here. Instead, we focus on a few works
that, we hope, provide a fruitful comparison with ours.

The idea of attaching to each thread location a local invariant and to handle
proofs of parallel programs as that of sequential programs with interferences
dates back to the Hoare-style proof method of Owicki and Gries [19] and Lamport
[13] and has been well studied since (see [9] for a modern account and a partial
survey). It has been studied from an Abstract Interpretation point of view in
[8] and applied to static analysis. Two examples are the analysis of C with
POSIX threads by Carré and Hymans [6] and that of Java with its weak memory
model by Ferrara [11]. Unlike those, we do not handle thread creation, but we
do take into account scheduler properties. Fully flow-insensitive analyses, e.g.
Steensgaard’s popular points-to analysis [23], naturally handle parallel programs.
Unfortunately, the level of accuracy required to prove safety properties demands
the use of (at least partially) flow-sensitive and relational methods, which we do.

Model-checking also has a long history of verifying parallel systems, including
recently weak memory models [3]. Partial order reduction methods [12] are used

to limit the number of interleavings to consider, with no impact on completeness.
In contrast, we abstract the problem sufficiently so that no interleaving need
to be considered at all, at the cost of completeness. Unlike context-bounded
approaches [20], our method considers all executions until completion.

Weakly consistent memory models have been studied mostly for hardware [1].
Pugh pioneered its use in programming language semantics, culminating with
the Java memory model [16]. It is described in terms of implicit conditions on
interleaved execution traces and is quite complex. We chose instead a generative
approach based on control path transformations matching closely optimization
models, similarly to the work of Saraswat et al. [22]. Our focus is on models
that are realistic and can be abstracted into interference semantics suitable for
efficient static analysis.

7 Conclusion

We presented a static analysis to detect all run-time errors in embedded C soft-
ware with several threads communicating through a shared memory with weak
consistency and scheduled according to strict priorities. Our method is based
on a notion of interferences and partitioning with respect to a scheduler state.
It can be implemented on top of analyzers for sequential programs, leveraging
a growing library of abstract domains. Promising early experimental results on
real code demonstrate the scalability of the approach.

A broad avenue for future work is to bridge the gap between the interleaving
semantics and its incomplete abstraction in terms of interferences. Abstracting
well synchronized accesses in a non-relational way is a severe limitation that
we wish to suppress. We also wish to add support for other synchronization
primitives, such as condition variables and atomic variables, and exploit more
properties of real-time schedulers. A more precise analysis may require the use
of history-sensitive abstractions, an avenue we wish to explore. Moreover, more
precise or more general interference semantics could be designed by adjusting
the notion of weak memory consistency. Finally, we wish, in future work, to an-
alyze errors specifically related to parallelism, such as dead-locks, live-locks, and
priority inversions, including quantitative time-related properties (e.g., bounded
priority inversions).

References

1. S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
IEEE Comp., 29(12):66–76, 1996.

2. Aeronautical Radio, Inc. (ARINC). ARINC 653. http://www.arinc.com/.
3. M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification

problem for weak memory models. In 37th ACM SIGACT/SIGPLAN Symp. on
Principles of Prog. Lang., pages 7–18. ACM, Jan. 2010.

4. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival.
Static analysis and verification of aerospace software by abstract interpretation. In

http://www.arinc.com/

AIAA Infotech@Aerospace, number AIAA-2010-3385, pages 1–38. AIAA (Ameri-
can Institute of Aeronautics and Astronautics), Apr. 2010.

5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In ACM SIGPLAN
Conf. on Prog. Lang. Design and Implementation, pages 196–207. ACM, June 2003.

6. J.-L. Carré and C. Hymans. From single-thread to multithreaded: An efficient
static analysis algorithm. Technical Report arXiv:0910.5833v1, EADS, Oct. 2009.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In 4th
ACM Symp. on Principles of Prog. Lang., pages 238–252. ACM, Jan. 1977.

8. P. Cousot and R. Cousot. Invariance proof methods and analysis techniques for
parallel programs. In Automatic Prog. Construction Techniques, chapter 12, pages
243–271. Macmillan, New York, NY, USA, 1984.

9. W.-P. de Roever, F. de Boer, U. Hanneman, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: Introduction to Compositional and Non-
compositional Methods. Cambridge University Press, 2001.

10. D. Delmas and J. Souyris. Astrée: from research to industry. In SAS’07, volume
4634 of LNCS, pages 437–451. Springer, 22–24 Aug. 2007.

11. P. Ferrara. Static analysis via abstract interpretation of the happens-before mem-
ory model. In TAP’08, volume 4966 of LNCS, pages 116–133. Springer, 2008.

12. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
– An Approach to the State-Explosion Problem. PhD thesis, University of Liege,
Computer Science Department, 1994.

13. L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. on
Software Engineering, 3(2):125–143, Mar. 1977.

14. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Comm. ACM, 21(7):558–565, July 1978.

15. L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. In IEEE Trans. on Computers, volume 28, pages 690–691.
IEEE Comp. Soc., Sep. 1979.

16. J. Manson, B. Pugh, and S. V. Adve. The Java memory model. In 32nd ACM
SIGPLAN/SIGACT Symp. on Principles of Prog. Lang., pages 378–391. ACM,
Jan. 2005.

17. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

18. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
Oct. 1999.

19. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Informatica, 6(4):319–340, Dec. 1976.

20. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In TACAS’05, volume 3440 of LNCS, pages 93–107. Springer, 2005.

21. J. C. Reynolds. Toward a grainless semantics for shared-variable concurrency. In
FSTTCS’04, volume 3328 of LNCS, pages 35–48. Springer, Dec. 2004.

22. V. A. Saraswat, R. Jagadeesan, M. M. Michael, and C. von Praun. A theory of
memory models. In 12th ACM SIGPLAN Symp. on Principles and Practice of
Parallel Prog., pages 161–172. ACM, Mar. 2007.

23. B. Steensgaard. Points-to analysis in almost linear time. In 23rd ACM SIG-
PLAN/SIGACT Symp. on Principles of Prog. Lang., pages 32–41. ACM, 1996.

	Static Analysis of Run-Time Errors in Embedded Critical Parallel C Programs

