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Ahmed Bouajjani Université Paris Diderot (Paris 7), France
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Département d’Informatique





Overview

This report presents the bulk of my research work from the completion of my PhD, in late 2004, until the present day. It is
submitted in partial fulfillment of the requirements for the French qualification of habilité à diriger des recherches (accreditation
to supervise research). This report is a brief synthesis of several results published in distinct articles. Due to page limitation
some technical material (including proofs and raw experimental data) are omitted; the interested reader is invited to consult
the cited articles for more information. Some of the contributions presented here were purely my own, others were pursued in
a team work within the Abstraction group at ENS and, finally, some contributions are that of a PhD student that I helped
supervise.

The overall aim of my research is the development of mathematically sound and practically efficient methods to check the
correctness of computer software. Efficiency is achieved using approximations, while soundness is guaranteed by employing
over-approximations of program behaviors. My research is grounded in the theory of abstract interpretation, a powerful
mathematical framework facilitating the development, use, comparison, and composition of approximations in a sound way.
I am mainly interested in developing new reusable abstraction components (so called abstract domains) that can be readily
implemented, and in using them to develop static analyzers, which are computer programs able to check automatically the
safety of software. While my early research was focused on inferring the values of variables in sequential programs, my current
interest and latest results concern the analysis of concurrent programs, hence the title of this report.

The first two chapters of this report constitute an introduction. The first chapter is an informal introduction to the problem
at hand, existing solutions, their strengths and their shortcomings. The second chapter presents prior mathematical and formal
tools on which our work is based, including some notions of abstract interpretation, a description of existing abstract domains
and their application to the static analysis of sequential programs. It also recalls some results I obtained during my PhD and
that will be useful in the rest of the report. The subsequent chapters describe the work I performed after completing my PhD.

The third chapter is devoted to aspects of static analyzers that are specific to concurrent programs. This topic of personal
research has led to the construction of a generic analysis method for concurrent programs, parametrized by the choice of abstract
domains. The method is based on a notion of “interference” that abstracts thread interleavings in a sound way in order to
achieve a thread-modular analysis. It is related to Jones’ rely-guarantee proof method, and we make this connection formal in
a first part. Then, we present an interference-based analysis in big-step form that is efficient and easy to implement. In a third
part, we study the interaction of the analysis with weakly consistent memory models, found in modern processors and language
specifications. The last part discusses how to adapt the analysis to exploit some properties of the scheduling (such as the use
of real-time thread priorities and synchronization primitives).

The fourth and fifth chapters are devoted to the design of abstract domains. Although some of them found their application in
the analysis of concurrent programs, they are actually generic and could be exploited in any kind of static analysis, for concurrent
or sequential programs. The fourth chapter concerns numeric domains to infer linear equality and inequality relations, developed
in collaboration with Liqian Chen while he visited ENS during his PhD. The initial motivation was to revise the classic polyhedra
domain using sound floating-point arithmetic to improve its efficiency, but it unexpectedly yielded the construction of new, more
expressive domains based on interval affine relations, which we also present. The fifth chapter concerns the abstraction of realistic
data-types as found in the C programming language, including machine integers, floating-point numbers, and structured blocks
of memory (structs, unions, and arrays). We design abstractions that are aware of the low-level memory representation of
data-types, to support the analysis of programs that rely on assumptions about this representation (such as “type punning”
constructions in C). The need for such abstractions was motivated by the analysis, in the scope of the Astrée and AstréeA static
analyzers, of industrial C programs, where such low-level constructions are widespread.

The sixth chapter is devoted to the application of these methods to the design of static analyzer tools. It mainly reports
on my experience with the Astrée analyzer, a team effort initiated during my PhD in 2001 that extended well beyond it and
culminated in its industrialization in 2009. Much of my theoretical work could find some application in Astrée, as Astrée fuelled
my research with not only practical problems to solve, but also concrete problems that could only be overcome by theoretical
developments. This part also reports my own ongoing effort on AstréeA, an extension of Astrée that incorporates the interference
abstraction presented above and aims at proving the absence of run-time error in concurrent embedded programs (while Astrée
only considers synchronous programs). Additionally, this chapter presents the Apron abstract domain library, another, more
academic, team effort, which aims at encouraging the research on numeric abstract domains.

The report concludes with some perspectives for future researches.
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Résumé

Ce mémoire d’habilitation résume la majeure partie de mes recherches, depuis la fin de mon doctorat, fin 2004, jusqu’à au-
jourd’hui. Les travaux résumés dans ce mémoire ont par ailleurs été publiés dans plusieurs journaux et actes de conférences.
Par manque de place, les développements les plus techniques sont omis (c’est en particulier le cas des preuves et des tables de
résultats expérimentaux) ; le lecteur intéressé est invité à les consulter dans les articles cités. Certains des résultats présentés
ici sont les miens propres, tandis que d’autres sont issus d’un travail en équipe au sein du groupe Abstraction, et d’autres enfin
ont été obtenus par un doctorant que j’ai co-encadré.

Le but essentiel de mes recherches est le développement de méthodes fondées sur des bases mathématiques et performantes
en pratique pour s’assurer de la correction des logiciels. J’utilise des approximations pour permettre une bonne performance,
tandis que la validité des résultats est garantie par l’emploi exclusif de sur-approximations des ensembles des comportements des
programmes. Ma recherche est basée sur l’interprétation abstraite, une théorie très puissante des approximations de sémantiques
permettant aisément de les développer, les comparer, les combiner. Je m’emploie en particulier au développement de nouveaux
composants réutilisables d’abstraction, les domaines abstraits, qui sont directement implantables en machine, ainsi qu’à leur
utilisation au sein d’analyseurs statiques, qui sont des outils de vérification automatique de programmes. Mes premières
recherches concernaient l’inférence de propriétés numériques de programmes séquentiels, tandis que mes recherches actuelles se
tournent vers l’analyse de programmes concurrents, d’où le titre de ce mémoire.

Les deux premiers chapitres de ce mémoire constituent une introduction, tandis que les suivants présentent mon travail
d’habilitation proprement dit. Le premier chapitre est une introduction informelle à la problématique de l’analyse de pro-
grammes, aux méthodes existantes, leurs forces et leurs faiblesses. Le deuxième chapitre présente de manière formelle les
outils dont nous aurons besoin par la suite : les bases de l’interprétation abstraite, quelques domaines abstraits existants et la
construction d’analyses statiques par interprétation abstraite, ainsi que quelques résultats utiles que j’ai obtenu en doctorat.

Le troisième chapitre est consacré aux aspects spécifiques de l’analyse de programmes concurrents. Cette recherche, très
personnelle, a abouti à la construction d’une méthode d’analyse de programmes concurrents, paramétrée par le choix de
domaines abstraits, et basée sur une notion d’interférence abstrayant les interactions entre threads. Ainsi, l’analyse construite
est modulaire pour les threads. Cette méthode est reliée aux preuves rely-guarantee proposées par Jones, ce que nous montrons
formellement dans une première partie. Nous construisons ensuite une analyse à grands pas basée sur les interférences, efficace
et facile à implanter. Les deux dernière parties étudient les liens entre l’analyse et les modèles mémoires faiblement cohérents
(désormais incontournables) ainsi que le raffinement de l’analyse pour tenir compte des propriétés spécifiques des ordonnanceurs
temps-réels (nous étudions en particulier l’effet des priorités des threads et l’emploi d’objets de synchronisation).

Le quatrième et le cinquième chapitre sont consacrés à la constructions de domaines abstraits. Ceux-ci ne sont pas
spécifiquement liés au problème de la concurrence ; ils sont utiles à l’analyse de tous programmes, séquentiels comme con-
currents. Le chapitre 4 étudie des domaines numériques inférant des égalités et inégalités affines, développés en collaboration
avec Liqian Chen, alors doctorant en visite à l’ENS. La motivation première était l’emploi de nombres à virgule flottante afin
d’améliorer l’efficacité du domaine des polyèdres, mais ces travaux ont également débouché sur la découverte de nouveaux
domaines, basés sur les relations affines à coefficients intervalles, que nous présentons également. Le chapitre 5 étudie les ab-
stractions de types de données réalistes, comme ceux rencontrés dans le langage C : les entiers machines, les nombres à virgule
flottante, et les blocs structurés (tableaux, structures, unions). Nos abstractions modélisent finement les détails de l’encodage en
mémoire des données afin de permettre l’analyse de programmes qui en dépendent (par exemple, ceux utilisant le type-punning).
Ces abstractions sont motivées par nos expériences d’analyses, avec les outils Astrée et AstréeA, de programmes C industriels ;
ceux-ci employant fréquemment ce type de constructions de bas niveau.

Le sixième chapitre est consacré aux applications des méthodes présentées ci-dessus à la construction d’outils d’analyse
statique. Il décrit en particulier mon travail sur l’outil Astrée que j’ai co-développé avec l’équipe Abstraction pendant et après
mon doctorat, et qui a été industrialisé en 2009. Mes résultats théoriques et appliqués ont contribué au succès d’Astrée, tandis
que celui-ci m’a fourni de nouveaux thèmes de recherches, sous la forme de problèmes concrets dont la résolution n’a pu se faire
que grâce à des développements théoriques. Ce chapitre décrit également AstréeA, une extension d’Astrée utilisant l’abstraction
d’interférences proposée plus haut pour l’analyse de programmes concurrents (Astrée étant limité aux programmes séquentiels).
Il décrit également Apron, une bibliothèque de domaines abstraits numériques que j’ai co-développée. Il s’agit d’un outil plus
académique, dont le but est d’encourager la recherche sur les domaines numériques abstraits.

Le mémoire se conclue par quelques perspectives sur des recherches futures.
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Chapter 1

Introduction

In this short introductory chapter, we explain informally
the meaning of our title “static analysis by abstract interpre-
tation of concurrent programs.” We expose the problem at
hand, program verification, and give an overview of existing
methods to solve it. We recall the concept of static analy-
sis by abstract interpretation. Finally, we discuss the specific
challenges related to the verification of concurrent programs.

1.1 Program verification

Programming is an error-prone activity and “bugs” (program-
ming errors) are pervasive, resulting in spectacular failures
(such as the Ariane failure in 1996 [Lio96]) and, more gen-
erally, economic losses (NIST evaluated their annual cost to
the U.S. industry at $59.5 billion in 2002 [NIS02]). While it
might seem acceptable in some cases to ship potentially erro-
neous programs and rely on regular updates to correct them,
this is not the case for embedded software, which are often
mission critical and cannot be corrected during missions.

Testing. The most widespread (and in many cases the only)
method used to ensure the quality of software is testing. Many
testing methods exist (black-box and white-box testing, unit
and integration testing, etc.); all consist in executing parts or
the whole of the program with selected or random inputs in a
controlled environment, while monitoring its execution or its
output. A variant is dynamic analysis, where an instrumented
version of the program with extra checks is executed, so as
to detect errors earlier, more reliably, or to detect errors hav-
ing a non-deterministic but not always fatal outcome (such as
memory errors [NS07]). Achieving an acceptable level of con-
fidence with testing is generally costly ([WM11] reports that
tests account for as much as 50% of the cost of developing
software-based systems) and, even then, testing cannot com-
pletely eliminate bugs [NIS02].

Formal methods. Unlike testing, formal methods employ
mathematical and logical tools to reason on the program itself,
at compile-time. As such, they can prove without ambiguity
the correctness of programs (or at least, clearly express what
is proved and what is not) before they are run: these methods
are sound. The idea of formally discussing about programs
dates back from the early history of computer science: pro-
gram proofs and invariants are attributed to Floyd [Flo67] and
Hoare [Hoa69] in the late 60s, but may be latent in the work of
Turing in the late 40s [Tur49] (as reported by Morris and Jones
[MJ84]). The lack of automation severely hindered early efforts
but, with the progress of both computers and formal manipula-
tion software, there is, according to Hoare [Hoa03], some hope

to design a “verifying compiler that guarantees correctness of
a program before running it” (although this hope should be
tempered by the accompanying increase in the complexity of
the software to verify). Current methods can be classified into
three categories [CC10]:

• deductive methods employ proof assistants (such as
Coq [BC04]) or theorem provers (such as PVS [ORS92]);
they rely on the user to provide the inductive invariants
needed in the proof, and sometimes to interactively direct
the proof itself;

• model checking [CES86] explores exhaustively and au-
tomatically finite models of programs; a per-program user
intervention is required beforehand to abstract programs
with an infinite or large state space into such models;

• static analyses analyze directly and without user in-
tervention the source code at some level of abstraction;
due to decidability and efficiency concerns, the abstrac-
tion is incomplete and can miss properties, resulting in
false alarms (a.k.a. false positive, i.e., correct programs
reported as incorrect) but never false negative (so that
programs reported as correct are indeed correct despite
the approximation).

In addition to these sound methods, we must also mention
the use of formal tools in unsound contexts. Some versions
of model checking perform a partial exploration of infinite or
very large models (as in bounded model checking [BCCZ99]),
or of infinite sequences of finite models (as in counter-example
guided abstract refinement [CGJ+00]). Another example is
symbolic execution [Kin76], which executes the program on a
symbolic abstract domain of properties, but on a single (finite)
program path at a time, and must be aborted after a finite
number (out of the generally infinite set) of paths have been
investigated. As with testing, these unsound methods can miss
errors as they rarely explore the set of all possible executions.

Sound static analysis. Our work focuses on sound static
analysis. Due to a low precision, early static analyses have been
applied mostly, and with some success, to non-critical domains
such as optimizing compilers where speed and automation are
more important than precision (a missed property results at
worse in disabling some valid optimization, for a slight cost
in efficiency). However, by carefully designing the abstraction
used in the analysis, it becomes possible to infer properties
related to the correctness of programs with no or few false
alarms. This is the case, for instance, for Astrée [BCC+03],
a static analyzer that checks for the absence of run-time error
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(such as arithmetic or memory overflows) in embedded syn-
chronous C programs. Such an analysis does not require much
user intervention: the correctness conditions are part of the
programming language semantics (and not externally-provided
program-specific conditions), the analysis is performed on the
source code (and not a hand-crafted model) and automatically
(not interactively). It is thus very attractive in an industrial
context [DS07], where it can be operated by engineers with a
limited knowledge of formal methods.

Astrée is specialized, by its choice of abstractions, to a class
of properties and an (infinite) class of programs: it cannot
express arbitrary program verification conditions and might
perform poorly in terms of efficiency and false alarm rate on
some programs. On its intended targets, however, Astrée scales
up to large programs (one million lines or more) with a good
precision (few or no false alarm).

We have participated to the design and implementation of
Astrée, and several results described in this report were inte-
grated into Astrée. Chapter 6, which is devoted to applications,
reports our experience with Astrée.

A major promise of abstract interpretation is that more
complex properties, generally thought to be out of the scope of
static analysis, can nevertheless be tackled by designing ade-
quate abstractions (including, for instance, temporal properties
[Mas02] traditionally handled by model checking, and proofs
of functional correctness [CCM10] traditionally handled with
user-assisted theorem provers). In this work, we stay modest
and focus on relatively simple properties: mainly discovering
invariants on numeric program variables. Such properties are
nevertheless challenging (as they are undecidable) and useful
in practice (as they are sufficient to prove the absence of many
kinds of run-time errors).

1.2 Abstract interpretation

Abstract interpretation is a very general theory of the approx-
imation of program semantics, introduced by Patrick Cousot
and Radhia Cousot in the late 70s [CC77]. It stems from the
observation that, while there exists a wide variety of program
semantics, they can be uniformly described as fixpoints of op-
erators in partially ordered structures. This observation ex-
tends to the formal methods used to ensure the correctness
of programs, including proof methods, model checking, type
checking, type inference, and semantic-based static analysis.
Having expressed seemingly unrelated semantics in a uniform
framework, it becomes possible to compare them in term of
the amount of information they carry (understood as the set of
program properties they can express). Abstract interpretation
is thus a unifying force in formal program semantics.

Example 1.2.1. Big-step semantics model programs as input-
output relations, forgetting the history of the computations
modeled by small-step operational semantics. The latter can
express properties on the length (number of steps) of compu-
tations while the former cannot: it is an abstraction [Cou02].

End of example.

Additionally, abstract interpretation presents semantics in
a constructive form (often as limits of finite or, possibly un-
countable, transfinite iterations). It expresses properties as a
function of programs, which opens the way to property infer-
ence. This is in contrast to deductive methods, which can only

verify statements provided externally by the user.

Example 1.2.2. In [CC84], Cousot ant Cousot present a con-
structive version of Owicki–Gries–Lamport proof method for
parallel programs [OG76, Lam77] and derive static analyzers
by abstraction. In Sec. 3.2, we will apply the same method to
Jones’ rely–guarantee proof method [Jon81].
End of example.

According to Rice [Ric53] all non-trivial program properties
are undecidable. Even in constructive form, the semantics that
express them cannot always be computed by a program in finite
time. Abstract interpretation provides a systematic method to
derive computable abstract approximate semantics:

• A first step is to choose a level of abstraction. The set
of concrete semantic objects is replaced with a (partially
ordered) set of abstract ones carrying less information.
Ideally the abstraction forgets all the properties we do
not care about (and properties that are not necessary to
prove those we care about).

• Operators on the concrete world are then (systematically)
mapped to operators on the abstract one. As even ab-
stract operators may be too complex, it is sometimes use-
ful, for the sake of efficiency, to over-approximate them
(the abstract partial order modeling the relative precision
of properties and operators).

• Concrete fixpoints of operators are replaced with fix-
points of abstract operators, generally approximated by
iteration with extrapolation to ensure termination in fi-
nite time even when the abstract partial order has infinite
chains [CC92b].

One fundamental application of abstract interpretation is the
derivation of static analyzers that are, by construction, sound:
any property proved in the abstract also holds in the origi-
nal, concrete semantics. The abstract interpretation method-
ology helps tremendously on the semantic aspects (i.e., what
is computed). Constructing an effective analysis additionally
requires algorithms and data-structures (i.e., how it is com-
puted), which are generally borrowed from other fields in math-
ematics and computer science.

Example 1.2.3. The polyhedra domain, introduced by Cousot
and Halbwachs in [CH78], abstracts a set of points in a vector
space as a polyhedron that encloses them. One way of imple-
menting it is through linear programming. We describe this
domain in Sec. 2.4.2 and extend it in Chap. 4.
End of example.

Abstract interpretation also studies the abstractions for
themselves. It states which desirable properties abstractions
should possess, if possible (such as being a Moore family, en-
joying Galois connections, being complete, etc.). It also studies
operators to manipulate and combine them (such as reduced
products, completions, etc.). This encourages a modular ap-
proach to abstraction, where a set of abstract values and atomic
abstract operators are bundled into a reusable building block,
called an abstract domain.

We present Abstract interpretation formally in Chap. 2 and
recall its main results, with a special focus on the design of
static analyses for numeric properties, illustrated on an ide-
alized language on real numbers. This introductory chapter
recalls a few classic numeric abstract domains, while Chaps. 4
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and 5 are devoted to the construction of new abstract domains.
More precisely, Chap. 4 presents variations and extensions on
the classic polyhedra domain, while Chap. 5 introduces do-
mains adapted to more realistic data-types found in actual pro-
gramming languages (such as machine integers, floating-point
numbers, and structured data). The design of Apron, a library
of numeric abstract domains, is described in Chap. 6.

1.3 Concurrent programs

Concurrent programming consists in designing software as col-
lections of interacting computing processes, each following its
flow of instructions. This is in contrast to sequential programs,
i.e., executing a single flow of instructions. The processes of
a concurrent program may run in parallel on different execu-
tion units (processors or cores) of a computer or on different
computers, or be scheduled on a single processor through time-
slicing, or a combination of these methods. The use of concur-
rent programming is not new, dating from the work by Dijkstra
in the 60s [Dij65]. Since the mid-2000s and the advent of con-
sumer multi-core computers, the development of concurrent
programs has intensified: exploiting the parallelism in today’s
computers is considered the main (if only) way to improve the
performance of software [Sut05].

Even without true parallel execution, some software benefit
from a decomposition into largely independent processes. This
is the case for instance for web-servers, where each request is
handled by a distinct process executing a protocol instance, or
for event-driven applications, where processes wait for inputs
on different channels without inhibiting the progress of pro-
cesses computing outputs. Concurrent programming has also
entered the embedded critical world. For instance, Integrated
Modular Avionics (IMA) [WW07] suggests transitioning, in
avionic applications, from networks of processors executing a
single task each and communicating on a bus into single pro-
cessors executing many concurrent tasks communicating in a
shared memory. Reducing the number of hardware components
(buses and processors) has clear benefits in terms of cost, de-
pendability, and scalability; however, it results in an increase
in software complexity, and so, software verification cost.

Concurrent programming is now an integrated part of many
programming languages (including object-oriented and func-
tional languages) and many models exist to support it (ex-
amples include shared memory, message-passing, and transac-
tional memory). In this work, we focus on low-level concur-
rency. We thus consider simple imperative C-like languages,
ignoring issues related to objects, higher-order constructions,
and focusing on the thread model, where processes execute in a
shared memory. This model is pervasive in embedded concur-
rent software. Some parts of our work will consider additional
restrictions, such as the use of a fixed number of processes and
a real-time scheduler, which is motivated by our application to
the verification of embedded avionic software.

Verification. The major drawback of concurrent programs
is that they are hard to design, and hard to verify, even more so
than sequential ones. Even a seemingly simple problem, such
as mutual exclusion, can be difficult to solve correctly (an early
example is given by Dijkstra [Dij65]). Executing a concurrent
program is (in first approximation, using Lamport’s sequential
consistency model [Lam78]) achieved by interleaving the exe-

cution of its processes, according to some scheduler algorithm.
Schedulers are highly non-deterministic, resulting in a combi-
natorial explosion of the set of possible executions. Testing
and symbolic execution perform poorly as they rely on sam-
pling finite executions or program paths: they can explore a
tiny fraction of the large execution space while errors (such as
data-races) often appear only in difficult-to-reach corner cases.
Even the set of possible program configurations grows tremen-
dously as each process features its own control space and local
variables, so that model checking, which employs an exhaustive
state-space exploration, also has difficulties scaling up. Un-
sound partial exploration techniques have thus been proposed,
such as context-bounded model checking [QR05] which only
allows a finite (generally small) number of context switches.

This verification problem is further complicated by the ad-
vent of weakly consistent memory models [ABBM10]. These
execution models take into account the various hardware and
software optimisations that are present in today’s computer,
such as non-coherent caches and out-of-order execution units.
They exhibit executions that do not obey Lamport’s model of
sequential consistency. In order to be of any use, program ver-
ification must be sound with respect to these new execution
models.

Another complexity added by concurrency is the emergence
of new kinds of programming errors, that cannot occur in se-
quential programs:
− data-races occur when two processes simultaneously access

the same memory location and one access at least is a write;
− deadlock is a situation where a subset of processes wait for

each other in a circular fashion, thus blocking indefinitely
all the concerned processes;

− livelocks are similar, but processes execute without making
any progress (e.g., busy waiting) instead of blocking;

− starvation occurs when a process is indefinitely denied a
resource, which is held by a process or passed along a set of
conspiring processes.

Our focus is on sound static analysis with the intend to
scale up to large programs. We will side-step the combinato-
rial explosion of executions by employing thread-modular tech-
niques. Ideally, the analysis of a program should be reduced
to the independent analysis of each of his processes. Note that
employing existing sequential program static analyses on each
process ignores their interaction, and is thus not sound. We will
however show that a sound analysis can be constructed with
only minor modifications to a sequential process analysis. The
resulting analysis is almost as efficient as for sequential pro-
grams. Our focus is on (mostly numeric) invariant inference
for concurrent programs. We will be able to prove invariance
properties, including the absence of run-time error, of data-
race, and of deadlock. However, the absence of livelock and
starvation belongs to the class of liveness properties [LS85],
which cannot be expressed with mere invariants and remain
out of reach for our analysis. Our design is described, on the
theoretical level, in Chap. 3. Its application to the construc-
tion of the AstréeA static analyzer, an extension to Astrée, is
described in Chap. 6.
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Chapter 2

Background

This chapter introduces formally notions and notations,
and recalls existing results that are at the foundation of our
work and will serve in subsequent chapters. We provide a short
overview of abstract interpretation, focusing on its application
to the design of sound static analyses. We also present a sim-
ple numeric sequential programming language, its semantics,
and its static analysis. Chapter 3 will illustrate our concur-
rent program analysis method on an multi-thread extension of
this language. Finally, we present several classic abstractions
that parametrize sequential and concurrent analyses. Chap-
ters 4 and 5 will present novel variants and extensions of these
domains.

2.1 Notations

We introduce briefly the standard notations we use, which are
drawn from various fields of mathematics and computer sci-
ence. An index of all the notations introduced here and later,
as well as an index of all notions, are available in the Appendix.

Partial orders. A partially ordered set (A,v) is a set A
equipped with a binary reflexive, transitive, anti-symmetric re-
lation v. When it exists, the least upper bound (also called
join) of a pair of elements a, b ∈ A is denoted a t b, and its
greatest lower bound (also called meet) is denoted a u b. Note
that, when they exist, joins and meets are unique. A lattice
(A,v,⊥,>,t,u) is a partially ordered set with a least element
⊥ and a greatest element > in A, and a least upper bound t
and a greatest lower bound u for every pair of elements in A.
A lattice is complete when joins and meets exist for sets of ar-
bitrary size; we denote the join and meet of S ⊆ A respectively
as tS and uS.1

Example 2.1.1. A useful example of complete lattice is the pow-
erset (P(X),⊆, ∅, X,∪,∩) of an arbitrary set X.

End of example.

A complete partial order is a partial order (A,v) such that, for
any X ⊆ A, if every pair of elements in X has a least upper
bound in X, then X has a least upper bound in A.

Partial orders (A1,v1), (A2,v2) can be combined element-

wise: we define 〈a1, a2〉 v 〈a′1, a′2〉
def⇐⇒ a1 v1 a′1 ∧ a2 v2

a′2. The same holds for complete partial orders and (com-

plete) lattices: ⊥ def
= 〈⊥1, ⊥2〉, >

def
= 〈>1, >2〉, 〈a1, a2〉 t

〈a′1, a′2〉
def
= 〈a1t1a

′
1, a2t2a

′
2〉, and 〈a1, a2〉u〈a′1, a′2〉

def
= 〈a1u1

1A more economical definition of complete lattices is: a partial order
(A,v) with arbitrary joins. The other lattice operators can be derived

from the join as: ⊥ def
= t ∅, > def

= t A, and uX def
= t { y ∈ A | ∀x ∈

X : y v x }.

a′1, a2 u2 a
′
2〉. Likewise, (A,v) extends element-wise to func-

tions from arbitrary sets X to A: f v g
def⇐⇒ ∀x ∈ X :

f(x) v g(x), and similarly for complete partial orders and (com-
plete) lattices.

Functions. Given two sets A and B, we denote as A→ B the
set of functions from A (called the codomain) to B (called the
domain). We often use the lambda notation λx ∈ A. f(x), or
more concisely λx. f(x), to denote functions. If f is a function,
then f [x 7→ v] is the function that maps x to v and other
elements y 6= x to f(y); its domain is that of f plus x. Likewise
f [∀x ∈ X : x 7→ g(x)] maps elements x ∈ X to g(x) and
other elements y /∈ X to f(y). We will use the notation [x1 7→
v1, . . . , xn 7→ vn] to define a function in extension from scratch.
When A′ ⊆ A, f|A′ denotes the restriction of f ∈ A→ B to a
function in A′ → B.

When (A,vA) and (B,vB) are partial orders, then f ∈
A → B is monotonic if ∀a, a′ ∈ A : a vA a′ =⇒ f(a) vB
f(a′). It is a join-morphism if, for any X ⊆ A, if tA X
exists, then so does tB { f(x) | x ∈ X } and f(tA X) =
tB { f(x) | x ∈ X }. This implies, in particular, f(⊥A) = ⊥B .

Dependent types. Given a set A and a family (Ba)a∈A of
sets indexed by A, we denote as Πa:A.Ba the set of functions
f from A to ∪a∈ABa such that ∀a ∈ A : f(a) ∈ Ba. This gen-
eralizes function spaces A → B to the case where the domain
B can be different for every element of the codomain A.

Fixpoints. A fixpoint of a function f ∈ A → A is any el-
ement a ∈ A such that f(a) = a. When a v f(a), we say
that a is a pre-fixpoint while, when f(a) v a, a is said to be a
post-fixpoint . We denote as lfp f the least fixpoint of f , when it
exists. Moreover, lfpa f is the least fixpoint of f greater than
or equal to a.

Semantics. We denote semantic functions with double bra-
ckets, as in XJ y K, where y is a syntactic object and X denotes
the kind of objects (such as S for statements, E for expressions,
P for programs). Subscripts over X are used to distinguish sev-
eral kinds of semantics. Abstract semantics are distinguished
using a ] superscript.

Sequences. Given a set Σ, we denote as Σn the set of se-
quences of exactly n elements from Σ. The set of finite se-

quences is Σ∗
def
=

⋃
n∈N Σn. The set of infinite sequences is

denoted Σω, while the set of all sequences is Σ∞
def
= Σ∗ ∪ Σω.

The empty sequence is denoted as ε. Sequence concatenation
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is denoted as . where t · t′ = t when t ∈ Σω. It is naturally

extended to sets of sequences: A ·B def
= { a · b | a ∈ A, b ∈ B }.

Traces. Traces generalize sequences. Given a set Σ of states
and a set A of actions, a trace is a non-empty finite or in-
finite sequence of states in Σ interspersed with actions in A,

which we note as σ0
a1→ σ1

a2→ · · ·σn−2
an−1→ σn−1 (for a fi-

nite trace of length n) or σ0
a1→ σ1

a2→ · · · (for an infinite
trace), where ∀i : σi ∈ Σ, ai ∈ A. As for sequences, we

note Tr n(Σ,A), Tr ∗(Σ,A)
def
=

⋃
n∈N Tr

n(Σ,A), Tr ω(Σ,A),

and Tr ∞(Σ,A)
def
= Tr ∗(Σ,A)∪Tr ω(Σ,A) respectively the set

of traces of length n, of finite length, of infinite length, and the
set of all traces. The concatenation of two traces t and t′ by an
action a ∈ A is denoted t

a→ t′: when t is infinite, t
a→ t′ = t;

otherwise, if t = σ0
a1→ · · · an→ σn and t′ = σ′0

a′1→ · · · , then

t
a→ t′ = σ0

a1→ · · · an→ σn
a→ σ′0

a′1→ · · · . When the action set
A is a singleton, we will dispense from the (constant) action
in traces, denoting them simply as σ0 → σ1 → · · · → σn, and
sometimes assimilating traces to sequences.

Vectors. We use linear algebra: vectors are denoted as ~V
and matrices as M. The null vector is denoted as ~0. The com-
ponents of a vector ~V are denoted as V1, . . . , Vn. The columns
of a matrix M are denoted as ~M1, . . . , ~Mm and its elements
as M1,1, . . . ,Mn,m. Matrix-vector and matrix-matrix products
are denoted as M×~V and M×N, while the dot product of vec-
tors is denoted as ~V · ~W . We overload the relational operators
on vectors and matrices to denote the element-wise relation so
that, for instance, ~V ≥ ~W means ∀i : Vi ≥ Wi. Given a (col-

umn) vector ~C, ~Ct denotes its transpose (row). We also denote
as Mt the transpose of a matrix. Finally, we denote as ~ei the
i−th basis vector , i.e., the vector with all components set to 0,
except the i−th which is set to 1.

Substitutions. We denote as e[e1/e2] the (syntactic) opera-
tion of substituting in e every occurrence of e1 with e2.

2.2 Elements of abstract interpretation

We recall some core definitions and results of abstract inter-
pretation, focusing on those that will be useful later to us (see
[CC92a] for an in-depth presentation).

Abstractions and concretizations. A semantic domain is
a set of elements carrying information about our objects of
study (here, programs). We wish to quantify information,
hence, a semantic domain is a partially ordered set (D,v),
where d v d′ means that d′ carries less information than d.
We say that a semantic domain (D],v]), called the abstract
domain, is an abstraction of another semantic domain, the
concrete domain (D,v), if each abstract element d] ∈ D] rep-
resents some concrete information γ(d]) ∈ D and the structure
respects the information order: i.e., γ ∈ D] → D is a mono-
tonic function; it is called the concretization function.

Remark. Two abstract elements can represent the same con-
crete one: γ needs not be injective.

End of remark.

When D] has arbitrary meets, it forms a so-called Moore
family [CC79b] and we can define an abstraction function α ∈
D → D] as:

α(d)
def
=

d] { d] | d v γ(d]) } .

By definition, α(d) is the best (i.e., most precise) abstraction
of d in D]. The pair (α, γ) enjoys many well-known interesting
properties:

− (α, γ) is a Galois connection:
∀d ∈ D, d] ∈ D] : d v γ(d]) ⇐⇒ α(d) v] d];

− ∀d ∈ D : d v (γ ◦ α)(d);

− ∀d] ∈ D] : (α ◦ γ)(d]) v d].

When γ is injective (which is equivalent to state that α is sur-
jective), then we actually have α ◦ γ = λd]. d], and the pair
(α, γ) is called a Galois injection.

Example 2.2.1. In the interval domain (described in more de-
tails in Sec. 2.4.1), sets of reals in D (ordered by subset in-
clusion) are abstracted as intervals in D]i with finite or infinite
bounds:

D def
= P(R)

v def
= ⊆

D]i
def
= { [a, b] | a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞}, a ≤ b } ∪ {⊥]}

d]1 v
]
i d

]
2

def⇐⇒ d]1 = ⊥] ∨
(d]1 = [a, b] ∧ d]2 = [c, d] ∧ a ≥ c ∧ b ≤ d)

γi([a, b])
def
= {x ∈ R | a ≤ x ≤ b }, γ(⊥]) def

= ∅

αi(X)
def
=

{
⊥] if X = ∅
[minX,maxX] otherwise

(αi, γi) forms a Galois injection.
End of example.

Operator abstraction. Given a concrete operator f ∈ D →
D, an abstraction of f is a function f ] ∈ D] → D] obeying the
soundness condition:

∀d] ∈ D] : f(γ(d])) v γ(f ](d])) (2.1)

which states that computing in the abstract always yields less
or as much information as in the concrete. Ideally, we would
have f ◦γ = γ ◦f ], which means that the abstract computation
does not lose any information with respect to the concrete one;
in this case, we will call f ] an exact abstraction. Unfortunately,
this seldom happens: it requires f to be forward-complete, that
is, to map abstract properties to abstract properties [GRS98].
When an abstraction function α exists, then we can define f ]

as:

f ]
def
= α ◦ f ◦ γ (2.2)

which is, by definition, the best abstraction of f . These defini-
tions extent naturally to the case of n−ary operators.

Example 2.2.2. Anticipating again on Sec. 2.4.1, we consider

the interval abstractions of f
def
= λX. {−x | x ∈ X } and

λ(X,Y ). X ∪ Y . Then f ]i
def
= λ[a, b]. [−b,−a] is an exact ab-

straction of f , while ∪]i
def
= λ[a, b], [c, d]. [min(a, c),max(b, d)] is

the best abstraction of ∪ but is not exact.
End of example.
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2.2. ELEMENTS OF ABSTRACT INTERPRETATION

It is important to notice that, although the composition of ex-
act abstractions is an exact abstraction, the composition of best
abstractions is not necessarily a best abstraction. Hence, when
building an analysis by combining a set of atomic abstract op-
erations, imprecisions can accumulate to an overall poor result,
even if each atomic operation is a best abstraction. Adding to
this the occasional lack of a best abstraction function α, and
the occasional lack of an algorithm to implement efficiently (or
at all) α ◦ f ◦ γ, it turns out that abstract analyses seldom
output the optimal result expressible in the chosen abstract
domain. Thus, in order to prove properties of a certain kind,
a strictyl more expressive abstract semantic domain is often
required.

Reduced product. To obtain more precision, it is conve-
nient to combine existing domains into new, more powerful
ones. Given two domains D]1 and D]2 with concretizations γ1

and γ2, the product domain D] def
= D]1 × D

]
2 with concretiza-

tion γ(〈X]
1, X

]
2〉)

def
= γ1(X]

1)uγ2(X]
2) and ordering 〈X]

1, X
]
2〉 v]

〈Y ]1 , Y
]
2 〉

def⇐⇒ X]
1 v

]
1 Y

]
1 ∧X

]
2 v

]
2 Y

]
2 can represent conjunc-

tions of properties expressed in D]1 and D]2.

While f ]
def
= λ〈X]

1, X
]
1〉. 〈f

]
1(X]

1), f ]2(X]
2)〉 is a sound ab-

straction of f in D] when f ]1 and f ]2 are sound abstractions of
f in, respectively, D]1 and D]2, it does not bring any precision
improvement with respect to separate analyses as each compo-
nent is computed in isolation. This can be corrected by adding
a reduction step that propagates information: f ] is replaced
with ρ] ◦ f ] where the reduction function ρ] ∈ D] → D] sat-
isfies the soundness condition (γ ◦ ρ])(X]) = γ(X]), and the
improvement condition ρ](X]) v] X]. When D]1 and D]2 fea-
ture abstraction functions α1 and α2, an optimal reduction can

be defined as ρ](X])
def
= 〈(α1 ◦ γ)(X]), (α2 ◦ γ)(X])〉. When

no abstraction function exists or no efficient algorithm to com-
pute ρ] exists, one generally settles for a sound reduction that
only partially propagates information. We refer the reader to
[CCF+06] on how to design partially reduced products on a
large scale.

Fixpoint theorems. In abstract interpretation, many ob-
jects are expressed as fixpoints of operators. The existence of
fixpoints requires suitable hypotheses on those operators. We
recall an important result due to Tarski [Tar55]:

Theorem 2.2.1. The set of fixpoints of a monotonic function
f ∈ A → A in a complete lattice A is a non-empty complete
lattice.

In particular, f has a least fixpoint. Additionally, least fix-
points are expressed as meets of post-fixpoints:

lfpa f =
l
{ b ∈ A | a v b ∧ f(b) v b } .

This characterization is not very convenient to compute fix-
points algorithmically. Hence, another theorem, by Cousot
and Cousot [CC79a], expresses fixpoints as limits of (possibly
transfinite) iteration sequences:

Theorem 2.2.2. If f ∈ A → A is a monotonic function in a
complete partial order A and a is a pre-fixpoint of A, then the
following sequence:

xδ
def
=


a if δ = 0

f(xβ) if δ = β + 1

t {xβ | β < δ } if δ is a limit ordinal

converges towards lfpa f . If f is additionally a join-morphism,
then lfpa f = xω (i.e., the iteration converges after a countable
number of steps).

This theorem is constructive. It suggests a simple iterative
way to compute fixpoints: we simply need to ensure that the
involved sequences converge in finite time. Another remark is
that the sequence xδ is increasing for v. Hence, the partial or-
der, originally introduced to quantify information, also denotes
a computation order for fixpoints (in fact, distinct orders can
be used [Cou02], but this will not be necessary here).

Fixpoint approximation. Given a semantics expressed as
lfpa f in the concrete world, a natural idea is to abstract it
as lfpa] f

] in the abstract world. We can then use fixpoint
transfer theorems, such as [Cou02]:

Theorem 2.2.3. If f ] ◦ α = α ◦ f and a] = α(a), then
lfpa] f

] = α(lfpa f).

i.e., lfpa] f
] exists and is the best abstraction of lfpa f . How-

ever, in many cases, the condition f ] ◦ α = α ◦ f (also called
backward completeness [GRS98]) is not satisfied. We must also
consider the common case where f ] 6= α ◦ f ◦ γ as the latter is
too difficult to compute or does not exist at all (if there is no
abstraction function α). When f ] 6= α◦f ◦γ, it is even possible
that f ] does not admit a least fixpoint (or any fixpoint at all).
In all those cases, where no optimal fixpoint abstraction can
be defined or computed, we settle for a sound abstraction, i.e.,
some x] such that lfpa f v γ(x]). This can be easily achieved:

Theorem 2.2.4. If f ] is a sound abstraction of f , a v γ(a]),
and x] satisfies f ](x]) v] x] and a] v] x], then lfpa f v γ(x]).

that is, we abstract a concrete least fixpoint as an abstract
post-fixpoint.

Fixpoint extrapolation. Theorem 2.2.2 suggests comput-

ing lfpa] f
] as the limit of the sequence defined as: x]0

def
= a]

and x]n+1
def
= f ](x]n). To enforce termination of such itera-

tions in finite time, Cousot and Cousot introduced widening
operators, which are binary operators O ∈ (D] × D]) → D]
satisfying:

Definition 2.2.1.
− ∀x], y] : x] v] x] O y] and y] v] x] O y];
− for any sequence (y]i )i∈N, the sequence defined as x]0

def
= y]0

and x]i+1

def
= x]i O y

]
i is not strictly increasing.

We can then approximate lfpa f with finite iterations:

Theorem 2.2.5. If f ] is a sound abstraction of f and a v
γ(a]), then the sequence x]0

def
= a], x]i+1

def
= x]i O f

](x]i) reaches

a stable iterate x]β = x]β+1 for some β < ω. Moreover, lfpa f v
γ(x]β).

Intuitively, O performs an extrapolation: it observes finite se-
quences of iterates and jumps higher and higher until it reaches
(or overshots) the fixpoint. It is a form of inductive reasoning,
in the logical sense of generalizing from finite examples, i.e.,
from the iterates (not to be confused with mathematical in-
duction, which proceeds by applying induction axioms or rules,
and is thus actually deductive in nature). Theorem 2.2.5 is, in
fact, very general: it does not require lfpa] f

] to exist, nor
any monotony nor join-morphism property on f ]. However, it
does not make any guarantee on the precision of the computed
approximation, but only ensures soundness and termination.
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CHAPTER 2. BACKGROUND

Example 2.2.3. Anticipating again on Sec. 2.4.1, we present
the classic interval widening:

[a, b] Oi [c, d]
def
=

[{
a if a ≤ c
−∞ otherwise

,

{
b if b ≥ d
+∞ otherwise

]

which sets unstable bounds to infinity. Consider the abstract

function f ]
def
= λ[a, b]. [a, b]∪]i (([a, b]∩

]
i [0, 10])+]

i 1), modeling a
loop increasing a counter while it is smaller than 10 (∩]i and +]

i

are, respectively, the interval intersection and addition, which
are exact). The iteration with widening starting from [0, 0] sta-
bilizes at [0,+∞] after one iteration, which over-approximates
the actual least fixpoint [0, 11].

End of example.

Sometimes, a fixpoint x]β = x]βOf
](x]β) is a strict post-fixpoint

of f ]: f ](x]β) @ x]β . Hence, the approximation x]β can be re-
fined by performing a decreasing iteration without widening:

y]0
def
= x]β , y]i+1

def
= f ](y]i ). This decreasing sequence can be

infinite, so, Cousot and Cousot introduced a narrowing opera-
tor M to limit the refinement while enforcing termination (for
example, by allowing each bound to be refined at most once).

The presentation of abstract interpretation using abstract
domains D] and widenings O has the benefit of clearly distin-
guishing the problem of abstracting a given concrete operator
f in D] and that of abstracting fixpoints in D]. The former
problem is that of expressiveness, and influences the choice of
D], while the later is that of termination. As demonstrated in
[CC92b], computing in a domain with infinite chains using a
widening is strictly more powerful than computing in a finite-
chain restriction of the same domain (which does not require
any widening). Intuitively, the widening adds a dynamic di-
mension to the abstraction, which is more flexible than relying
only on the static choice of an abstract domain.

2.3 Sequential static analysis

We apply the previous notions to construct a simple static
analysis. In order to present the construction concisely but in
full formal details, we study a very simple artificial language:
it is imperative, sequential, block-structured, procedure-less
and with only global variables and one data-type: reals in R.
Later sections will introduce additional constructs (floating-
point numbers in Sec. 2.4.4, concurrency in Chap. 3, and ar-
rays and pointers in Chap. 5) while others (such as dynamic
memory allocation, objects, recursive procedures, higher-order
constructs, etc.) are out of the scope of this work. Despite the
remaining limitations, the construction is nevertheless relevant
to some real-life analysis problems (this is shown in Chap. 6 on
a subset of C for embedded critical software).

2.3.1 Language

Our simple language is presented in Fig. 2.1. Statements stat
include assignments X ← e, conditionals if · · · then · · · endif ,
loops while · · ·do · · ·done, and sequencing ;. A program prog
is simply a statement. Expressions expr are numeric and in-
clude (real-valued) variables drawn from a fixed finite set V,
constants (or, more precisely, intervals with constant bounds
[c1, c2]), unary and binary operators. Interval constants model
the choice of a random value within the given bounds, which

combines the modeling of classic constants [c, c] and of non-
deterministic inputs (such as sensors).

Statements are decorated with superscript labels `, which
denote syntactic locations and should be all distinct. There is a
label at the beginning and the end of each statement, as well as
a label `i to denote the location where a loop condition is tested
before each new iteration. Additionally, expression operators
are decorated with unique subscript labels ω. These denote the
location of possible run-time errors. We denote respectively as
L(P ) and Ω(P ) the (finite) sets of statement labels and error
labels in a program P . Generally, the program P is implicit
and we shorten the notations as L and Ω.

2.3.2 Transition system

Following Cousot and Cousot [CC77], we model program se-
mantics as a labelled transition system (Σ,A, I, τ), given as:

− Σ: a set of states;
− A: a set of actions;
− I ⊆ Σ: a set of initial states;
− τ ⊆ Σ×A× Σ: a transition relation.

Transitions model execution steps: (σ, a, σ′) ∈ τ means that
the program can transition from state σ to state σ′ by executing
the action a. We will use the notation σ

a→τ σ
′ for (σ, a, σ′) ∈ τ .

Transition systems are a form of small-step semantics. They
are independent from the choice of programming language and
allow expressing very general results, some of which will be
applied to our language in Sec. 2.3.3. Before this, we need

to show how a program prog
def
= `e stat `x in our language is

effectively mapped to a transition system:

− As state space, we use Σ
def
= (L×E)∪Ω where E def

= V → R:
a program execution is either at some syntactic location
` ∈ L with environment ρ ∈ E mapping each variable V ∈ V
to a real value ρ(V ) ∈ R, or it is in an error state ω ∈ Ω.

− Programs start at the first location with all variables initial-

ized to 0, hence, we have I
def
= { 〈`e, λV ∈ V. 0〉 }.

− There is a single action A def
= { ∗ } that denotes an execution

step.2 As a consequence, we will assimilate τ to a subset of
Σ× Σ and note (σ, ∗, σ′) ∈ τ as σ →τ σ

′.

− The transition relation τ is defined by induction on the syn-
tax of statements. It is shown in Fig. 2.3, where τ [` stat `

′
]

is the set of transitions generated by the statement ` stat `
′
.

The semantics uses the auxiliary semantic function EJ e Kρ,
defined in Fig. 2.2, to evaluate an expression e in an environ-
ment ρ ∈ E . This function outputs a set of values and a set
of possible run-time errors. Expression semantics are also
defined by induction on the syntax, but in big-step form:
their intermediate computation steps are not visible at the
level of program transitions. Note that value sets are neces-
sary because, due to non-deterministic constants [c1, c2], an
expression can have several values. In our simple real-based
language, the only possible run-time errors are caused by
divisions by zero.

2Multiple actions will appear later, in the semantics of concurrent
programs (Sec. 3.1).
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2.3. SEQUENTIAL STATIC ANALYSIS

prog ::= ` stat `
′

(program)

` stat `
′

::= `X ← expr `
′

(assignment)

| `if expr ./ 0 then `1 stat `2 endif `
′

(conditional)

| `while `i expr ./ 0 do `1 stat `2 done`
′

(loop)

| ` stat ;`1 stat `
′

(sequence)

expr ::= X (variable X ∈ V)
| [c1, c2] (constant interval, c1, c2 ∈ R ∪ {±∞})
| ◦ω expr (unary operation)
| expr �ω expr (binary operation)

./ ::= = | 6= | < | > | ≤ | ≥ (relational operator)
◦ ::= − (unary arithmetic operator)
� ::= +| − | × | / (binary arithmetic operator)
` ∈ L (statement label)
ω ∈ Ω (error location)

Figure 2.1: Syntax of our sequential language.

EJ expr K ∈ E → (P(R)× P(Ω))

EJX Kρ def
= 〈{ ρ(X) }, ∅〉

EJ [c1, c2] Kρ def
= 〈{x ∈ R | c1 ≤ x ≤ c2 }, ∅〉

EJ ◦ω e Kρ
def
=

let 〈V, O〉 = EJ e K ρ in 〈{ ◦ v | v ∈ V }, O〉

EJ e1 �ω e2 Kρ
def
=

let 〈V1, O1〉 = EJ e1 K ρ in
let 〈V2, O2〉 = EJ e2 K ρ in
〈{ v1 � v2 | v1 ∈ V1, v2 ∈ V2, � 6= / ∨ v2 6= 0 },
O1 ∪O2 ∪ {ω if � = / ∧ 0 ∈ V2 }〉

Figure 2.2: Semantics of expressions.

2.3.3 From traces to states

Maximal traces semantics. Transition systems (Σ,A, I, τ)
are only static mathematical descriptions of programs. Infor-
mation about their dynamic behaviors emerge when consid-
ering sequences of transitions. The maximal traces semantics
M expresses the most information about a program: it is the
set of maximal finite or infinite traces, in Tr ∞(Σ,A), start-
ing in a state in I and obeying the transition relation. Defin-
ing the blocking states B as the states without any successor

B
def
= {σ | ∀σ′ ∈ Σ, a ∈ A : σ

a

6→τ σ
′ }, we can define M as:

M def
= {σ0

a1→ · · · an→ σn | σ0 ∈ I ∧ σn ∈ B ∧
∀i < n : σi

ai+1→ τ σi+1 }
∪ {σ0

a1→ · · · | σ0 ∈ I ∧ ∀i ∈ N : σi
ai+1→ τ σi+1 } .

(2.3)
An equally important fact is that interesting program proper-
ties can also be modeled as sets of traces. Given a property
P ⊆ Tr ∞(Σ,A), checking whether the program enjoys this
property is achieved by testing whether M⊆ P .

Example 2.3.1. In the simple case where A is a singleton, we
assimilate traces to sequences of states, in Σ∞, and define the
following properties:

− choosing P
def
= S∞ checks that the program stays in a subset

of states S ⊆ Σ (invariance); checking for the absence of

τ [` stat `
′
] ∈ P(Σ× Σ)

let ∀e, ρ : 〈V eρ , Oeρ〉 = EJ e K ρ in

τ [`X ← e`
′
]

def
=

{ (〈`, ρ〉, 〈`′, ρ[X 7→ v]〉) | ρ ∈ E , v ∈ V eρ } ∪
{ (〈`, ρ〉, ω) | ρ ∈ E , ω ∈ Oeρ) }

τ [`if e ./ 0 then `1s`2 endif `
′
]

def
=

{ (〈`, ρ〉, 〈`1, ρ〉) | ρ ∈ E , ∃v ∈ V eρ : v ./ 0 } ∪
{ (〈`, ρ〉, 〈`′, ρ〉) | ρ ∈ E , ∃v ∈ V eρ : v 6./ 0 } ∪
{ (〈`, ρ〉, ω) | ρ ∈ E , ω ∈ Oeρ) } ∪
τ [`1s`2 ] ∪ { (〈`2, ρ〉, 〈`′, ρ〉) | ρ ∈ E }

τ [`while `ie ./ 0 do `1s`2 done`
′
]

def
=

{ (〈`, ρ〉, 〈`i, ρ〉) | ρ ∈ E } ∪
{ (〈`i, ρ〉, 〈`1, ρ〉) | ρ ∈ E , ∃v ∈ V eρ : v ./ 0 } ∪
{ (〈`i, ρ〉, 〈`′, ρ〉) | ρ ∈ E , ∃v ∈ V eρ : v 6./ 0 } ∪
{ (〈`i, ρ〉, ω) | ρ ∈ E , ω ∈ Oeρ) } ∪
τ [`1s`2 ] ∪ { (〈`2, ρ〉, 〈`i, ρ〉) | ρ ∈ E }

τ [`s1;`1 s2
`′ ]

def
= τ [`s1

`1 ] ∪ τ [`1s2
`′ ]

Figure 2.3: Transition system generated by a program.

run-time error is achieved by setting S
def
= Σ \ Ω;

− choosing P
def
= Σ∗ checks that the program terminates;

− choosing P
def
= Σ∗ · S · Σ∞ checks that the program neces-

sarily reaches a state in S ⊆ Σ (inevitability).

End of example.

Remark. In the presence of non-determinism (e.g., due to inter-
val constants), we actually check that all executions spawning
from any sequence of choices satisfy the target property.

End of remark.

Partial traces semantics. The maximal trace semantics is
difficult to compute as it involves infinite traces. A solution
consists in observing the finite prefixes of finite and infinite
executions, called partial traces, which leads to the following
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semantics F ∈ Tr ∗(Σ,A):

F def
= {σ0

a1→ · · · an→ σn | σ0 ∈ I ∧ ∀i < n : σi
ai+1→ τ σi+1 } .

(2.4)
F is an abstraction of M. Indeed, F = αpref (M), where:

αpref
def
= λT . { t ∈ Tr ∗(Σ,A) | t ∈ T ∨ ∃a, t′ : t

a→ t′ ∈ T } .
(2.5)

This abstraction is not complete: F can prove strictly fewer
properties than M due to the loss of information on infinite
traces.

Example 2.3.2. αpref collapses some sets containing infinite
traces with sets not containing any, e.g.:

αpref ({σ}ω) = αpref ({σ}∗) = {σ}∗ .

More generally, it is not possible with F to prove that pro-
grams with finite traces of unbounded length always termi-
nate (F is nevertheless complete for bounded termination as
∀n : αpref (T ) ⊆

⋃
i≤n Σi ⇐⇒ T ⊆

⋃
i≤n Σi).

End of example.

Nevertheless, F can express invariance exactly. Indeed:

∀T ⊆ Tr ∞(Σ,A), S ⊆ Σ :
αpref (T ) ⊆ Tr ∗(S,A) ⇐⇒ T ⊆ Tr ∞(S,A) .

Another important feature of this semantics is that it can be
expressed in fixpoint form, as F = lfpF where:

F
def
= λX. I ∪ {σ0

a1→ · · ·σi
ai+1→ σi+1 |

σ0
a1→ · · ·σi ∈ X ∧ σi

ai+1→ τ σi+1 } .
(2.6)

F is a join-morphism that includes initial states and extends
traces by adding a new transition at their end: it is a forward
semantics.3 By Thm. 2.2.2, lfpF can then be expressed as
the limit of an iteration sequence, ∅, F (∅), F 2(∅), etc., which
stabilizes at ∪i<ωF i(∅).

Reachable state semantics. Computing lfpF by iteration
is equivalent to exhaustive testing, i.e., running the program
and observing all its executions, albeit in a non-standard (i.e.,
breadth-first) order. It does not terminate when the program
has infinite executions. Thankfully, as we are interested in in-
variance properties, it is sufficient to observe the set of reach-
able states R ⊆ Σ, which is an abstraction of F . We have

R def
= αreach(F) where:

αreach
def
= λT . {σ | ∃σ0

a0→ · · ·σn ∈ T : ∃i ≤ n : σ = σi } .
(2.7)

And the associated concretization is simply:

γreach
def
= λS. Tr ∗(S,A) .

The abstraction is complete for reachability as:

∀T ⊆ Tr ∗(Σ,A), S ⊆ Σ :
αreach(T ) ⊆ S ⇐⇒ T ⊆ Tr ∗(S,A) .

However, αreach forgets all information related to the ordering
of states in executions.

3There also exists a fixpoint characterization of the maximal trace se-
mantics M [Cou02], but it is a backward semantics that cannot enforce
σ0 ∈ I. Unlike F , we are not aware of any forward fixpoint characteri-
zation of M.

eq [` stat `
′
] ∈ P(Equations[(X`)`∈L])

eq [`e stat `x]
def
=

{X`e = {λV . 0 } } ∪ eqst [
`e stat `x]

eqst [
`X ← e`

′
]

def
= {X`′ = SEJX ← e KX` }

eqst [
`if e ./ 0 then `1s`2 endif `

′
]

def
=

{X`1 = SEJ e ./ 0 KX` } ∪ eqst [
`1s`2 ] ∪

{X`′ = X`2 ∪ SEJ e 6./ 0 KX` }

eqst [
`while `ie ./ 0 do `1s`2 done`

′
]

def
=

{X`i = X` ∪ X`2 } ∪ {X`1 = SEJ e ./ 0 KX`i }∪
eqst [

`1s`2 ] ∪ {X`′ = SEJ e 6./ 0 KX`i }

eqst [
`s1;`1 s2

`′ ]
def
= eqst [

`s1
`1 ] ∪ eqst [

`1s2
`′ ]

where:
let ∀e, ρ : 〈V eρ , −〉 = EJ e K ρ in

SEJX ← e KR def
= { ρ[X 7→ v] | ρ ∈ R, v ∈ V eρ }

SEJ e ./ 0 KR def
= { ρ ∈ R | ∃v ∈ V eρ : v ./ 0 }

Figure 2.4: Equation system generated by a program.

A fixpoint characterisation of R can be constructed by fix-
point abstraction, using Thm. 2.2.3. We define the function
R ∈ P(Σ)→ P(Σ) as:

R
def
= λS. I ∪ {σ | ∃σ′ ∈ S, a ∈ A : σ′

a→τ σ } (2.8)

and note that R ◦ αreach = αreach ◦ F , which implies that R =
lfpR. Computing lfpR by iteration corresponds to a breadth-
first exploration of reachable sets. It terminates if Σ is finite
(even though F may be infinite). However, Σ is often infinite,
or so large that the reachable subset cannot be represented in
extension in a computer. We will have to resort to further
abstractions.

2.3.4 Equational semantics

Before abstracting further, we apply the reachable set abstrac-
tion on the transition systems generated by our language de-
scribed in Sec. 2.3.1, and restate the semantics in a more conve-
nient, equation-based form. This classic form dates back from
the beginning of abstract interpretation [CC79b] and it is effec-
tively used in academic and industrial tools (such as Interproc
[LAJ11] and Sparrow [Ya]).

The principle is to partition the set of reachable states R ⊆
Σ by their syntactic program location in L. Given a program

P
def
= `e stat `x, we associate a variable X` with value in P(E) to

each syntactic location ` ∈ L(P ) (later abbreviated as L), such

that X`
def
= { ρ | 〈`, ρ〉 ∈ R}. AsR = lfpR, (X`)`∈L is the least

family, for the element-wise subset ordering on L → P(E), sat-
isfying: (ρ ∈ X`∧〈`, ρ〉 →τ 〈`′, ρ′〉)∨〈`′, ρ′〉 ∈ I =⇒ ρ′ ∈ X`′ .
It is then a simple process to massage the definition of P ’s
transition system from Fig. 2.3 into a set of equations of the
form X` = F`(X`1 , . . . ,X`n). This leads to the set of equations
eq [`e stat `x] presented in Fig. 2.4. This set contains an equa-
tion defining the initial states X`e, as well as statement equa-
tions defined by induction on the program syntax: the function
eqst [

` stat `
′
] generates a set of equations binding the variables

for all the locations in ` stat `
′

except `. Moreover, the trans-
lation uses two auxiliary semantic functions, SEJX ← e K and
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`1i← 2;
`2n← [−∞,+∞];
`3while `4 i < n do

`5if [0, 1] = 0 then
`6i← i+ 1

`7endif
`8done
`9

X`1 = { [i 7→ 0, n 7→ 0] }
X`2 = SEJ i← 2 KX`1
X`3 = SEJn← [−∞,+∞] KX`2
X`4 = X`3 ∪ X`8
X`5 = SEJ i < n KX`4
X`6 = X`5
X`7 = SEJ i← i+ 1 KX`6
X`8 = X`5 ∪ X`7
X`9 = SEJ i ≥ n KX`4

(a) (b)

X`1 = { 〈x, n〉 | i = 0 ∧ n = 0 }
X`2 = { 〈x, n〉 | i = 2 ∧ n = 0 }
X`3 = { 〈x, n〉 | i = 2 }
X`4 = { 〈x, n〉 | 2 ≤ i ≤ max(2, n) }
X`5 = { 〈x, n〉 | 2 ≤ i ≤ n− 1 ∧ n ≥ 3 }
X`6 = { 〈x, n〉 | 2 ≤ i ≤ n− 1 ∧ n ≥ 3 }
X`7 = { 〈x, n〉 | 3 ≤ i ≤ n ∧ n ≥ 3 }
X`8 = { 〈x, n〉 | 2 ≤ i ≤ n ∧ n ≥ 3 }
X`9 = { 〈x, n〉 | i = max(2, n) }

(c)

Figure 2.5: Example program (a), its equation system (b),
and its smallest solution in assertional form (c).

SEJ e ./ 0 K, that respectively model the effect of assigning an
expression to a variable and filtering environments according
to the outcome of a test. These are defined, in turn, using the
expression semantics EJ e K from Fig. 2.3. The family (X`)`∈L
we seek is then the least solution of this system, which is noth-
ing more than a least fixpoint. To lighten the presentation, the
equation system does not track error states in Ω.

Example 2.3.3. Figure 2.5.(a) presents an example program
that increments i from 2 to some user-input value n. Fig-
ure 2.5.(b) presents the associated equation system.

End of example.

The family (X`)`∈L defines program invariants: whenever
a program execution passes through location `, its environ-
ment ρ always satisfies ρ ∈ X`. There is a deep connec-
tion between this presentation and Floyd–Hoare logic [Flo67,
Hoa69]: Cousot and Cousot [CC77] showed that any solution
of X` = F`(X`1 , . . . ,X`n) is an inductive invariant , leading to
valid Hoare triples. Moreover, the least solution we compute
corresponds to the most precise invariant. We will present a
similar connection for concurrent programs in Sec. 3.2.

Example 2.3.4. Figure 2.5.(c) presents the least solution of the
system in Fig. 2.5.(b). It is presented as logical assertions on
the variable pair 〈x, n〉 at each program location, which makes
the connection with Hoare logic more apparent.

End of example.

Remark. Equation system semantics are not limited to com-
puting reachability, they can also model partial traces: X` will
then collect the partial traces that end in a state of the form
〈`, ρ〉. This opens the way to history-sensitive static analyses,
such as traces partitioning [MR05].

End of remark.

SJ stat K ∈ (P(E)× P(Ω))→ (P(E)× P(Ω))

let ∀e, ρ : 〈V eρ , Oeρ〉 = EJ e K ρ in

SJX ← e K〈R, O〉 def
=

〈∅, O〉 t
⊔
ρ∈R 〈{ ρ[X 7→ v] | v ∈ V eρ }, Oeρ〉

SJ e ./ 0 K〈R, O〉 def
=

〈∅, O〉 t
⊔
ρ∈R 〈{ ρ | ∃v ∈ V

e
ρ : v ./ 0 }, Oeρ〉

SJ if e ./ 0 then s endif KX def
=

(SJ s K ◦ SJ e ./ 0 K)X t SJ e 6./ 0 KX

SJwhile e ./ 0 do s done KX def
=

SJ e 6./ 0 K(lfpλY.X t (SJ s K ◦ SJ e ./ 0 K)Y)

SJ s1; s2 K
def
= SJ s2 K ◦ SJ s1 K

Figure 2.6: Big-step semantics.

2.3.5 Big-step semantics

Another popular way of presenting the reachability semantics,
also used effectively in tools (such as Astrée, Sec. 6.2) is as
input-output functions on states (or, equivalently, relations
on states). We present such a semantics for our language in
Fig. 2.6. Given a set R of environments before a statement
stat is executed, SJ stat K computes the set of environments
reached at the end of the statement. Moreover, given a set
of error locations O, it returns O enriched with the location
of all the errors encountered while executing the statement in
an environment in R. The join t we use corresponds to the
pair-wise set union of environment sets and error location sets:

〈V1, O1〉 t 〈V2, O2〉
def
= 〈V1 ∪ V2, O1 ∪O2〉. The semantics of a

program P ∈ stat is then:

P def
= SJP K 〈{λV . 0 }, ∅〉 . (2.9)

There are several points of note. Firstly, this is a big-step se-
mantics: it does not record the states at intermediate syntactic
locations (although errors occurring at intermediate statements
are recorded and appear in the output). As a consequence,
the presentation in Fig. 2.6 completely dispenses from state-
ment locations. Secondly, it involves a least fixpoint for each
program loop. Each such fixpoint computes a loop invariant,
corresponding to the syntactic location named `i in Fig. 2.1,
which is then filtered by the loop exit condition to obtain the
environments reachable at the end of the loop. For any state-
ment, SJ stat K is a join-morphism in the product of powerset
complete lattices P(E)×P(Ω), which justifies the existence of
the fixpoint. Finally, P outputs the set of environments at the
end of the program, and the set of errors that can be encoun-
tered at any point during the execution of the program. For
instance, in case of non-termination, P will output an empty
set of environments but nevertheless includes all the errors that
may occur in the program.

The equivalence between the big-step semantics SJ stat K
and the reachable state semantics R is proved in [Min12d] and
relies on a notion of control paths (we omit the proof here
but we will nevertheless introduce control paths in Sec. 3.3,
as they are also useful to study concurrent programs). As
a last remark, note that the big-step semantics is similar to
Scott’s denotational semantics as both view program seman-
tics as input-output functions (although our semantics is far
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simpler as we only consider first-order programs). The con-
nection is stated formally by Cousot in [Cou02] and further
explored by Schmidt in [Sch09].

2.3.6 Environment abstraction

In order to construct a computable and efficient semantics able
to reason about the reachable states, we now abstract the se-
mantic domain P(Σ). More precisely, we abstract the environ-
ment sets involved in the equational and big-step semantics; we
do not abstract the (finite) sets L, V, nor Ω, so that the result-
ing analysis remains flow-sensitive, field-sensitive, and precise
about the location of errors that can occur.

We first focus on inferring properties of environments (in

E def
= V → R) and ignore error inference for now. We thus start

from a numeric abstract domain, which is a partially ordered
set (E],v]E) abstracting environment sets (P(E),⊆), and fea-
turing a monotonic concretization γE ∈ E] → P(E). In order
to abstract both the equational and big-step semantics, only a
few abstract operators are actually needed:
− an assignment: S]EJX ← e K ∈ E] → E] abstracting the func-

tion SEJX ← e K from Fig. 2.4;
− a filter: S]EJ e ./ 0 K ∈ E] → E] abstracting SEJ e ./ 0 K;
− a join: ∪]E ∈ E

] × E] → E] abstracting ∪;
− a widening: OE ∈ E] × E] → E];
− an initial state: E]0 ∈ E] abstracting {λV . 0 }.
These abstract operators must obey the soundness condition
f(γ(x])) ⊆ γ(f ](x])) (2.1) and, for the widening, the termina-
tion condition we presented in Def. 2.2.1. Moreover, in order
to construct an effective analyzer, we need to provide a data-
structure to encode in a computer the elements from E], and
algorithms to implement the abstract operators. Example nu-
meric domains will be presented in Sec. 2.4; we assume for now
that one is given and work from the operators it provides to
derive an analysis in a generic way.

To handle errors, we additionally ask for an abstract oper-
ator E]ΩJ e K ∈ E

] → P(Ω) that returns the errors encountered
when evaluating the expression e in an abstract environment.
The soundness condition is thus:

E]ΩJ e KR
] ⊇

⋃
ρ∈γE (R])

snd(EJ e Kρ) . (2.10)

Our abstraction of P(E)×P(Ω) is then D] def
= E]×P(Ω), with

order 〈R]1, O1〉 v] 〈R]2, O2〉
def⇐⇒ R]1 v

]
E R

]
2 ∧ O1 ⊆ O2 and

concretization γ
def
= λ〈R], O〉. 〈γE(R]), O〉. Sound operators

on D] are derived systematically from those on E]:
− assignment: S]JX ← e K〈R], O〉 def

= 〈S]EJX ← e KR], O ∪
E]ΩJ e KR

]〉;
− filter: S]J e ./ 0 K〈R], O〉 def

= 〈S]EJ e ./ 0 KR], O ∪ E]ΩJ e KR
]〉;

− join: 〈R]1, O1〉 t] 〈R]2, O2〉
def
= 〈R]1 ∪

]
E R

]
2, O1 ∪O2〉;

− widening: 〈R]1, O1〉 O 〈R]2, O2〉
def
= 〈R]1 OE R

]
2, O1 ∪O2〉;

− initial state: D]
0

def
= 〈E]0, ∅〉.

Abstract equational semantics. A static analyzer based
on equation systems can then be constructed in three steps.
Firstly, we construct an abstract equation system, featuring
a family of variables (X ]` )`∈L with value in E] and equations

of the form X ]` = F ]` (X ]`1 , . . . ,X
]
`n

). This is easily done by
replacing occurrences of concrete operators SEJ K and ∪ in
Fig. 2.4 with their abstract versions S]EJ K and ∪]E . Secondly,

S]J stat K ∈ (E] × P(Ω))→ (E] × P(Ω))

S]J if e ./ 0 then s endif KX ] def
=

(S]J s K ◦ S]J e ./ 0 K)X ] t] S]J e 6./ 0 KX ]

S]Jwhile e ./ 0 do s done KX ] def
=

S]J e 6./ 0 K(limλY].Y] O (X ] t] (S]J s K ◦ S]J e ./ 0 K)Y]))

S]J s1; s2 K
def
= S]J s2 K ◦ S]J s1 K

Figure 2.7: Abstract big-step semantics.

we insert widenings in order ensure that the system is solv-
able with finite iterations. This is done by replacing equa-
tions X ]` = F ]` (X ]`1 , . . . ,X

]
`n

) with X ]` = X ]` OF
]
` (X ]`1 , . . . ,X

]
`n

).
Widenings need not be inserted at all syntactic locations; it is
sufficient to ensure that each dependency cycle in the equation
system traverses a widening point. Given the very structured
nature of our language, a natural choice is to widen at syntactic
locations `i, corresponding to loop invariants. Finally, we must
devise an iteration scheme. A simple idea is to use a work-list
based algorithm. Other iteration schemes and choices of widen-
ing points exist. They may have an impact on efficiency, but
also on precision (we refer the reader to Bourdoncle [Bou93]
for an in-depth presentation).

This presentation of a static analyzer in equational form
is reminiscent of forward data-flow analyses [Kil73], but it is
more powerful as it allows infinite-height abstract domains.

Abstract big-step semantics. A big-step static analyzer is
even simpler to construct. It is sufficient to replace concrete
operators with abstract ones in the semantics of Fig. 2.6 and
insert a widening at each fixpoint computation, in the seman-
tics of loops. The resulting semantics is shown in Fig. 2.7.
The notation limλY].Y] O F ](Y]) denotes the limit reached
(in finite time) by iterating F ] with a widening.

The big-step presentation is appealing for two reasons. A
first reason is that it stays very close to the structure of the
program, following its control flow. A big-step static analyzer
is an abstract interpretation in a literal way: it interprets the
program, but manipulates an abstract environment represent-
ing many concrete environments, instead of a single one. A
second reason is that it makes a parsimonious use of abstract
elements: while the equational form maintains an abstract el-
ement for each syntactic location in L at all time, the big-step
semantics forgets all the intermediate steps. More precisely, as
the semantics is defined by induction on the program struc-
ture, the memory requirement is linear in the depth of the syn-
tax tree (the number of nested conditionals and loops) instead
of being linear in its size. The associated gain in memory is
critical when analyzing large programs with complex abstract
domains.

There are, however, two associated drawbacks. Firstly, un-
like equation-based semantics, we do not have any freedom
in the iteration scheme: it is fixed by the syntax of the pro-
gram. Secondly, it often performs superfluous computations.
For instance, when encountering nested loops, the inner loop
is re-analyzed fully for each iteration of the outer loop, even
if the abstract elements have not changed. By comparison,
an equation solver based on a work-list algorithm would avoid
such computations. These drawbacks can be mitigated: there
is experimental evidence [Bou93] that the iteration order fixed
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cpi

Figure 2.8: Abstraction of a star-shaped concrete element c
in the polyhedra p and interval i domains.

D]i
def
= (V → I) ∪ {⊥]}

where I def
= { [a, b] | a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞}, a ≤ b }

R]1 v
]
i R

]
2 ⇐⇒

{
R]1 = ⊥] or

∀V : R]1(V ) ⊆ R]2(V ) if R]1, R
]
2 6= ⊥]

αi(R)
def
={

⊥] if R = ∅
λV . [min{ρ(V ) | ρ ∈ R}, max{ρ(V ) | ρ ∈ R}] if R 6= ∅

γi(R
])

def
=

{
∅ if R] = ⊥]

{ ρ ∈ E | ∀V : ρ(V ) ∈ R](V ) } if R] 6= ⊥]

Figure 2.9: Interval abstract elements.

by the program syntax is often optimal, and redundant com-
putations can be avoided by caching results, in particular loop
invariants of inner loops, which trades memory for speed.

2.4 Numeric abstractions

In this section, we recall in some details two well-known nu-
meric domains: intervals and polyhedra. They are very classic,
dating from the early days of abstract interpretation. They are
also the foundation upon which we develop new domains in
Chaps. 4 and 5. Additionally, we introduce here floating-point
numbers, that will be considered in those chapters.

Many numeric abstract domains have been proposed in
the literature. We refer the reader to [Min04b, §2.4.5] for an
overview. They vary in their expressiveness as well as their
cost versus precision trade-off. For instance, intervals are very
cheap but not very precise, while polyhedra are more expres-
sive, more precise, and more expensive. Figure 2.8 presents
how intervals and polyhedra over-approximate, more or less
tightly, the same star-shaped concrete domain.

2.4.1 Intervals

The interval abstraction consists in inferring, for each variable,
an upper and a lower bound on its possible values. It was
introduced early by Cousot and Cousot [CC76] and it is still
widely used as it is efficient and yet able to provide valuable
information on program executions. Bound properties are use-
ful, for instance, to prove the absence of arithmetic overflow or
out-of-bound array access.

R]1 ∪
]
i R

]
2

def
=

R]2 if R]1 = ⊥]

R]1 if R]2 = ⊥]

λV . [min(R]1(V ), R]2(V )),

max(R]1(V ), R]2(V ))]

otherwise

R]1 Oi R
]
2

def
=

R]2 if R]1 = ⊥]

R]1 if R]2 = ⊥]

λV .R]1(V ) OR]2(V ) otherwise

where:

[a, b] O [c, d]
def
=

[{
a if a ≤ c
−∞ otherwise

,{
b if b ≥ d
+∞ otherwise

]

Figure 2.10: Interval join and widening operators.

The domain of abstract elements D]i is formally presented
in Fig. 2.9, with its order v]i , its abstraction function αi, and
its concretization γi (which forms a Galois injection). It is
simply a point-wise extension over V of the interval domain
from Ex. 2.2.1 where least elements ⊥], representing empty
intervals, coalesce into a single least element representing the
empty set of environments.

We present in Fig. 2.10 the join abstraction ∪]i , which is
optimal but not exact: joining [1, 2] with [4, 5] yields [1, 5],
which contains spurious values, such as 3. Note that D]i is
actually a complete lattice and ∪]i is its least upper bound.
The interval widening Oi, presented in Fig. 2.10, is similar to
the join (which it over-approximates) but ensures termination
by replacing unstable upper bounds with +∞ and lower bounds
with −∞, so that intervals cannot grow indefinitely.

Finally, we define an abstract assignment operator. As D]i
enjoys a Galois connection, it is possible to define semantically

the best abstraction as S]i JX ← e K def
= αi◦SJX ← e K◦γi. How-

ever, this does not provide an algorithm to compute it. Thus,
we opt for an alternate definition based on abstract expression
evaluation. We modify the concrete semantics of expressions
from Fig. 2.2 so that it takes as argument a map from variables
to intervals and outputs a single interval as well as a set of run-
time errors. Moreover, we replace each concrete operator ◦ or
� on reals with an abstract operator ◦]i or �]i on intervals, and
take care of detecting and propagating divisions by zero. The
corresponding definitions are given in Fig. 2.11.

Remark. The semantics of Fig. 2.2 is sound but not the best
abstraction. The loss of precision comes from handling differ-
ent occurrences of the same variable as distinct variables. For
instance, we have E]i JX −ω X K[X 7→ [−1, 1]] = 〈[−2, 2], ∅〉,
while, in fact, this expression evaluates to 0, which is exactly
representable as an interval.

End of remark.

It is possible to design an abstract filter operator S]i J e ./ 0 K
along the same principles. This is slightly complicated by the
fact that we must evaluate expressions backward, in order to
infer intervals for variables at the leaves of the expression tree
given the interval of the intended result of the whole expres-
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S]i JX ← e K〈R], O〉 def
=

let 〈I, O′〉 = E]i J e KR
] in{

〈⊥], O ∪O′〉 if I = ⊥]

〈R][X 7→ I], O ∪O′〉 if I 6= ⊥]

where :

E]i JX KR] def
= 〈R](X), ∅〉

E]i J [c1, c2] KR] def
= 〈[c1, c2], ∅〉

E]i J ◦ω e KR
] def

= let 〈I, O〉 = E]i J e KR
] in 〈◦]iI, O〉

E]i J e1 �ω e2 KR]
def
=

let 〈I1, O1〉 = E]i J e1 KR] in

let 〈I2, O2〉 = E]i J e2 KR] in

〈I1 �]i I2, O1 ∪O2 ∪ {ω | � = / ∧ 0 ∈ I2 }〉

where :

−]i [a, b]
def
= [−b,−a]

[a, b] +]
i [c, d]

def
= [a+ c, b+ d]

[a, b]−]i [c, d]
def
= [a− d, b− c]

[a, b]×]i [c, d]
def
= [min(ac, bc, ad, bd),max(ac, bc, ad, bd)]

[a, b]/]i [c, d]
def
=

⊥] if c = d = 0
[min(a/c, a/d, b/c, b/d), else if 0 ≤ c
max(a/c, a/d, b/c, b/d)]

[−b,−a]/]i [−d,−c] else if d ≤ 0

([a, b]/]i [c, 0]) ∪]i ([a, b]/]i [0, d]) otherwise

∀R] : ◦]i⊥
] def

= ⊥] �]i R
] def

= R] �]i ⊥
] def

= ⊥]

Figure 2.11: Interval assignment.

sion (i.e., at the root of the expression tree). We do not present
it here; we refer instead the reader to [Min04b] for an exam-
ple algorithm that combines forward and backward abstract
evaluations in a way reminiscent to the HC4-revise algorithm
[BGGP99] used in constraint programming.

Example 2.4.1. On the program example of Fig. 2.5, an anal-
ysis based on the interval domain will be able to prove that
i ≥ 2 at the end of the program, at `9. In this case, we find the
best interval abstraction of the concrete result i = max(2, n).
End of example.

Remark. Our intervals use real bounds, and so, do not directly
provide an effective computer representation nor algorithms. In
practice, we use machine representable bounds, which leads to
a slightly weaker domain. For instance, intervals with rational
bounds of arbitrary precision (augmented with +∞ and −∞)
lack the abstraction function αi.

4 Another solution, discussed
in Sec. 2.4.4, consists in using floating-point bounds, which
leads to an efficient implementation but also to some precision
degradation due to rounding errors.
End of remark.

2.4.2 Polyhedra

The polyhedra domain was introduced by Cousot and Halb-
wachs in [CH78] to infer affine inequalities on program vari-

4Indeed, some subsets of Q have no least upper bound. This is the case

for instance of A
def
= { x ∈ Q | x2 ≤ 2 }, and so αi(A)

def
= [minA,maxA]

is not an interval with rational bounds.

ables.
Polyhedra are much more expressive than intervals; in par-

ticular, they are relational (they can express relationships be-
tween variables). They are also more precise, even in the con-
text of inferring variable bounds, as they can compensate from
a loss of precision in the interval domain due to non-optimal
combinations of operators, the need for relational invariants
locally, or the use of a widening.

Example 2.4.2. In order to infer invariants of a certain form at
the end of a loop, it is often necessary to infer loop invariants
of a strictly more complex form. Consider the simple loop:

while i < 5000 do
i← i+ 1;
if [0, 1] = 0 then x← x+ 1 endif

done

An interval analysis with widening (and a decreasing iteration)
will infer that i = 5000 and x ≥ 0 when the loop terminates,
but it will not find any upper bound on x because it is never
tested explicitly. An analysis with polyhedra will infer that
x ≤ 5000 because it is able to infer the loop invariant x ≤ i,
and the loop exit condition on i will then refine the value of x.

End of example.

Polyhedra are based on the theory of linear algebra. In
the following, we assimilate the set of environments V → R to
a vector space Rn by fixing an order on the set of variables

V def
= {V1, . . . , Vn }. We thus denote an environment ρ ∈ V →

R as a vector ~V
def
= (ρ(V1), . . . , ρ(Vn)).

Double description method

Representation. Semantically, the elements of the polyhe-
dra abstract domain D]p are closed, convex (and possibly un-
bounded) polyhedra of Rn. There exists two convenient syn-
tactic representations for polyhedra:

• as a finite set of affine constraints C = {
∑n
i=1 A1iVi ≤

B1, . . . ,
∑n
i=1 AmiVi ≤ Bm }, which we also denote as

a pair 〈A, ~B〉 composed of a matrix A ∈ Rm×n and a

vector ~B ∈ Rm;

• as a finite set of vector generators: points { ~P1, . . . , ~Pp}
and rays { ~R1, . . . , ~Rr }, which we denote as a pair [P, R]
of matrices P ∈ Rn×p and R ∈ Rn×r.

The concretization of a set of constraints is the set of vectors
satisfying all the constraints, while the concretization of a set of
generators is the sum of a convex combination of its points and
a conical combination of its rays (allowing unbounded polyhe-
dra):

γp(C)
def
= γp(〈A, ~B〉)

def
= { ~V | A× ~V ≤ ~B }

γp([P, R])
def
= { (

∑p
j=1 αj

~Pj) + (
∑r
j=1 βj

~Rj) |
∀j : αj ≥ 0, βj ≥ 0,

∑p
j=1 αj = 1 } .

(2.11)
Note that there is no abstraction function: some vector

sets do not have a best over-approximation as a convex closed
polyhedron (such as the disk X2 + Y 2 ≤ 1 which can be de-
fined as the limit of infinitely many polyhedra, none of which
is optimal). Additionally, syntactic representations are not

14



2.4. NUMERIC ABSTRACTIONS

[P, R] v]p 〈A, ~B〉
def⇐⇒

∀i : A× ~Pi ≤ ~B ∧ ∀i : A× ~Ri ≤ ~0

P ] =]
p Q

] def⇐⇒ P ] v]p Q] ∧Q] v]p P ]

[P1, R1] ∪]p [P2, R2]
def
= [P1 P2, R1 R2]

S]pJ ~A · ~V + b ≤ 0 KC def
= C ∪ { ~A · ~V + b ≤ 0 }

S]pJ ~A · ~V + [b, c] ≤ 0 K def
= S]pJ ~A · ~V + b ≤ 0 K

S]pJ e = 0 K def
= S]pJ e ≤ 0 K ◦ S]pJ − e ≤ 0 K

when e is not affine: S]pJ e ./ 0 K def
= λP ]. P ]

S]pJVi ← [−∞,+∞] K[P, R]
def
= [P, R (~ei) (−~ei)]

S]pJVi ← e K def
=

[Vn+1/Vi] ◦ S]pJVi ← [−∞,+∞] K ◦ S]pJVn+1 − e = 0 K

C1 Op C2
def
=

{ c ∈ C1 | C2 v]p {c} } ∪
{ c2 ∈ C2 | ∃c1 ∈ C1 : C1 =]

p (C1 \ {c1}) ∪ {c2} }

Figure 2.12: Double description polyhedral operators.

unique. For instance, the constraint sets {X − Y ≤ 0, X ≤
0, Y ≤ 0 } and {X − Y ≤ 0, Y ≤ 0 } represent the same
polyhedron: the constraint X ≤ 0 is redundant in the for-
mer polyhedron and can be removed. In order to improve the
efficiency in memory, it is desirable to remove redundant con-
straints. Nevertheless, two minimal constraint sets (i.e., where
no constraint is redundant) can represent the same polyhe-
dron: both {X ≤ 0,−X ≤ 0, Y ≤ 0,−Y ≤ 0 } and {X − Y ≤
0, X + Y ≤ 0,−X ≤ 0 } represent the point (0, 0). The al-
gorithms defined below compute on the syntactic representa-
tion of polyhedra. However, any such algorithm f ] will satisfy
γp(P

]) = γp(Q
]) =⇒ γp(f

](P ])) = γp(f
](Q])); hence, we

argue that they have a semantic meaning at the level of poly-
hedra in D]p, irrespective of the chosen representation.

Polyhedral abstract operators are often much easier to de-
fine on one representation than on the other. Hence, the benefit
of the double description method is to simplify the design of
the domain by reducing its complexity to a single operation:
converting from one representation to the another one when
more convenient. The standard conversion algorithm is due to
Chernikova and later improved by LeVerge [LeV92]. In addi-
tion to converting, it also minimizes the output representation.
Modern versions are highly optimized and quite complex; we do
not discuss them here and refer instead the reader to [LeV92].

Abstract operators. Assuming that both the constraint
and the generator representations are available, we present
the polyhedra abstract operators in Fig. 2.12. The partial or-
der v]p precisely models polyhedra inclusion: P ] v]p Q] ⇐⇒
γp(P

]) ⊆ γp(Q
]). It is thus possible to test for the semantic

equality of syntactic representations, which we denote as =]
p,

by double inclusion with respect to v]p. The polyhedra join ∪]p
joins generators to compute the topological closure of the con-
vex hull of its arguments, which is the smallest convex closed
polyhedron containing both its arguments. An affine inequal-
ity test ~A · ~V +b ≤ 0 is modeled directly by constraint addition,
which is an exact abstraction. Variants, such as ~A·~V +[b, c] ≤ 0

and ~A · ~V + b = 0, can be reduced to the affine inequality case.
A non-deterministic assignment Vi ← [−∞,+∞] is modelled

by adding, as rays, the basis vectors ~ei and −~ei corresponding
to the variable Vi and its opposite. Assignments Vi ← e are
handled in three steps: firstly, a fresh variable Vn+1 is used
to hold the value of the expression e, then the “old” value
of Vi is forgotten by a non-deterministic assignment and, fi-
nally, the new variable Vn+1 is renamed into Vi by substitution
in the constraint set, which is denoted as [Vn+1/Vi].

5 This
three-step operation is required in case Vi appears also in the
assigned expression. When e is affine, all three operations are
exact, so the affine assignment is also exact. Abstracting pre-
cisely non-affine assignments and tests is more challenging. In
Fig. 2.12, we choose to model non-affine tests as the identity
and, as a consequence, non-affine assignments reduce to the
non-deterministic assignment Vi ← [−∞,+∞], which is sound
but not very precise. An alternate solution would be to use
the interval domain locally, by converting the polyhedron to
its bounding-box, applying the interval operation, and incor-
porating the range of the result into the original polyhedron.
Another solution is to abstract expressions themselves, as we
will discuss in Sec. 2.4.3. Finally, a simple solution to com-
pute errors E]ΩJ e K in expressions is to also rely on the interval
domain, applied on the bounding box of the polyhedron.

The final operator, widening C1 O C2, is defined intuitively
by removing the constraints in C1 that are not satisfied by C2.
There are, however, two subtle issues [BHRZ05]. Firstly, in
order to terminate, the arguments must not contain redundant
constraints. Secondly, in order to be independent from the
choice of constraint representation, we must add constraints
from C2 that are redundant with a constraint from C1, i.e., any
c2 ∈ C2 such that ∃c1 ∈ C1 : C1 =]

p (C1 \ {c1}) ∪ {c2}.

Remark. As for intervals, implementations of polyhedra do not
use reals but computer-representable numbers. Traditionally,
exact rational arithmetic (requiring arbitrary precision num-
bers) is used. Achieving soundness with inexact data-types,
such as floating-point numbers is not straightforward; this is
one of our contribution, discussed in Chap. 4.

End of remark.

Constraint-only method

A drawback of polyhedra is that their representation is un-
bounded: one can construct (minimal) polyhedra consisting of
arbitrary many constraints or generators. This is exacerbated
by the fact that one representation can be exponentially larger
than another. In particular, a simple box ∧i ai ≤ Vi ≤ bi, ex-
pressed as only 2|V| constraints, requires 2|V| generators (one
for each corner of the box). To avoid such pathological cases,
Simon and King [SK05] suggest abandoning the double descrip-
tion method and construct a polyhedra domain using solely
constraints. In order to remove the need for generators, it is
sufficient to provide a way to perform the following four oper-
ators using constraints only:

1. compute v]p;
2. remove redundant constraints;
3. compute S]pJVi ← [−∞,+∞] K;
4. compute ∪]p.

The first two steps can be achieved using linear programming,
and the last two using projection.

5After the non-deterministic assignment, Vi should not occur in the
constraint set, so that all the occurrences of Vi in the result only come
from that of Vn+1.
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Linear programming. Given a polyhedron C in constraint
form and a vector ~A ∈ Rn, the linear programming problem
LP(C, ~V ) consists in computing the minimum of ~A · ~V when ~V
ranges in the polyhedron:

LP(C, ~A)
def
= min { ~A · ~V | ~V ∈ γp(C) } . (2.12)

Efficient algorithms, such as the Simplex algorithm, exist to
compute LP ; we refer the reader to [Sch86] for more informa-
tion on the algorithmic aspect. Linear programming can be
used to model constraint entailment, and so, to compute v]p:

C v]p { ~A · ~V ≤ b } ⇐⇒ LP(C,− ~A) + b ≥ 0

C1 v]p C2
def⇐⇒ ∀c ∈ C2 : C1 v]p {c} .

(2.13)

A constraint c = ( ~A · ~V ≤ b) ∈ C is redundant if and

only if C \ {c} v]p {c}, i.e. if LP(C \ {c},− ~A) + b ≥ 0. A
simple algorithm to minimize constraint sets is to remove re-
dundant constraints one by one until no more can be removed6

([SK05] proposes several efficiency improvements, such as test-
ing for syntactic redundancy and testing against a bounding
box, which are fast operations, before executing a linear pro-
graming check, which is slower; we also refer the reader to
[HLL92, Imb93] on related optimizations).

Projection. Forgetting the value of a variable Vi can be
achieved by eliminating all the occurrences of Vi in the con-
straint set C, i.e., it is a projection. Note, however, that adding
to C any conical combination (i.e., with positive coefficients) of
constraints from C does not change its concretization, and it is
possible to find combinations where Vi does not occur although
Vi occurs in the constraints that are combined. To avoid los-
ing any information not related to Vi in the forget operation,
we need to take such constraints into account. This leads to
Fourier–Motzkin’s elimination algorithm, which combines pairs
of constraints where the coefficients of Vi have opposite signs,
in order to eliminate Vi, and keeps constraints with a null co-
efficient for Vi:

FM (C, Vi)
def
=

{ ( ~A · ~V ≤ b) ∈ C | Ai = 0 } ∪
{A+

i c
− −A−i c

+ | c+ = ( ~A+ · ~V ≤ b+) ∈ C,
c− = ( ~A− · ~V ≤ b−) ∈ C, A+

i > 0, A−i < 0 } .
(2.14)

This is actually an exact abstraction of SJVi ← [−∞,+∞] K.

Join. Benoy et al. proved in [BKM05] that computing the
join ∪]p can be reduced to the projection. Given two polyhedra

〈A1, ~B1〉 and 〈A2, ~B2〉, a first step is to construct a polyhedron
on the extended variable set {Vi, V 1

i , V
2
i | Vi ∈ V } ∪ {σ1, σ2 }

combining all these constraints as follows:

C def
= { ~V = ~V 1 + ~V 2, σ1 + σ2 = 1, σ1 ≥ 0, σ2 ≥ 0,

A1
~V 1 ≤ ~B1σ1, A2

~V 2 ≤ ~B2σ2 } .
(2.15)

It expresses that ~V should be a convex combination, with co-
efficients σ1 and σ2, of a point 1

σ1
~V 1 in the first polyhedron

and a point 1
σ2

~V 2 in the second polyhedron. The second step

is to eliminate all the variables except ~V using FM . As for

6It is not possible to remove all the redundant constraints at once
because there can exist pairs of mutually redundant constraints; in that
case, we should avoid removing both.

redundancy removal, several techniques can be applied to im-
prove the efficiency of the join operator, for instance avoiding
the generation of constraints that are known to be redundant.
We refer the reader to [SK05] for an in-depth presentation of
the constraint-only domain and its various optimizations.

2.4.3 Linearization

The construction of abstract assignments and tests on non-
relational domains, such as the interval domain (Fig. 2.11), is
based on generic algorithms parametrized by abstractions of
the operators used in expressions; as a consequence, these do-
mains can handle expressions of any shape. This is not the
case for relational domains. There, the shape of tests and as-
signments is tightly tied to the properties exactly representable
in the domain: as polyhedra can only represent affine inequal-
ities, the polyhedra domain naturally abstracts affine assign-
ments and tests, and reverts to coarse fall-back operators (re-
spectively the forget and the identity operators) in other cases.
To go further, we proposed in [Min04b] a notion of expression
abstraction, whose main application is to transform non-affine
expressions into affine (or near affine) ones. We recall this tech-
nique as it will be useful to handle floating-point expressions
in Sec. 2.4.4 and Chap. 4.

The core idea is to put expressions into affine form where
constant coefficients are replaced with intervals, which we call
interval affine forms:

e ::= [a0, b0] +

n∑
k=1

[ak, bk]Vk .

Our goal here is to benefit both from the algebraic properties
of affine forms and from the abstracting power of intervals.

Affine form algebra. We define the addition � and sub-
traction � of two affine forms, and the multiplication � and
division � of an affine form by an interval as follows, using
interval arithmetic operators from Fig. 2.11:

([a0, b0] +
∑
k[ak, bk]Vk)� ([a′0, b

′
0] +

∑
k[a′k, b

′
k]Vk)

def
=

([a0, b0] +]
i [a′0, b

′
0]) +

∑
k([ak, bk] +]

i [a′k, b
′
k])Vk

([a0, b0] +
∑
k[ak, bk]Vk)� ([a′0, b

′
0] +

∑
k[a′k, b

′
k]Vk)

def
=

([a0, b0]−]i [a′0, b
′
0]) +

∑
k([ak, bk]−]i [a′k, b

′
k])Vk

([a0, b0] +
∑
k[ak, bk]Vk)� [a′, b′]

def
=

([a0, b0]×]i [a′, b′]) +
∑
k([ak, bk]×]i [a′, b′])Vk

([a0, b0] +
∑
k[ak, bk]Vk) � [a′, b′]

def
=

([a0, b0]/]i [a
′, b′]) +

∑
k([ak, bk]/]i [a

′, b′])Vk .
(2.16)

Expression abstraction. We say that e′ abstracts e in an
environment set R ⊆ E , which we denote as e vR e′, if ∀ρ ∈
R : EJ e Kρ v EJ e′ Kρ, i.e., e′ evaluates to more values and er-
rors. When e vR e′, then SJX ← e KR and SJ e ./ 0 KR can be
safely replaced with SJX ← e′ KR and SJ e′ ./ 0 KR. As a con-
sequence, in the abstract, when e vγ(R]) e

′, we can safely ab-

stract SJX ← e Kγ(R]) and SJ e ./ 0 Kγ(R]) as S]JX ← e′ KR]

and S]J e′ ./ 0 KR] respectively. This is especially interesting
when e′ is easier to abstract than e in our abstract domain.

We now show how to abstract an arbitrary expression e into
an affine form, which we call linearization and denote by lin(e).
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lin(V )
def
= V

lin([c1, c2])
def
= [c1, c2]

lin(−ωe)
def
= � lin(e)

lin(e1 +ω e2)
def
= lin(e1)� lin(e2)

lin(e1 −ω e2)
def
= lin(e1)� lin(e2)

lin(e1 ×ω e2)
def
=

{
lin(e1)� eval(lin(e2))) or
lin(e2)� eval(lin(e1)))

lin(e1/ωe2)
def
= lin(e1) � eval(lin(e2))

where:

eval([a0, b0] +
∑
k[ak, bk]Vk)

def
=

[a0, b0] +]
i

∑]
i
n
k=1[ak, bk]×]i I

](Vk)

Figure 2.13: Expression linearization.

We suppose that we can extract from the abstract element R]

a map I] ∈ V → I associating to each variable its bounds. We
then define lin(e) by induction on the syntax of the expression
e as presented in Fig. 2.13. We have the following property:
e vγi(I]) lin(e). Note that lin tries to keep expressions sym-
bolic as much as possible, but resorts to abstracting affine forms
into intervals (through eval) when non-linear constructions are
encountered (such as divisions and multiplications). This ab-
straction is the reason why the transformation is parametrized
by variable bounds I] and it is sound only for abstract elements
respecting these bounds.

Applications. We can feed an interval affine form directly
to the interval domain, where it may provide an increase of
precision thanks to the symbolic simplification performed by
lin (e.g., lin(X −ω X) = 0). To further simplify the affine form
l output by lin, it is possible to ensure that the coefficients of
all the variables are scalar, by distributing their contribution
over the constant coefficient which is allowed to be an interval;
we note the result slin(l):

slin([a0, b0] +
∑
k[ak, bk]Vk)

def
=∑

k
ak+bk

2
Vk +

(
[a0, b0] +]

i

∑]
i k[ak−bk

2
, bk−ak

2
]×]i I

](Vk)
)
.

(2.17)
The resulting interval affine form can be fed to the polyhedra
domain, thus achieving a sound abstraction of assignments and
tests for arbitrary expressions. We have chosen here to replace
each interval with its midpoint, but other choices are equally
possible (such as rounding to a set of predefined thresholds).

2.4.4 Floating-point numbers

Computers cannot manipulate real numbers, which are un-
countable: they use finite approximations instead. A popular
approximation is floating-point numbers (or floats) which can
represent a wide range of values using a mantissa and an ex-
ponent of fixed bit-size. The large majority of programming
languages and compilers now support the IEEE 754 floating-
point standard [IEE85]; it is also widely supported natively in
modern processors, making float computations very efficient.
The algebra of floats differs significantly enough from the real
one that an analysis assuming one semantics is not sound with
respect to the other. A static analysis should support floats for
two reasons: firstly, to analyze soundly programs manipulating
floats and, secondly, to benefit from the efficiency of hardware

float operations in order to improve the analysis time. The first
aspect concerns the concrete semantics, while the second aspect
concerns the implementation of abstract domains. They can be
combined to construct a float analyzer for float programs.

We briefly recall some existing works on these two topics.
We limit ourselves here to a real-based semantics of floats (a
more precise semantics based on a bit-level representation of
floats will be presented in Sec. 5.3). Moreover, we restrict the
use of floats in implementations to intervals (float implemen-
tations of polyhedra will be considered in Sec. 4.1).

Floating-point arithmetic. Due to the limited precision of
floats, not all reals can be represented as floats; we assimilate
the set of floats F to a finite subset of reals R. We denote as
R+∞ ∈ R → F the operation rounding a real up to a repre-
sentable float, i.e.:

R+∞(x)
def
= min { y ∈ F | x ≤ y } . (2.18)

Likewise R−∞ denotes rounding down, so that R−∞(x)
def
= −

R+∞(−x). Float implementations support alternate rounding
modes, such as rounding to nearest or towards 0 but, for our
purpose, it is sufficient to note that all implemented rounding
functions Rr obey the relation:

∀x : R−∞(x) ≤ Rr(x) ≤ R+∞(x) . (2.19)

Arithmetic operators require some form of rounding as the real
result is generally not representable in F. We use circled op-
erators ⊕r, 	r, ⊗r, �r, tagged with a rounding direction r,
to distinguish them from the operators on reals +, −, ×, /.
Following the IEEE 754 standard, a floating-point operation
with rounding mode r should be equivalent to computing the
exact real result followed by rounding, i.e.:

∀a, b,∈ F : ∀· ∈ {+,−,×, / } : a�r b
def
= Rr(a · b) . (2.20)

Such operations are not always defined: / can result in a divi-
sion by zero, and any operation can output a real result that
cannot be rounded with Rr as it overflows F. In this section,
we consider such cases to be run-time errors.7 To construct
a concrete semantics of programs manipulating floating-point
numbers, it is sufficient to replace +, −, ×, and / with ⊕r, 	r,
⊗r, and �r in EJ e1 �ω e2 K in Fig. 2.2. As neither the negation
nor the comparisons of floats incur any rounding, there is no
need to change the semantics of −ωe nor e ./ 0.

Floating-point intervals. It is straightforward to adapt the
interval domain (Sec. 2.4.1) to use float bounds instead of real
ones. As F is bounded (unlike R), there is no need for infinite
interval bounds, and so, we use bounds in F instead of R ∪
{+∞,−∞}. Thanks to (2.19), sound operators can be derived
by always rounding upper bounds up and lower bounds down.
For instance, the operator +]

i in Fig. 2.11 is replaced with ⊕]i
defined as:

[a, b]⊕]i [c, d]
def
= [a⊕−∞ c, b⊕+∞ d] (2.21)

and similarly for 	]i , ⊗
]
i , �

]
i . The result is an abstract static

analysis implemented purely in floats, and that can soundly
analyze programs manipulating floats.

7The IEEE 754 standard makes provision for special numbers, such as
+∞, −∞, and NaN , which can be returned in these cases. Our simplified
semantics assumes instead that the creation of a special number is an
error, which is often what is intended by the programmer.
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Floating-point linearization. Adapting the polyhedra do-
main (Sec. 2.4.2) from abstracting real-valued variables and
expressions to abstracting float-valued ones is not much more
complicated, as long as we keep representing polyhedra us-
ing arbitrary precision rationals and implementing the algo-
rithms with exact arithmetic (replacing them with floats is
much harder and will be discussed in Sec. 4.1). We proposed
in [Min04a] to reuse the linearization and abstract the (highly
non-linear) rounding function Rr as a non-deterministic choice
in an error interval. For instance, assuming 32-bit single preci-
sion numbers, the rounding error can be bounded by |R(x) −
x| ≤ max(2−23|x|, 2−159), denoting either a relative rounding
error of magnitude 2−23, or an absolute error of magnitude
2−159 (caused by computations on denormals, i.e., numbers
close to zero). Given that the relative rounding error on an
affine form l can be also expressed as an affine form ε(l):

ε([a0, b0] +
∑
k[ak, bk]Vk)

def
=

2−23(max(|a0|, |b0|)[−1, 1]+∑
k max(|ak|, |bk|)[−1, 1]Vk)

(2.22)

the linearization algorithm from Fig. 2.13 can be easily modi-
fied to add rounding errors after each operation. For instance,
we get:

lin(V )
def
= V

lin(	r,ωe)
def
= � lin(e)

lin(e1 ⊕r,ω e2)
def
=

lin(e1)� lin(e2)� ε(lin(e1)� lin(e2))� [−2−159, 2159]

lin(e1 ⊗r,ω e2)
def
=

eval(lin(e1))� (lin(e2)� ε(lin(e2)))� [−2−159, 2159] .

When evaluated with a real semantics, the affine form returned
by lin(e) safely over-approximates the set of values computed
by EJ e K with a float semantics. Hence, lin(e) or slin(lin(e)) can
be directly fed to a domain, such as polyhedra, that reasons on
reals.

2.5 Conclusion

In this chapter, we have recalled well-known notions of ab-
stract interpretation and used them to construct a classic static
analysis parametrized by a numeric abstract domain, of which
we gave two examples. Our work, detailed in the following
chapters, extends these results in several directions. More
precisely, we will discuss: a generic extension to concurrency
(Chap. 3), a specific extension to data-structures in the C lan-
guage (Chap. 5), extended polyhedral domains (Chap. 4), and
actual implementations and experimental results (Chap. 6).
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Chapter 3

Analysis of concurrent programs

My main current research topic is the analysis of concurrent
programs by abstract interpretation. This chapter presents the
theoretical foundations of a practical analysis of concurrent
programs to infer invariants and report soundly all run-time
errors. As concurrent programming models are diverse and
exhibit widely different semantics, we narrow our focus to a
simple model using a fixed set of threads that communicate
implicitly in a shared memory. This model is far from the
only one, but it is realistic and fits very well an important
application domain for program verification: embedded critical
software. As in Sec. 2.3, we work on a simple artificial language
in order to present our construction fully formally and focus
on concurrency only, being understood that the method can be
applied in real-life contexts (as reported in Sec. 6.3).

Our threaded language is presented in Sec. 3.1. It is ex-
tended in Sec. 3.4 to support explicit synchronization mecha-
nisms: mutual exclusion locks, as well as priority-based real-
time scheduling which is pervasive in the realm of embedded
software.

A first attempt at providing a semantics and deriving a
static analysis for our language is also described in Sec. 3.1.
It follows the same principles as in Chap. 2, using transition
systems, trace semantics, and state abstractions. We show,
however, that this straightforward adaptation of sequential se-
mantics to concurrent semantics comes at great cost in effi-
ciency. Although we can abstract environments, we suffer, on
the control state, from the combinatorial state explosion prob-
lem that plagues enumeration methods (such as explicit-state
model checking). Thus, we propose an abstraction that limits
the control state by reducing the analysis of a concurrent pro-
gram to the analysis of its individual threads, complemented
with a notion of interferences that model thread interactions.
We take our inspiration from a thread-modular proof method,
so-called rely-guarantee, introduced by Jones [Jon81]. We first
formalize rely-guarantee as abstract interpretation, in Sec. 3.2,
before applying abstractions to construct a static analysis in
big-step form, in Sec. 3.3. As the sequential static analysis
from Sec. 2.3, this analysis is parametrized by a choice of nu-
meric abstract domains. In fact, we show that the concurrent
analysis can be constructed from a sequential one with only
minor changes.

As last extension, in Sec. 3.5, we study the effect of weakly
consistent memory models on the soundness of our analysis.
Such models are now accepted as realistic semantics of modern
processors and are being included in the specification of most
programming languages.

The work presented in this chapter has been published in
more details in [BCC+10a, Min11, Min12d, Min12c]. In partic-

ular, we refer the reader to [Min12d, Min12c] for the proof of
the theorems (which are omitted here). The analysis described
here has been implemented within the AstréeA analyzer. We
delay the discussion of the implementation and the experimen-
tal results to Chap. 6.

3.1 Concurrent language

We consider here a simple multi-thread extension of our lan-
guage from Sec. 2.3.1. We presents its syntax, its semantics,
and its abstraction into a static analyzer.

3.1.1 Syntax

The syntax of Fig. 2.1 is modified in a single but meaning-
ful way: instead of being composed of a single statement,
programs are now parallel compositions of several statements,
called threads:

prog ::= `e1 stat1
`x1 || · · · || `eN statN

`xN . (3.1)

We identify threads by numbers and denote the set of all iden-

tifiers as T def
= { 1, . . . , N }. Note that the parallel operator ||

can only appear at the top level, not inside statements, prevent-
ing the dynamic creation of threads. We assume here a fixed
finite number N of threads, but Sec. 3.2.4 shows that some of
our results can be adapted to the case where threads have an
unbounded number of concurrent instances. Furthermore, we
do not consider any concurrency-specific statement to control
the scheduling or implement synchronization yet; they will be
added in Sec. 3.4.

3.1.2 Semantics

Our goal is to design a static analysis for our concurrent lan-
guage. We start by applying the method from Sec. 2.3 which
was successful on sequential programs: we define a small-step
concrete semantics as a transition system, derive concrete trace
and state semantics making program properties apparent, and
finally abstract them into an approximated but computable
semantics.

We will see, however, that constructing a static analysis by
abstracting the state semantics does not give acceptable per-
formances. We will solve this problem in Sec. 3.2 by returning
to the trace semantics, and abstracting it in another way.

Transition system

The transition system (Σ,A, I, τ) modeling our program is de-
fined as follows:
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− As state space, we use Σ
def
= ((T → L) × E) ∪ Ω. The

program can be in a state 〈`, ρ〉 ∈ (T → L)×E , where each
thread t ∈ T has its own control location `(t) ∈ L and the
environment ρ ∈ E is shared. Alternatively, it can be in an
error state ω ∈ Ω.

− All the threads start at their first location and all the vari-
ables are initialized to 0: I

def
= { 〈λt. `et, λV . 0〉 }.

− The actions are the thread identifiers: A def
= T .

− The transition relation τ of the whole program is derived
from the transition relation of its individual threads, each
thread being seen as a sequential process. Given, for each
thread t ∈ T , the relation τ

[
`et statt

`xt
]

defined by Fig. 2.3,
we define τ as:

〈`, ρ〉 t→τ 〈`′, ρ′〉
def⇐⇒

〈`(t), ρ〉 →
τ[`et statt

`xt ]
〈`′(t), ρ′〉∧

∀t′ 6= t : `(t′) = `′(t′) .

(3.2)

This states that an execution step of the program is an exe-
cution step of any single thread t, which updates its control
state `(t) and the global memory ρ according to the se-
quential semantics, but leaves the control location of other
threads `(t′), t′ 6= t intact.

We note that the transition system of the program is much
larger than that of its individual threads: the control part of
Σ has a larger size (T → L instead of L), while any single
transition in a thread yields |L|N−1 transitions in τ as it is
duplicated for each possible control state of the other threads.

3.1.3 Trace and state semantics

The benefit of modeling concurrent programs as transition sys-
tems is that the trace and state semantics from Sec. 2.3.3 can
be directly applied.

Maximal trace semantics. Recall that the maximal trace
semantics M from (2.3) is the set of maximal finite or infinite
traces in Tr ∞(Σ,A) starting in an initial state and obeying τ .
It models effectively a program execution as the arbitrary inter-
leaving of thread executions, where each assignment X ← e or
test e ./ 0 denotes an atomic operation. In particular, a thread
cannot be preempted during the evaluation of an expression
(this limitation will be addressed in Sec. 3.5). This simple and
natural model of concurrent executions corresponds to sequen-
tial consistency, as coined by Lamport [Lam79] (Sec. 3.5 will
also consider more complex execution models). Additionally,
the trace semantics keeps track of which thread performs any
given transition, using actions.

As stated before on sequential programs, the maximal trace
semantics is very expressive: M captures much program infor-
mation, and many properties can be expressed as a set of max-
imal traces P and simply checked by testing whether M⊆ P .
Examples include: termination (M ⊆ Tr ∗(Σ,A)) and invari-
ance (M ⊆ Tr ∞(S,A) for some S ⊆ Σ). On concurrent pro-
grams, it additionally allows proving properties under fairness
conditions. Fairness [Fra86] ensures that no thread is denied
to run; it is a property enforced by many schedulers. Formally,
we define the notion of a thread t enabled in a state σ as its
ability to make a transition:

enblτ (σ, t)
def
= ∃σ′ ∈ Σ : σ

t→τ σ
′ . (3.3)

An infinite trace σ0
a0→ σ1

a1→ σ2 · · · is weakly fair for τ if no
thread can be continuously enabled without running infinitely
often:

∀t ∈ T : (∃i : ∀j ≥ i : enblτ (σj , t)) =⇒
(∀i : ∃j ≥ i : aj = t)

while it is strongly fair if no thread can be infinitely often en-
abled (possibly intermittently) without running infinitely of-
ten:

∀t ∈ T : (∀i : ∃j ≥ i : enblτ (σj , t)) =⇒
(∀i : ∃j ≥ i : aj = t) .

Given the set Fair of (weakly or strongly) fair infinite traces
for τ and of finite traces, a proof of a property P under fairness
reduces to checking that M∩Fair ⊆ P .

Example 3.1.1. Consider the program :

prog
def
= while X ≥ 0 do X ← X + 1 done || X ← −1 .

Then, M contains an infinite trace where the second thread
never runs. Thus, without any fairness condition, M does not
always terminate: M 6⊆ Tr ∗(Σ,A). However, unless it makes
a transition, the second thread is always enabled; hence this
infinite trace is neither strongly nor weakly fair. Moreover, it
is sufficient that the second thread makes a transition for the
program to terminate. Thus, under both fairness conditions,
prog always terminates: M∩Fair ⊆ Tr ∗(Σ,A).
End of example.

Partial trace semantics. Recall that the partial trace se-
mantics F (2.4) is the set of finite prefixes of the maximal trace
semantics M. It is an abstraction F = αpref (M) (2.5) of the
maximal trace semantics. It is more convenient to compute as
it dispenses with infinite traces and it admits a characteriza-
tion as the least fixpoint of a forward operator F (2.6), but it
looses some information.

We showed in Ex. 2.3.2 that the abstraction αpref makes it
impossible to prove the termination of programs with computa-
tions of finite but unbounded length. On concurrent programs,
it also makes proofs under fairness conditions impossible.

Example 3.1.2. Consider again the program from Ex. 3.1.1. We
have αpref (M∩Fair) = αpref (M). Indeed, M∩Fair removes
a single infinite trace fromM, the one where the second thread
never runs, but it does not remove any strict partial trace: the
prefix of length n of the infinite trace is also the prefix of a
finite trace in M (for instance a prefix of the trace where the
second thread runs only at the n+ 1-th step).
End of example.

Reachable state semantics. As for sequential programs,
we are interested in inferring reachability to prove invariant
properties. Liveness properties [LS85] (such as termination)
and proofs under fairness assumptions [Fra86] are thus out of
the scope of our work. We would like to consider them in future
work and, for now, we refer the reader to Radhia Cousot’s
work for a discussion on these topics [Cou85]. As we focus on
invariance, it is natural to further abstract the partial traces
to only compute the reachable state semantics R = αreach(F)
(2.7), which forgets the ordering of states. It can be expressed
as a fixpoint R = lfpR where the definition of R, introduced
in (2.8), is recalled below:

R
def
= λS. I ∪ {σ | ∃a ∈ A, σ′ ∈ S : σ′

a→τ σ } .
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On concurrent programs, this abstraction also forgets about
actions, and so, about thread identities. This suggests that
we can remove actions from the original transition system to
get a semantics which is more similar to that of a sequential
program, and derive equation-based or big-step semantics that
are convenient to turn into static analyzers. This is what we
attempt in the following two sections.

3.1.4 Equational semantics

Following Sec. 2.3.4, we construct an equational version of the
concrete state semantics by partitioning states by control lo-
cations ` (ignoring error states): we assign a variable X` with
value in the powerset of memory states P(E) to each location
`, and generate equations by induction on the syntax of pro-
grams. However, a control location ` is no longer a single,
global syntactic point, but rather a per-thread syntactic point:
` ∈ T → L. To derive the equations, we consider the equations
of each thread eq

[
`et statt

`xt
]

seen as a sequential process, as
defined Fig. 2.4, and join them in a way similar to the way τ
is derived from τ

[
`et statt

`xt
]

in (3.2). More precisely, the set
eq of equations is:

eq
def
= {X`0 =

⋃
t∈T {F (X`1 , . . . ,X`n) |

∃(X`′ = F (X`′1 , . . . ,X`′n)) ∈ eq
[
`et statt

`xt
]

:

∀i ≤ n : `i(t) = `′i ∧ ∀t′ 6= t : `i(t
′) = `0(t′) } |

`0 ∈ T → L} .
(3.4)

Intuitively, for each concurrent control location `0 ∈ T → L,
we are joining equations from any thread t where the left-hand
side X`′ matches `0(t).

Given the concrete equation system, an effective analysis
can be constructed by replacing computations on the concrete
environment domain P(E) with computations on an abstract
one E] and inserting widening points where needed, in a man-
ner similar to Sec. 2.3.6. However, a major issue is that the ob-
tained system is much larger than that of its individual threads.
There are |L|N variables instead of |L|, and a single equation
from a thread is repeated |L|N−1 times in the system. This
blow-up is illustrated by the following example:

Example 3.1.3. Figure 3.1.(a) presents the parallel composition
of two simple threads: t1 increments X until it reaches Y , while
t2 concurrently increments Y until it reaches 10. Figure 3.1.(b)
presents the equation system derived from Fig. 2.4 and (3.4).
We do not expect the reader to read this system, but simply to
appreciate its size and complexity, compared to the simplicity
of the program (in fact, we even simplified the system for the
sake of presentation by omitting some control locations and
factoring some variables).
End of example.

Although this method is used in academic demonstration
tools (such as Jeannet’s ConcurInterproc [Jea11], an extension
of the Interproc academic analyzer [LAJ11] to concurrent pro-
grams), it cannot scale up to realistic programs.

3.1.5 Big-step semantics

In order to stop the proliferation of equation variables, we turn
towards big-step semantics, which make a parsimonious use of
abstract elements (Sec. 2.3.5). The main issue to solve is the
lack of syntactic structure to iterate on: there is no convenient
inductive definition of the interleaving of threads as these in-
terleavings are combinatorial in nature.

In [Mon07], Monniaux proposes a solution adapted to two
threads, for the specific problem of analyzing a USB device
driver running concurrently with an intelligent controller (mod-
elled as a C program). The principle is to perform a big-step
abstract interpretation by induction on the syntax of the device
driver but, at each instruction, run an abstract interpretation
of the complete model of the controller. The soundness of the
approach relies on the fact that the controller is modeled as a
non-deterministic choice of atomic actions in an infinite loop.
Despite some optimizations (such as only running the abstract
controller when the device reads or modifies a shared variable),
the analysis for two threads is already quadratic in the size of
the program as each instruction from the second thread is re-
analyzed when analyzing (almost) each instruction of the first
one. Thus, the soundness conditions and the scalability of this
method are not adapted to more complex and general concur-
rent programs.

Summary. Following our failed attempts, we are now ready
to state the desirable properties that a concurrent program
analysis should possess:

1. keep information attached to syntactic program locations
in L (and not to control states in T → L);

2. avoid re-analyzing each thread instruction for each con-
figuration of the other threads;

3. be defined by induction on the syntax of threads (big-step
semantics);

4. abstract control-flow information (with controllable cost
versus precision trade-off, if possible);

5. reuse existing abstractions and abstract domains.

The equation-based analysis presented above only achieves
5, while [Mon07] additionally achieves 1 and 3 in limited cir-
cumstances. Ideally, we would like the analysis of a concurrent
program to be reduced to the independent analysis of each
thread. Completely ignoring thread interactions is of course
not sound. Nevertheless, the following sections show that we
can construct a sound thread-modular analysis that almost re-
duces to independent thread analyses.

3.2 Rely-guarantee reasoning as abstract in-
terpretation

In order to reach our goal, we take a detour through program
proof methods, which already feature thread-modular methods.
It will then only be a matter of formalizing them as abstract
interpretation, expressing them in constructive (fixpoint) form,
and applying abstractions.

3.2.1 Proof methods

Proof methods for sequential programs date back to the work
of Floyd and Hoare [Flo67, Hoa69]. They consist in annotat-
ing program statements stat with preconditions {P} and post-
conditions {Q}, that are logical assertions on the state of the
program. A triple {P} stat {Q} means that, if stat is executed
in a program state satisfying {P}, then the output state sat-
isfies {Q}. Hoare [Hoa69] proposed a set of axioms and rules
that can be used to derive valid triples. These rules (which
are well known and not repeated here) deduce a triple on a
statement based on triples on its components, so that a proof
tree naturally follows the syntactic structure of the program.
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t1

while `10 = 0 do
`2if X < Y then
`3X ← X + 1

endif

t2

while `40 = 0 do
`5if Y < 10 then
`6Y ← Y + 1

endif

(a)

X`1,`4 = I ∪ SEJX ← X + 1 KX`3,`4 ∪ SEJX ≥ Y KX`2,`4 ∪ SEJY ← Y + 1 KX`1,`6 ∪ SEJY ≥ 10 KX`1,`5
X`2,`4 = X`1,`4 ∪ SEJY ← Y + 1 KX`2,`6 ∪ SEJY ≥ 10 KX`2,`5
X`3,`4 = SEJX < Y KX`2,`4 ∪ SEJY ← Y + 1 KX`3,`6 ∪ SEJY ≥ 10 KX`3,`5
X`1,`5 = SEJX ← X + 1 KX`3,`5 ∪ SEJX ≥ Y KX`2,`5 ∪ X`1,`4
X`2,`5 = X`1,`5 ∪ X`2,`4
X`3,`5 = SEJX < Y KX`2,`5 ∪ X`3,`4
X`1,`6 = SEJX ← X + 1 KX`3,`6 ∪ SEJX ≥ Y KX`2,`6 ∪ SEJY < 10 KX`1,`5
X`2,`6 = X`1,`6 ∪ SEJY < 10 KX`2,`5
X`3,`6 = SEJX < Y KX`2,`6 ∪ SEJY < 10 KX`3,`5

(b)

Figure 3.1: A concurrent program example (a) and its (simplified) equational semantics (b).

Owickie–Gries–Lamport. On concurrent programs, proof
methods were pioneered by Owicki, Gries, and Lamport [OG76,
Lam77, Lam80]. The core idea is to add to Hoare’s rules a new
rule for the parallel operator:

{P1} s1 {Q1} {P2 } s2 {Q2}
{P1 ∧ P2} s1 || s2 {Q1 ∧Q2}

.

This realizes two of our goals: assertions are attached to pro-
gram locations and the proof reflects the structure of the pro-
gram. However, this rule has an important restriction: it can
only be applied if the proofs of {P1} s1 {Q1} and {P2} s2 {Q2}
do not interfere. Checking interference freedom requires prov-
ing that each assertion appearing in one of the proofs is in-
variant by the statements of the other threads: for instance, if
the assertion Φ appears in the first proof tree, and the triple
{P ′2} s′2 {Q′2} appears in the second one, we must additionally
prove that {Φ ∧ P ′2} s′2 {Φ}. Hence, the proof checking is not
thread-modular. We cannot hope to design a modular infer-
ence scheme on such bases.

Rely-Guarantee. Jones introduced rely-guarantee methods
in [Jon81] as a way to address the modularity issues of Owicki–
Gries–Lamport proof methods. In Jones’ method, thread in-
terferences are explicitly provided as part of the annotation, in-
stead of being checked implicitly in the proof checking. Hoare
triples {P} stat {Q} are replaced with quintuples:

R,G ` {P} stat {Q} (3.5)

where P and Q are, as before, assertions on program states,
while R (Rely) and G (Guarantee) are assertions on program
transitions. Quintuples have the following intuitive semantics:
if P holds before stat is executed and the effect of all other
threads is included in R, then Q is true after stat has been
executed and its effect is included in G. The rule for parallel
composition then becomes, without side-condition:

R ∪G2, G1 ` {P1} s1 {Q1} R ∪G1, G2 ` {P2} s2 {Q2}
R,G1 ∪G2 ` {P1 ∧ P2} s1 || s2 {Q1 ∧Q2}

.

checking t1 :
t1

while `10 = 0 do
`2if X < Y then
`3X ← X + 1

endif

R1 = G2

X is unchanged

Y is incremented
Y ≤ 10

checking t2 :

R2 = G1

Y is unchanged

t2

while `40 = 0 do
`5if Y < 10 then
`6Y ← Y + 1

endif

`1 : 0 ≤ X ≤ Y ≤ 10
`2 : 0 ≤ X ≤ Y ≤ 10
`3 : 0 ≤ X ≤ Y − 1 ≤ 10

`4 : 0 ≤ X ≤ Y ≤ 10
`5 : 0 ≤ X ≤ Y ≤ 10
`6 : 0 ≤ X ≤ Y ≤ 9

Figure 3.2: Rely-guarantee proof sketch for the program in
Fig. 3.1.(a).

Example 3.2.1. Figure 3.2 presents a rely-guarantee reasoning
on the program example from Fig. 3.1.(a). The presentation
is simplified: although we show the invariant at each control
location `1, . . . , `6, each thread is checked in turn with respect
to a global assertion on the transitions of the other thread.
Each thread guarantees exactly what the other one relies on:
R1 = G2 and R2 = G1.

End of example.

The rely-guarantee method is indeed modular: each thread
can be checked without looking at the syntax of the other
threads, but only at the rely assertions. Intuitively, by model-
ing the effects a thread has on others threads, rely and guaran-
tee assertions form an abstraction of the semantics of threads.
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3.2.2 Interference semantics

As mentioned in Sec. 2.3.4, there exists a connection between
the reachability semantics R and Hoare’s proof method for se-
quential programs. This connection was exposed by Cousot
and Cousot in [CC77]. In [CC84], they showed a similar con-
nection for the proof methods of concurrent programs of Ow-
icki, Gries, and Lamport. One of our contributions [Min12c]
is a similar connection for Jones’ rely-guarantee method. We
develop formally this result in this section.

We start from the partial trace semantics F , which we de-
compose into two complementary abstractions: thread-local
reachable states and inter-thread interferences.

Local states. For each thread t ∈ T , we define its reachable
local states Rl(t) as the state abstraction R where the state
control part is reduced to that of t only. The control state of
the other threads t′ 6= t is stored in auxiliary variables, called
pct′ (as our language only features real-valued variables, we
assume, for the sake of simplicity, that the syntactic locations
L are real numbers). For each thread t ∈ T , the set Σt of local
states is:

Σt
def
= (L × Et) ∪ Ω, where

Et
def
= Vt → R

Vt
def
= V ∪ { pct′ | t′ ∈ T , t′ 6= t }

(3.6)

and we define the reachable local states Rl ∈ Πt:T .Σt as:

Rl(t)
def
= πt(R)

where πt(〈`, ρ〉)
def
= 〈`(t), ρ [∀t′ 6= t : pct′ 7→ `(t′)]〉

extended naturally from Σ→ Σt to P(Σ)→ P(Σt) .
(3.7)

Thanks to the auxiliary variables, the projection πt to the local
state space is a bijection and no information is lost (see also
Ex. 3.2.2 below on the importance of auxiliary variables).

Interferences. For each thread t ∈ T , the interferences it
causes I(t) ∈ P(Σ× Σ) is the set of transitions produced by t
in the partial trace semantics F :

I(t)
def
= αitf (F), where

αitf (X)
def
= λX. { 〈σi, σi+1〉 |

∃σ0
a0→ · · ·

an−1→ σn ∈ X : ai = t } .
(3.8)

Hence, it is a subset of the transition relation τ of the program
reduced to transitions that appear in actual executions.

Fixpoint characterization. We now propose a characteri-
zation of Rl and I directly in terms of fixpoints of operators
on the transition system, which do not require to compute R
nor F . We first express Rl in fixpoint form as a function of I:

Rl(t) = lfpRt(I), where

Rt ∈ (T → P(Σ× Σ))→ P(Σt)→ P(Σt)

Rt
def
= λY . λX.

πt(I) ∪ {πt(σ′) | ∃πt(σ) ∈ X :

σ
t→τ σ

′ ∨ ∃t′ 6= t : 〈σ, σ′〉 ∈ Y (t′) } .

(3.9)

The function Rt(Y ) is similar to R (2.8) used to compute clas-
sic reachability R, but it explores the reachable states by in-
terspersing two kinds of steps: firstly, steps from the transition

relation of the thread t and, secondly, interference steps from
other threads, which are provided in the argument Y .

We now express I as a function of Rl :

I(t) = B(Rl)(t), where

B ∈ Πt:T .P(Σt)→ T → P(Σ× Σ)

B
def
= λX. λt. { 〈σ, σ′〉 |

πt(σ) ∈ X(t) ∧ σ t→τ σ
′ } .

(3.10)

B(X)(t) simply collects all the transitions in the transition
relation of the thread t starting from a local state in X(t).

There is a mutual dependency between equations (3.9) and
(3.10), which we solve using a fixpoint. The following theo-
rem, which characterizes reachable local states Rl in a nested
fixpoint form, is proved in [Min12c]:

Theorem 3.2.1.
Rl = lfpH, where

H ∈ (Πt:T .P(Σt))→ (Πt:T .P(Σt))

H
def
= λX. λt. lfpRt(B(X)) .

Compared to a rely-guarantee proof R,G ` {P} statt {Q}, the
reachable local states Rl(t) correspond to state assertions P
and Q, while the interferences I(t) correspond to rely and guar-
antee assertions R and G. Proving that a given quintuple is
valid amounts to checking that ∀t ∈ T : Rl(t) ⊆ Rt(I)(Rl(t))
and B(Rl)(t) ⊆ I(t). Our fixpoints are, however, constructive
and can infer the optimal assertions instead of simply check-
ing user-provided assertions. Computing lfpRt(I) corresponds
to inferring state assertions P and Q given the interferences,
while computing lfpH infers both interferences and state asser-
tions. Thread-modularity is achieved as each function Rt only
explores the transition relation generated by the thread t in
isolation. It relies on its first argument to know the transitions
of the other threads without having to explore them.

Fixpoints can be computed by iteration. Indeed, we ap-
ply Thm. 2.2.2 by Cousot and Cousot. In particular, lfpH =⊔
n∈N Hn(λt. ∅). As noted above, Rt is similar to R, and com-

puting lfpRt(Y ) used in the definition of H is similar to a
classic reachability computation. Hence, the computation of
Rl = lfpH in Thm. 3.2.1 can be understood as an iterative
computation that re-analyzes all the threads until the interfer-
ences stabilize. The analysis of a single thread is a sequential
program analysis, slightly modified to incorporate the effect of
interferences.

3.2.3 Abstraction

Although it enjoys the required thread-modularity, the nested
fixpoint characterization of Rl in Thm. 3.2.1 is still very con-
crete. Indeed, the uncomputable state semantics R can be
recovered from it. To construct an effective static analysis, we
need further abstractions. We will abstract the local states and
the interferences independently from each other.

Local state abstraction. A set of local states for a thread
t lives in P(Σt) = P((L × Et) ∪ Ω) ' (L → P(Et)) × P(Ω).
Hence, it can be abstracted by associating to each control lo-
cation in L a value in some numeric abstract domain E], and
maintaining a set of errors in extension. However, the number
of variables is often a critical parameter in the efficiency of a
domain (especially for precise relational domains, such as poly-
hedra). A faster analysis can be constructed by first removing
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the auxiliary variables from Vt with the following abstraction:

αaux ∈ P(Vt → R)→ P(V → R)

αaux
def
= λR. { ρ|V | ρ ∈ R }

(3.11)

before using a numeric abstract domain. The resulting analysis
is still flow-sensitive in that a distinct local invariant is associ-
ated to each control location ` ∈ L of the thread. Removing
auxiliary variables still allows us to infer a large class of prop-
erties (for instance, the example of Fig. 3.2 has been precisely
handled without the need for auxiliary variables). However,
they are necessary in some cases. In fact, early proof methods
did not feature them, and they were introduced subsequently
in order to achieve completeness [OG76].

Example 3.2.2. Consider the program prog = `1X ← X +
1`2 || `3X ← X + 1`4 composed of two identical threads in-
crementing X once. The reachable local states on thread 1 at
`2 with auxiliary variables are described by (pc2 = 3 ∧ X =
1) ∨ (pc2 = 4 ∧X = 2), which implies X ∈ [1, 2]. Its image by
αaux simply gives X ∈ [1, 2], which is no longer invariant by
the transition set { 〈`3, [X 7→ x]〉 → 〈`4, [X 7→ x+1]〉 | x ∈ R }
generated by X ← X + 1 in the second thread. Hence, X ∈
[1, 2] cannot be proved to hold at `2 after removing pc2.
End of example.

This example also shows that invariants involving auxiliary
variables tend to be disjunctive, hence, non-convex. Classic
numeric domains, such as polyhedra and intervals, are not well
equipped to handle non-convex sets. When keeping auxiliary
variables, one possible solution is to use value partitioning do-
mains, such as decision trees [BCC+10a] that are inspired by
binary decision diagrams [Bry86] and mix a discrete, enumer-
ative part (for auxiliary variables) and a more conventional
numeric one (for program variables).

Interference abstraction. An interference set I ∈ P(Σ×Σ)
is a relation on states. A pair 〈〈`, ρ〉, 〈`′, ρ′〉〉 ∈ I model-
ing a transition can be seen as a mapping r from the variable

set V def
= {V, V ′ | V ∈ V } ∪ { pc1, . . . , pcN , pc′1, . . . , pc′N } to

values, where ∀V ∈ V : r(V ) = ρ(V ) ∧ r(V ′) = ρ′(V ) and
∀t : r(pct) = `(t) ∧ r(pc′t) = `′(t). Hence I can be abstracted
as an abstract value in a numeric abstract domain (possibly
using value partitioning).

The example in Fig. 3.2 uses a single global interference,
which shows that the control flow information is not always
useful. A more efficient analysis can thus be achieved using
the flow-insensitive abstraction αflow :

αflow ∈ P(Σ× Σ)→ P(E × E)

αflow
def
= λI. { 〈ρ, ρ′〉 | ∃`, `′ : 〈〈`, ρ〉, 〈`′, ρ′〉〉 ∈ I } .

(3.12)
Finally, we propose an abstraction of P(E × E) that only

remembers which variables have changed and their new value.

Hence, an abstract relation is an element X] of D]chg

def
= V →

P(R) and represents:

γchg(X])
def
= { 〈ρ, ρ′〉 ∈ E × E | ∀V ∈ V :

ρ(V ) = ρ′(V ) ∨ ρ′(V ) ∈ X](V ) }
(3.13)

and the associated abstraction is:

αchg(I)
def
=

λV . {x ∈ R | ∃〈ρ, ρ′〉 ∈ I : ρ(V ) 6= x ∧ ρ′(V ) = x } .
(3.14)

A map V → P(R) can be further abstracted into V → R]
for any numeric domain R] abstracting the value of a single
variable, such as the interval domain from Ex. 2.2.1.1 This is an
efficient abstraction which, although coarse, can nevertheless
infer important information.

Example 3.2.3. Consider again the example from Fig. 3.2. Ab-
stracting the interferences with αflow and αchg yields the map
[X 7→ [1, 10], Y 7→ ∅] for t1, and [X 7→ ∅, Y 7→ [1, 10]] for t2. It
successfully captures the fact that t1 does not modify Y , and
that t2 stores values from [1, 10] into Y and does not modify
X, which is sufficient to prove that X and Y are bounded in
[1, 10] at all program locations. However, the abstract inter-
ference cannot represent the fact that Y is only increased by
t2. As a consequence, it is impossible to infer the program
invariant X ≤ Y , even when abstracting the local state in a
relational domain (such as polyhedra) that can represent this
invariant.

End of example.

The abstraction αchg is non-relational in both the senses
that it cannot represent relationships between program vari-
ables, and that it cannot represent relationships between the
state before and the state after a transition.

3.2.4 Unbounded number of threads

We have assumed, since Sec. 3.1.1, a fixed, finite set of threads
T . However, this hypothesis is never used in our derivations
and all our formulas apply even if T is infinite. An infinite
number of threads is useful to model, in the absence of dynamic
thread creation, programs that exhibit an unbounded number
of threads: at initialization, we choose non-deterministically a
finite subset in the infinite thread pool allowed to run. Our
finiteness restriction is only here to guarantee that the con-
struction results in an effective static analyzer. Indeed, when
considering an infinite number of threads, we encounter the fol-
lowing issues: firstly, iterating over the threads in Thm. 3.2.1
may not terminate; secondly, the number of reachable local
state sets Rl(t) to abstract is infinite; thirdly, the number of
auxiliary variables is infinite and we cannot apply numeric ab-
stractions defined in vector spaces of finite dimensions.

Nevertheless, these issues can be side-step in a restricted
but useful case. Firstly, we assume that we have a finite set T
of syntactic threads, but one of them, t∗ ∈ T , has an infinite
number of instances running concurrently (this can be extended
easily to the case of several infinite threads). Secondly, we
assume that we remove auxiliary variables in the abstraction of
local states (using αaux ) and that we abstract interferences in a
flow-insensitive way (using αflow ). These conditions ensure that
the local states and the interferences have a finite number of
variables, and can be abstracted in a numeric abstract domain.
They also ensure that, given two instances t∗1 and t∗2 of t∗, we
have Rl(t∗1) ' Rl(t∗2) and Rt∗1 ' Rt∗2 up to the abstractions
αaux and αflow . Hence, it is sufficient to represent only one
instance of t∗ in Rl and iterate over one instance of Rt∗ in
Thm. 3.2.1. However, the definition of Rt∗ is changed slightly

1Note that the domain V → R]i is not equivalent to the interval

domain D]i presented in Sec. 2.4.1. The former abstracts V → P(R)
while the latter abstracts P(V → R). As a consequence, least elements

⊥] are coalescent in the later domain and not in the former one.
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into:

Rt∗
def
= λY . λX.

πt∗(I) ∪ {πt∗(σ′) | ∃πt∗(σ) ∈ X :

σ
t∗→τ σ

′ ∨ ∃t′ : 〈σ, σ′〉 ∈ Y (t′) }
(3.15)

which simply removes the condition t′ 6= t∗ to take into ac-
count “self-interferences,” i.e., interferences on an instance of
t∗ caused by another instance of t∗ (note that Rt remains un-
changed when t 6= t∗).

We have thus reduced the analysis of a concurrent program
with unbounded thread instances to the analysis of a concur-
rent program with only a bounded number of threads. This
comes at some cost in precision. The resulting analysis cannot
distinguish between the different instances of the same thread
nor express properties that depend on the number of running
threads: the analysis is uniform. Non-uniform analyses are
quite rare (a main example is Feret’s occurrence counting anal-
ysis for the π−calculus [Fer01]), and designing a non-uniform
analysis in our framework remains a challenging future work.

3.3 Big-step interference analysis

In this section, we apply the general principles and abstrac-
tions from the preceding section to construct, on our con-
current language, a thread-modular static analysis in big-step
form, similar to the one we developed for sequential programs
(Sec. 2.3.5). The construction is described in more details in
[Min11, Min12d].

3.3.1 Concrete interference semantics

We start by enriching the concrete semantics of expressions
(Fig. 2.2) and statements (Fig. 2.6) with a notion of inter-
ference. With in mind the abstractions from Sec. 3.2.3, we
model interferences as values written into variables, in a flow-
insensitive and non-relational way.

Formally, interferences live in Itf def
= T × V × R, where a

triple 〈t, X, v〉 ∈ Itf means that the thread t can write the
value v into the variable X.

Expression semantics. We define EItf J expr Kt〈ρ, I〉, the
semantics of expressions with interferences, in Fig. 3.3. Com-
pared to the original semantics of expression EJ expr Kρ intro-
duced in Fig. 2.2, it takes as argument, in addition to an en-
vironment ρ ∈ E , a set I ⊆ Itf of interferences. Moreover, the
semantics is parametrized by the identifier t ∈ T of the thread
that evaluates the expression. When reading the value of a vari-
able X ∈ V, all the interferences 〈t′, X, v〉 ∈ I from threads
t′ 6= t are applied, i.e., evaluating X may non-deterministically
evaluate either to ρ(X) or to any value v written to X by an-
other thread. The semantics of operators and constants is not
changed, apart from propagating I to sub-expressions. Note
that different occurrences of the same variable in an expres-
sion may evaluate, in the same environment, to different val-
ues. Intuitively, evaluating an expression is longer an atomic
action: the value of a variable may change due to thread inter-
ferences during the evaluation (we will formalize this remark
in Sec. 3.5).

Statement semantics. The semantic domain of statements
DItf is similar to that of sequential programs from Fig. 2.6, but

enriched with interferences. We use: DItf
def
= P(E) × P(Ω) ×

P(Itf), which is a complete lattice ordered by element-wise
set inclusion. Given a statement stat executed by a thread
t, its semantics is the join-morphism SItf J stat Kt defined in
Fig. 3.4. There, the join t denotes the element-wise set union.
Compared to SJ stat K from Fig. 2.6, SItf J stat Kt passes down
the interference I to EItf J e Kt every time an expression e needs
to be evaluated. Moreover, it outputs its argument interference
set enriched with the interferences that are created in thread t
by all the assignments it performs.

Program semantics. A first step in the analysis of a con-
current program is to collect the interferences itf . The analysis
of a single thread computes its interferences assuming a priori
knowledge of the interferences from the other threads. This
circular dependency is solved by computing interferences as a
fixpoint:

itf
def
= lfpλI.

⋃
t∈T

[
SItf J statt Kt〈λV . 0, ∅, I〉

]
Itf (3.16)

where [·]Itf restricts the triple output by SItf J statt Kt to the
component in P(Itf). The set of run-time errors O in the con-
current program can then be extracted by running the analysis
again and gathering this time the component in P(Ω):

O
def
=

⋃
t∈T

[
SItf J statt Kt〈λV . 0, ∅, itf 〉

]
Ω
. (3.17)

The following soundness theorem is proved in [Min12d]:

Theorem 3.3.1. R∩ Ω ⊆ O.

The converse inequality does not hold in general. Although
it manipulates uncomputable concrete sets of environments and
interferences, our semantics is a strict over-approximation of
the reachable state semantics because we use a non-relational
and flow-insensitive abstraction of interferences and do not use
auxiliary variables (see also Exs. 3.3.1 and 3.3.2).

Output environments. In addition to errors and interfer-
ences, SItf J statt Kt outputs a set of environments Rt. In the
case of sequential programs (Sec. 2.3.5), these corresponded to
the program states reachable at the end of the program. How-
ever, this is not the case for SItf J statt Kt: the environments
in Rt only take into account the values written by the thread
t. Writes from the other threads, that can nevertheless con-
tribute to the program state, are stored in the interference set
itf . An overapproximation of the reachable state set at the
end of the program can be constructed by combining these two
information:

Xt
def
= { ρ | ∃ρ′ ∈ Rt : ∀V ∈ V :

ρ(V ) = ρ′(V ) ∨ ∃t′ 6= t : (t′, V, ρ(V )) ∈ itf } .

Note that each thread t ∈ T may give a different overapproxi-
mation Xt. It is possible to combine them to gain more preci-
sion, which leads to ∩t∈T Xt.

The environments Rt computed by our big-step semantics
are thus not actually local invariants, which departs from our
formalization of rely-guarantee in Sec. 3.2. The rationale is to
avoid adding to the environment redundant information that is
already available in interferences. Clearly separating the effect
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EItf J expr Kt ∈ (E × P(Itf))→ (P(R)× P(Ω))

EItf JX Kt〈ρ, I〉
def
= 〈{ ρ(X) } ∪ { v | ∃t′ 6= t : 〈t′, X, v〉 ∈ I }, ∅〉

EItf J [c1, c2] Kt〈ρ, I〉
def
= 〈{x ∈ R | c1 ≤ c ≤ c2 }, ∅〉

EItf J −ω e Kt〈ρ, I〉
def
= let 〈V, O〉 = EItf J e Kt 〈ρ, I〉 in 〈{−v | v ∈ V }, O〉

EItf J e1 �ω e2 Kt〈ρ, I〉
def
= let 〈V1, O1〉 = EItf J e1 Kt 〈ρ, I〉 in

let 〈V2, O2〉 = EItf J e2 Kt 〈ρ, I〉 in
〈{ v1 �ω v2 | v1 ∈ V1, v2 ∈ V2, � 6= / ∨ v2 6= 0 },
O1 ∪O2 ∪ {ω | � = / ∧ 0 ∈ V2 }〉

Figure 3.3: Semantics of expressions with interference.

SItf J stat Kt ∈ DItf −→ DItf

SItf JX ← e Kt〈R, O, I〉
def
= 〈∅, O, I〉 t

⊔
ρ∈R

let 〈V, O′〉 = EItf J e Kt 〈ρ, I〉 in
〈{ ρ[X 7→ v] | v ∈ V }, O′, { 〈t, X, v〉 | v ∈ V }〉

SItf J e ./ 0 Kt〈R, O, I〉
def
= 〈∅, O, I〉 t

⊔
ρ∈R

let 〈V, O′〉 = EItf J e Kt 〈ρ, I〉 in
〈{ ρ | ∃v ∈ V : v ./ 0 }, O′, ∅〉

SItf J if e ./ 0 then s KtX
def
= (SItf J s Kt ◦ SItf J e ./ 0 Kt)X t SItf J e 6./ 0 KtX

SItf Jwhile e ./ 0 do s KtX
def
= SItf J e 6./ 0 Kt (lfpλY.X t (SItf J s Kt ◦ SItf J e ./ 0 Kt)Y)

SItf J s1; s2 Kt
def
= SItf J s2 Kt ◦SItf J s1 Kt

Figure 3.4: Big-step semantics with interference.

of writes from the current thread and from the other threads
will also prove useful when considering mutual exclusion con-
straints, in Sec. 3.4.

Example 3.3.1. We exemplify our semantics on the program
of Fig. 3.1 by computing the fixpoint itf (3.16) by iteration.
To be concise, we only show the value of I at each iteration,
and the environment set at `1 and `4 (corresponding to loop
invariants). Starting from I = ∅, t1 does not update X as
X < Y is always false, while t2 increments Y up to 10, which
gives, after an iteration:

`1 : X = Y = 0
`4 : X = 0 ∧ Y ∈ [0, 10]
I = { 〈t2, Y, i〉 | i ∈ [1, 10] } .

As I has increased, we perform the analysis again and, this
time, X < Y can be satisfied in t1, which causes X to be
incremented. We get:

`1 : X ∈ [0, 10] ∧ Y = 0
`4 : X = 0 ∧ Y ∈ [0, 10]
I = { 〈t1, X, i〉, 〈t2, Y, i〉 | i ∈ [1, 10] } .

Performing another analysis iteration returns the same I, and
the analysis stops. Invariants at `1 can be constructed by com-
bining the local environments X ∈ [0, 10] ∧ Y = 0 with the
interferences from t2 in I to get: X ∈ [0, 10] ∧ Y ∈ [0, 10]. As
expected, the invariant X ≤ Y is not inferred, because inter-
ferences do not carry any relational information.
End of example.

Example 3.3.2. Consider again the program prog = `1X ←
X+1`2 || `3X ← X+1`4 from Ex. 3.2.2. The fixpoint iteration
for itf (3.16) will compute an infinite increasing sequence, even
though the program features no loop: at step n, we get I =

{ 〈t1, X, i〉, 〈t2, X, i〉 | 0 ≤ i < n }. Due to the flow-insensitive
abstraction of interferences, we are not able to infer that each
thread can increment X at most once.

End of example.

3.3.2 Abstract interference semantics

In order to construct an effective static analysis, it remains to
abstract the semantic domain DItf = P(E) × P(Ω) × P(Itf)
into a computable abstract domain D]Itf with sound abstrac-

tions S]Itf J stat K
t

of SItf J stat Kt. This is not very difficult as

SItf J stat Kt is very close to the semantics SJ stat K of sequen-
tial programs introduced in Fig. 2.6, and for which we already
designed abstractions S]J stat K in Sec. 2.3.6.

Firstly, any numeric domain E] can be used to abstract
P(E). For interferences, we note that P(Itf) = P(T × V ×
R) ' (T × V) → P(R). Abstracting P(Itf) can be reduced
to the problem of abstracting P(R). This situation is similar
to the abstraction of flow-insensitive interferences described in
Sec. 3.2.3. We thus assume that we are given a numeric domain
R] for one variable, and denote by Itf ] its point-wise lifting into

functions in Itf ] def
= (T × V) → R]: an abstract interference

I] ∈ Itf ] maps each thread and each variable to an abstract
set of reals. Finally, we state:

D]Itf
def
= E] × P(Ω)× Itf ] . (3.18)

Secondly, we design S]Itf J stat K
t

for conditionals, loops, and
sequences by induction, independently from the abstract do-
main, exactly as S]J stat K in Fig. 2.7. Only the base case of
assignments and tests needs some adaptation, which we de-
scribe informally (we refer the interested reader to [Min12d]
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for a full formal presentation). Tests S]Itf J e ./ 0 K
t
〈R], O, I]〉

are reduced to the case of an interference-free abstraction with
a slight change of expression S]J e′ ./ 0 K〈R], O〉 as follows:
• for each variable V appearing in e, we collect its interfer-

ences from other threads V ]
def
=
⋃]
t′ 6=t I

]〈t′, V 〉,
• if V ] 6= ⊥], we then compute a range [aV , bV ] that contains

both γR(V ]) and the range of V in γE(R
]),

• finally, we construct e′ by replacing in e all the occurrences
of V with [aV , bV ] (if V ] = ⊥], V is left intact).

The case of assignments S]Itf JV ← e K
t

is similar, and only
slightly complicated by the need to enrich the abstract interfer-
ences with the effect of the assignment. This can be achieved
by replacing, in I], I]〈t, V 〉 with its join with an abstraction
in R] of the value of V after the assignment.

Finally, when abstracting the interference fixpoint itf , we
must take care to ensure the convergence of the iterates. We
use an interference widening OItf , which is simply the widening
OR on R] applied element-wise to each pair 〈t, V 〉 ∈ T × V.
The abstract interferences itf ] are then computed as in (3.16):

itf ]
def
= limλI]. I] OItf

⋃]
t∈T

[
S]Itf J statt K

t
〈E]0, ∅, I]〉

]
Itf

.

(3.19)

The result is an effective static analysis in big-step form
which is thread-modular, parametrized by a choice of numeric
abstract domains, and can reuse existing big-step static analy-
ses of sequential domains with minimal change. Moreover, al-
though thread interferences are abstracted in a flow-insensitive
and non-relational way, the analysis of each thread is fully flow-
sensitive and can use relational numeric domains E] to abstract
memory states.

Example 3.3.3. The analysis of the program in Fig. 3.1 using
the interval abstraction for both E] and R] gives the exact
same result as the concrete interference semantics (Ex. 3.3.1).
In particular, the sequence of abstract interference iterates with
widening (3.19) gives (omitting mappings to ⊥]):

I1 = []
I2 = [〈t2, Y 〉 7→ [1, 10]]
I3 = [〈t1, X〉 7→ [1, 10], 〈t2, Y 〉 7→ [1, 10]]

at which point it is stable.
End of example.

Unbounded thread instances. The analysis assumes a fi-
nite, fixed number of threads, but it is not difficult to adapt
it to handle threads with an unbounded number of instances.
Following the remark in Sec. 3.2.4, we construct a uniform
analysis where a thread t∗ has an unbounded number of in-
stances by taking into account self-interferences for t∗. This
is achieved by omitting the condition t′ 6= t in the definition
of V ] when applying interferences to expressions; it becomes

simply: V ]
def
=
⋃]
t′∈T I]〈t′, V 〉.

3.4 Scheduling

The model of executions considered up to now allows arbitrary
interleavings. In practice, however, the scheduling of threads
can be controlled to some extent. This can be achieved by
executing synchronisation primitives offered in the language
(such as locks) or by controlling directly some parameters of

the scheduler (such as thread priorities). Note that our in-
terference analysis considers non-deterministic scheduling, and
so, is sound in the context of restricted scheduling. We now
show how scheduling restrictions can be taken into account to
achieve a more precise analysis.

As there exist numerous synchronization schemes and sche-
duling policies, we focus on two simple but useful cases: mu-
tual exclusion locks (Sec. 3.4.1) and real-time scheduling with
fixed priorities (Sec. 3.4.2). Moreover, for the sake of conci-
sion, we present our semantics informally, and refer the reader
to [Min12d] for the detailed formalization.

3.4.1 Mutexes

Mutual exclusion locks (thereby referred to as “mutexes”) are
a standard low-level synchronization primitive offered by most
concurrent languages and concurrency libraries (such as POSIX
Threads [IT95]). The core property of mutexes is that each
mutex cannot be acquired by more than one thread at a time:
a thread trying to lock a mutex already locked by another
thread will wait until the mutex is available; it will not resume
its execution before it can lock the mutex. Mutexes are useful
to delimit critical sections, i.e., section of the program that
only one thread can enter at a time. We assume the existence
of a fixed, finite set M of mutexes and add statements to lock
and unlock them:

stat ::= lock(m) | unlock(m) m ∈M . (3.20)

In the context of an interference semantics, we can then take
advantage of the mutual exclusion property of mutexes to re-
strict the effect of interferences according to which mutexes
each thread holds.

Interferences. We illustrate how mutual exclusion restricts
interferences in Fig. 3.5. We denote respectively as R and W
reads from and writes into a shared variable X; for the sake
of presentation, we model only the effect of thread 1 on thread
2. In Fig. 3.5.(a), all the accesses are protected by the mutex
m and thread 1 writes twice into X while holding m. When
thread 2 locks m and reads X, it can see the second value
written by thread 1, but never the first one, which is necessarily
overwritten before m is acquired. Moreover, after thread 2
locks m and overwrites X while holding m, it can only read
back the value it has written, unaffected by the interferences
from thread 1. This kind of interferences, that carries a small
amount of flow-sensitivity, will be called “synchronized .”

Figure 3.5.(b) describes a case where the accesses are not
all protected by the mutex. In addition to the synchronized
interference from Fig. 3.5.(a) (and not repeated here) any write
by thread 1 will influence all the reads by thread 2 occurring
when thread 2 does not hold m, and any write by thread 1
occurring when thread 1 does not hold m influences all the
reads by thread 2. These interferences, where the read / write
pairs are not protected by a common mutex, are called “non
synchronized .”

Partitioning. To model these interferences, we track, in our
concrete interference semantics, the exact set of mutexes locked
by the current thread, and associate interferences with the mu-
texes locked when the corresponding write was performed. This
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(a)

unlock(m)lock(m)

unlock(m)lock(m)
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R W R

thread 1

thread 2
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lock(m) unlock(m)

lock(m) unlock(m)

RWRR

W

thread 2

thread 1

Figure 3.5: Synchronized (a) and non synchronized (b) interferences in the presence of a mutex.

t1, t
′
1

while 0 = 0 do
`1lock(m);
if X > 0 then

X ← X − 1
endif ;
unlock(m)

done

t2, t
′
2

while 0 = 0 do
`2lock(m);
X ← X + 1;
if X > 10 then

X ← 10
endif ;
unlock(m)

done

Figure 3.6: Abstract consumers / producers.

is achieved through partitioning : environments P(E) and inter-
ferences P(Itf) are replaced, respectively, with maps S → P(E)

and S → P(Itf), where S def
= P(M).

The semantics of expressions with interferences (Fig. 3.3)
is changed as follows to take into account non synchronized
interferences:

EItf JX Kt〈M, ρ, I〉 def
=

〈{ ρ(X) } ∪ { v | ∃t′ 6= t,M ′ ∈ S :
〈t′, X, v〉 ∈ I(M ′) ∧M ∩M ′ = ∅ }, ∅〉

where 〈M, ρ〉 ∈ S×E denotes the state in which the expression
is evaluated, as a set M of mutexes held and an environment ρ.
The new condition M ∩M ′ = ∅ models the absence of mutual
exclusion.

Synchronized interferences are handled by collecting, at
each unlock(m) instruction, the current value of all the vari-
ables modified since the last lock(m) instruction, which is held
in a special interference partition attached to m. Then, when
another thread performs a lock(m) instruction, the interfer-
ences are imported into the environment.

Example 3.4.1. Figure 3.6 presents a classic producer / con-
sumer program, abstracted away so that we only keep track, in
X, of the number of resources available. The (identical) threads
t1 and t′1 consume resources (X ← X−1), if available (X > 0),

while threads t2 and t′2 produce resources (X ← X + 1) up to
a limit (X ≤ 10). All the accesses to X are protected by a mu-
tex m. As a consequence, the statement if X > 0 then X ←
X−1 endif is free from non synchronized interference. In par-
ticular, it is free from interferences from another consumer: it
is not possible for any thread to modify X between the test en-
suring that X > 0 and its subsequent decrementation, which is
key to prove that X stays positive. Likewise, we can prove that
X ≤ 10. The synchronized interferences associate [X 7→ [0, 9]]
to m in t1 and t′1, and [X 7→ [1, 10]] to m in t2 and t′2. These
value sets are imported in the environments when locking m,
respectively at `2 and `1.
End of example.

We presented interference partitioning only at the level of
the concrete interference semantics. It is straightforward to de-
rive a computable abstract semantics parametrized by abstract
domains, as in Sec. 3.3.2 (see also [Min12d]).

Data-race detection. Data-races occur when two threads
can access the same variable, one access at least is a write, and
the accesses are not protected by some common mutex. In our
semantics, data-races correspond to non synchronized interfer-
ences. Hence, it is straightforward to extent our interference
static analysis to detect all data-races in a sound way.

Deadlock detection. A deadlock occurs when there exists a
subset of threads such that each thread in the subset is waiting
for a lock held by another thread of the subset to be unlocked.
Hence, the threads in the subset are blocked indefinitely.

Example 3.4.2. The program:

prog
def
=

lock(m1); lock(m2); unlock(m2); unlock(m1) ||
lock(m2); lock(m1) ;unlock(m1); unlock(m2)

presents one of the simplest case of deadlock: if the first thread
locks m1 and then the second thread locks m2, then neither can
advance further.
End of example.
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th

L← islocked(m);

if L = 0 then
Y ← Y + 1;
yeild

endif

tl

lock(m);

Z ← Y ;
Y ← 0;
unlock(m)

Figure 3.7: Priority-based critical sections.

Deadlocks can be easily detected in our semantics. It is suf-
ficient to collect, for each lock(m) instruction in each thread
t, the set M of mutexes t already holds just before issuing
the instruction, which we denote as a triple 〈t, m, M〉. This
information is readily available in our concrete and abstract se-
mantics. Then, we check for the existence of a set of collected
triples 〈t1, m1, M1〉, . . . , 〈tk, mk, Mk〉 such that: ∀i 6= j : ti 6=
tj ∧Mi ∩Mj = ∅, and ∀i : ∃j : mi ∈ Mj .

2 This results in a
sound over-approximation of the set of possible deadlocks. In
general, the over-approximation is strict and introduces spuri-
ous deadlocks, as it can consider sets of triples that may never
be reachable simultaneously in any program execution.

3.4.2 Real-time scheduling

Real-time operating systems are a flavor of operating systems
that offer more guarantees in terms of determinism and execu-
tion times than general-purpose ones. They are thus used in
most embedded applications (in avionics, for instance, with
the ARINC 653 standard [Aer] considered by our analyzer
AstréeA). We are not interested here in the timing guaran-
tees (physical time is, after all, not tracked in our semantics),
but in another property of real-time systems: the strict inter-
pretation of thread priorities by the scheduler. Each thread is
given a priority , and a lower level priority thread can never
preempt a higher level priority thread unless it is blocked.

The analysis presented so far is, of course, sound with re-
spect to any scheduler, including a real-time one. In this sec-
tion, we show that a more precise analysis can be achieved
by using properties that are specific to real-time schedulers.
More precisely, we assume that each thread is given a distinct
and fixed priority, and that a single thread executes at a time
(i.e., there is no true parallelism, but only time-sharing on a
single execution unit). Then, the scheduler ensures that the
unblocked thread of highest priority is the only one to run.
Here, blocking means: either waiting for a mutex to be un-
locked by another thread, or waiting for an external event to
occur. To account for this second case, we add a new statement
yeild which models waiting for a non-deterministic amount of
time: by yielding, a high priority thread allows lower priority
threads to run, but reserves the right to interrupt them at any
point and resume its own execution. Despite a strict policy
on thread priorities, a real-time scheduler still allows a large
amount of non-determinism.

Motivation. Our study of real-time programs is motivated
by the example in Fig. 3.7. It implements a critical section pro-
tected by a mutex m, but without the need for the high priority
thread th to actually lock the mutex m. Instead, th tests, with

2This check includes the case of a single thread locking the same
mutex twice, which is considered here to produce a deadlock.

the L ← islocked(m) statement (which stores 1 into L if m
is locked, and 0 otherwise), whether the lower priority thread,
tl, has locked m. If it has not, th can enter its critical section,
confident that tl cannot interrupt it and enter its own critical
section. The critical section ends when th performs a yeild
to enable preemption by tl. This example cannot be analyzed
precisely without handling thread priorities.

Partitioning. In order to benefit from a real-time scheduler,
we enrich the partitioning mechanism introduced for locks in
Sec. 3.4.1. Each statement L ← islocked(m) will create two
partitions: one where m is assumed to be locked by another
thread and 1 is stored into L, and another where m is assumed
to be unlocked and 0 is stored into L. This partitioning allows
representing relations between the value of variables and an
abstraction of the scheduling state. The partitions are merged
when a yeild instruction is encountered, as it becomes possible
for the lower priority thread to run and invalidate our assump-
tion about the status of the mutex m. As for mutexes, we do
not detail the resulting concrete interference semantics nor its
straightforward abstraction; these can be found in [Min12d].

3.5 Weakly consistent memories

Up to now in this chapter, we have assumed a straightforward
execution model for concurrent programs, stating that: a pro-
gram execution is an interleaving of the execution of instruc-
tions from the threads, that expression evaluations and assign-
ments are atomic, and that a value written by a thread into the
memory is immediately available for the next executing thread
to read. This attractive model, based on Lamport’s notion of
sequential consistency [Lam79], is, unfortunately, no longer re-
alistic. Concurrent programs running on current hardware may
exhibit behaviors that are not sequentially consistent. This
issue is now widely recognized and many recent works in se-
mantics and verification take relaxed models into account; this
includes the fields of language specification [MPA05], program
testing [AMSS11], model checking [ABBM10], theorem proving
[ŠA08], and abstract interpretation [Fer08].

In this section, we present the relaxed execution model that
we introduced in [Min11, Min12d], and study its static analysis.
More precisely, we state that the interference-based analysis we
use in Secs. 3.3 and 3.4 is sound with respect to our relaxed
model.

3.5.1 Non-consistent behaviors

We first present some example symptoms and causes of non-
sequentially consistent behaviors that motivate our model.

Non-consistent memories. In modern architectures, read
and write operations do not act directly and instantaneously
on the shared memory, but through a hierarchy of caches and
store buffers. As observed by Lamport already in the late 70s
on the case of distributed memories [Lam78], this can result in
behaviors that are not sequentially consistent.

Example 3.5.1. Figure 3.8 presents a simple mutual exclusion
algorithm. To ensure that both threads cannot be simultane-
ously in their critical section, each thread signals its intent to
enter it by raising a flag, and then tests the other thread’s flag.
This is an extremely simplified version of Dekker’s algorithm
[Dij68]. However, if the assignment performed by a thread is

29



CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

t1

flag1 ← 1;

if flag2 = 0 then
critical section

endif

t2

flag2 ← 1;

if flag1 = 0 then
critical section

endif

Figure 3.8: Mutual exclusion algorithm.

t1

if flag2 = 0 then

flag1 ← 1;
critical section

endif

t2

if flag1 = 0 then

flag2 ← 1;
critical section

endif

Figure 3.9: Reordering independent statements in Fig. 3.8.

propagated asynchronously and takes too long to be acknowl-
edged, it is possible for the other thread to read an outdated
0 flag value and enter its critical section, although the first
thread is still executing its own critical section.

End of example.

Optimizations. Another cause for the lack of consistency is
the various program transformations and optimizations (such
as out of order execution) that are performed by compilers
and modern processors. Their validity is generally based only
an analysis of a single thread of execution and does not take
concurrency issues into account.

Example 3.5.2. Consider again the program in Fig. 3.8. Then,
a dependency analysis on thread t1 in isolation shows that the
assignment and the test are independent, so, a compiler can
decide to switch their order. The same holds for t2. The pro-
gram effectively executed, shown in Fig. 3.9, no longer enforces
mutual exclusion.

End of example.

Example 3.5.3. Figure 3.10 presents another transformation
that inserts a spurious write into Y , which seems innocuous as
Y is not used by t1 until Y is assigned again. However, this
spurious value can be observed by t2 and stored into X. As a
result, when t1 terminates, Y holds the value 42. The chosen
variable Y and value 42 are arbitrary, and so, allowing arbitrary
spurious writes makes the program completely unpredictable.
This kind of transformation is called “out-of-thin-air,” as it
introduces unjustified values, and we will not allow it in our
model.

End of example.

Atomicity. Finally, we note that the granularity of atomic
actions, i.e., the set of points where a thread can be interrupted
by the execution of another thread, matters. Consider, for
instance, the program prog = X ← X + 1 || X ← X + 1.
Assuming (as we did) that assignments of arbitrary expressions
are atomic, X = 2 always holds at the end of the program.
However, if they are not, then each thread may read the same
value 0 from X before storing 1 into X, so that the program
can also end with X equal to 1.

t1

R1 ← X;
Y ← R1

t2

R2 ← Y ;
X ← R2

→

t1

Y ← 42;

R1 ← X;
Y ← R1

t2

R2 ← Y ;
X ← R2

Figure 3.10: Illegal program transformation.

Variable protection. Protecting all the accesses to shared
variables by using mutual exclusion locks (Sec. 3.4) avoids these
issues by enforcing memory barriers and locally disabling com-
piler optimisations: the (highly desirable) “data-race-freedom”
property states that, in the absence of data-race, the semantics
follows strictly sequential consistency. Additionally, Reynolds
[Rey04] suggests that all unprotected accesses should be con-
sidered as fatal errors, so that a valid program only exhibits
sequential consistent executions. These rules on the compiler
and the program are attractive as they reduce the verification
problem to checking that programs are correct in the sequen-
tially consistent model plus checking that they do not have any
data-race. However, we aim at checking programs with “be-
nign” data-daces so that, in addition to detecting data-races,
we must continue the analysis with a realistic semantics for
them.

3.5.2 Formal model

We now propose a formal model of executions that takes into
account a large class of non sequentially consistent behaviors.

Weakly-consistent models. Extensions of Lamport’s se-
quentially consistent execution model, so called weakly-consis-
tent memory models, have been studied originally for hard-
ware. We refer the reader to [AG96] for a tutorial. Precise
formal models of popular architectures are now available (for
instance, the x86-TSO model by Sewell et al. [SSO+10] formal-
izing Intel architectures). The use of weakly consistent memory
models in programming language semantics, that additionally
model the effect of optimizing compilation, were pioneered by
Pugh [Pug99] and culminated in the Java memory model of
Manson et al. [MPA05, GJSB05]. Models in this family are
defined implicitly, as the solution of a complex process where
each value read must be justified by a series of transformed
execution traces. We choose instead a generative model based
on an explicit set of local control path transformations, which
is reminiscent of the approach by Saraswat et al. [SJMvP07].
It makes it easy to check whether a given compiler or processor
obeys this model.

Control paths. To account for transformations that alter
program block-structures, we start by converting programs into
sets of linear control paths, which are sequences of assignments
X ← e and tests e ./ 0. The set of control paths path(stat) in
a statement stat is defined by structural induction as:

path(X ← e)
def
= {X ← e }

path(s1; s2)
def
= path(s1) · path(s2)

path(if e ./ 0 then s endif)
def
=

({e ./ 0} · path(s)) ∪ {e 6./ 0}

path(while e ./ 0 do s done)
def
=

({e ./ 0} · path(s))∗ · {e 6./ 0} .

(3.21)
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Paths are all finite but, when stat contains a loop, path(stat)
is an infinite set. Note that, because SItf J stat Kt is a join-
morphism, it is equal to the join over all control paths in stat :

SItf J stat KtX = �Itf J path(stat) KtX
where �Itf JΠ Kt X

def
=

⊔
s1·...·sn∈Π

SItf J s1; . . . ; sn KtX .

(3.22)
This fact, which is well-known for distributive data-flow anal-
yses [Kil73], was proved for big-step semantics in [Min12d].

Path transformations. We now propose an example set of
local path transformations, which we denote as p  p′:

1. reordering assignments: X1 ← e1 · X2 ← e2  X2 ←
e2 ·X1 ← e1;

2. reordering tests: e1 ./1 0 · e2 ./2 0  e2 ./2 0 · e1 ./1 0;

3. reordering tests before assignments: X1 ← e1 · e2 ./ 0  
e2 ./ 0 ·X1 ← e1;

4. reordering assignments before tests: e1 ./ 0 ·X2 ← e2  
X2 ← e2 · e1 ./ 0, when X2 is local to the thread;

5. propagating assignments: X ← e · s  X ← e · s[e/X],
when variables in e are local to the thread and e is de-
terministic;

6. eliminating common sub-expressions: s1 ·. . .·sn  X ←
e · s1[X/e] · . . . · sn[X/e], when X does not occur in the
program.

These transformations are only valid under some conditions:
assigned variables should not appear in other expressions, ex-
pressions must not block nor evaluate to an error, and modified
statements should only involve assignments and tests (not syn-
chronization statements).

These simple rules allow modeling large classes of clas-
sic program transformations as well as distributed memories.
Store latency can be simulated using rules 5 and 1. Changing
the atomicity of operations by breaking a statement into several
ones is possible with rules 5 and 6. Rules 1–4 allow peephole
optimization. Transformations that do not change the set of
control paths, such as loop unrolling, are naturally supported.
As a concrete example, the realistic x86-TSO model [SSO+10]
can be entirely simulated with these transformations, and so,
an analysis sound for our model will also be sound for x86-TSO
(but it may include behaviors not allowed by x86-TSO, which
results in a loss of precision). The rules, however, do not allow
“out-of-thin air” transformations (Fig. 3.10). This list is not
exhaustive; we refer the reader to [Min11] for more examples.

Program semantics. We then close the  relation by
context (p  p′ =⇒ a · p · b  a · p′ · b), transitivity (p1  
p2 ∧ p2  p3 =⇒ p1  p3), and reflexivity (p  p), and
state that the set of paths Π′ is a valid transformation of stat if
it contains all its path, possibly transformed: ∀p ∈ path(stat) :
∃p′ ∈ Π′ : p  p′. The semantics of the transformed program
is then simply the join over all paths in Π′: �Itf JΠ′ Kt.

We proved in [Min12d] that transformed programs do not
exhibit more errors nor interferences than the original one:

Theorem 3.5.1.
∀X :

[
�Itf JΠ′ KtX

]
Ω,Itf v

[
�Itf J path(stat) KtX

]
Ω,Itf .

t1

while 0 = 0 do

lock(m);
if X > 0 then

X ← X − 1;
Y ← Y − 1

endif ;
unlock(m)

done

t2

while 0 = 0 do

lock(m);
if X < 10 then

X ← X + 1;
Y ← Y + 1

endif ;
unlock(m)

done

Figure 3.11: Imprecisely analyzed program due to the lack of
relational interferences.

Hence, our interference analysis is sound with respect to trans-
formed programs. A result similar to Thm. 3.5.1 was found
simultaneously by Alglave et al. [AKL+11].

Limitations. Our set of allowed transformations is not ex-
haustive; it would be interesting to characterize more precisely
under which transformations Thm. 3.5.1 holds. Moreover, it
is also possible to change our interference-semantics so that
it holds under more transformations. For instance, our frame-
work imposes atomic memory writes, but this restriction can be
lifted by generating interferences that expose partially assigned
values. Dually, it would be interesting to restrict our model to
a less permissive one (such as x86-TSO [SSO+10]), and then
define a more precise interference semantics that benefits from
the restricted set of possible transformations. Note that our
choice of an interference semantics was not initially motivated
by the modeling of weakly consistent memories (although this
is an important side effect), but rather by the construction of
an effective and efficient static analyzer.

3.6 Discussion

In this chapter, we have constructed a big-step interference-
based thread-modular static analysis by abstracting a seman-
tics expressed in rely-guarantee form. Although the original
rely-guarantee semantics is complete, one of our first step to
construct an effective analysis was, in Sec. 3.3, to abstract in-
terferences in an incomplete flow-insensitive and non-relational
way. Our experimental results, which we will detail in Sec. 6.3,
show that such an analysis has nevertheless a good precision;
yet, it is not sufficient to prove completely the absence of run-
time error in the analyzed codes. We now show, on small pro-
gram fragments, examples of imprecise analyses due to our
initial abstraction of interferences.

Example 3.6.1. Consider the program in Fig. 3.11. It is similar
to the producer/consumer example of Fig. 3.6, but additionally
maintains a copy of the resource count in Y . Our analysis finds,
as in Ex. 3.4.1, that X ∈ [0, 10]. However, it finds no bound on
Y . In order to prove that Y ∈ [0, 10], we would need to infer
that X = Y holds at lock boundaries, which would thus require
a relational abstraction of well synchronized interferences. This
example is also related to Ex. 2.4.2 which motivated the need
for relational domains in (sequential) program analyses.
End of example.

Example 3.6.2. Figure 3.12 presents a slightly more complex
variant of Ex. 3.2.2. Here, each thread increments and decre-
ments X in a loop, once per loop iteration. As no more than
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t1

while 0 = 0 do

lock(m);
`1X ← X + 1;
unlock(m);
lock(m);
`2X ← X − 1;
unlock(m)

done

t2

while 0 = 0 do

lock(m);
`3X ← X + 1;
unlock(m);
lock(m);
`4X ← X − 1;
unlock(m)

done

Figure 3.12: Imprecisely analyzed program due to the lack of
flow-sensitive interferences.

two incrementations occur without a decrementation in any in-
terleaving of thread instructions, and no more than two decre-
mentations without an incrementation, we have X ∈ [−2, 2].
Our analysis cannot infer such a complex property and finds no
bound on X. One solution would be to refine the analysis with
flow-sensitive information by exploiting auxiliary variables. In-
deed, we could express that, when the thread t1 is at location
`1 and the thread t2 is at location `3, then a thread interfer-
ence can only increment X from 0 to 1, and similarly at other
locations. This example shows the importance of limiting the
interferences to only the transitions appearing in actual pro-
gram traces; the full transition system of the program would
instead state that X can be incremented from c to c + 1 for
any value c.

End of example.

Chronologically, we first proposed, in [Min11], the analysis
with flow-insensitive and non-relational interferences described
in Sec. 3.3, and only later [Min12c] re-formalized it as an ab-
straction of a complete rely-guarantee semantics (Sec. 3.2). A
natural future work consists in developing further the connec-
tion with rely-guarantee, developing interference abstractions
that are, at least partially, flow-sensitive and relational, and
incorporating them into our generic big-step analyzer construc-
tion.

Related work. There exists a large literature on the use of
formal methods to verify parallel programs; we can only present
here a shallow overview and present mainly recent results. For
further information, we refer the reader to the comprehensive,
if dated, survey by Rinard [Rin01].

We already mentioned proof methods, as our method is
inspired from Jones’ popular rely-guarantee method [Jon81].
We refer the reader to [dRdBH+01] for a survey of such tech-
niques. The connection between proof methods and abstract
interpretation has not been much investigated since the work
by Cousot and Cousot in [CC84, Cou85], with the notable ex-
ception of Malkis [Mal10]; all these works focus on Owicki–
Gries–Lamport methods.

Model checking also has a long history of verifying paral-
lel systems, including recently on weak memory models (for
instance in [ABBM10]). The state explosion problem, that
plagues explicit-state model checking methods, is particularly
acute on concurrent programs due to the larger amount of
states and interleavings to consider. Some solutions have been
proposed, such as symbolic model checking [McM93], which
is a general model checking method, or partial order reduc-
tion methods [God94], which target specifically concurrent pro-

grams. Due to the emphasis on completeness, these meth-
ods remain costly. Another way to address the state explo-
sion problem, bounded model checking [BCCZ99], consists in
performing a partial exploration. A variant proposed in the
context of concurrent programing is context-bounded model
checking [QR05]. These methods are not sound as they may
miss errors. By contrast, we abstract the problem sufficiently
so that no interleaving needs to be considered, at the cost of
completeness, while never sacrificing soundness.

We now focus on related work in static analysis. Fully flow-
insensitive analyses (such as Steensgaard’s popular points-to
analysis [Ste96]) can be used as-is on concurrent programs, as
they consider arbitrary interleavings of all program instruc-
tions, but their precision is not sufficient for program verifica-
tion. We are aware of a few static analyses that treat threads in
a flow-sensitive way, as we do. They use, similarly to us, a no-
tion of interference and achieve thread-modularity. One exam-
ple is the pointer and escape analysis for Java by Sălcianu and
Rinard [SR01], where interferences also model method calls.
Another one is the recent static analysis of C programs with
POSIX Threads by Carré and Hymans [CH09], with a slightly
different focus as it includes dynamic thread creation but not
synchronization mechanisms. Static analysis in weak consis-
tency models has also gathered recent attention: we can cite
Ferrara’s work [Fer08] on the Java memory model, and the
“repair-loop” technique by Alglave and al. [AMSS11] which
resembles our interference fixpoint. Although these methods
handle each thread in a flow-sensitive way, their interactions are
abstracted, similarly to our analysis, in a flow-insensitive way.
Goubault et al. propose a different kind of analysis [GH05]
based on geometric principles in order to abstract thread in-
teractions in a flow-sensitive way. This abstraction focuses on
locks and synchronization properties (deadlocks and mutual
exclusion); it is not thread-modular and considers only a finite
number of program steps.
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Chapter 4

Affine abstractions

By construction, static analyses by abstract interpretation
are parametrized by a choice of abstract domains and, in par-
ticular, numeric domains able to abstract the numeric compu-
tations that are pervasive in computer programs. There exists
a growing library of numeric abstract domains, but the need
exists always to design new ones: either to infer new classes of
properties, or to explore new trade-offs between cost and preci-
sion, or even to propose new algorithms to handle well-known
classes of abstract properties. We present, in this chapter and
the next, a few novel domains. These domains are not spe-
cific to the analysis of concurrent programs and, while they
can indeed be used as parameters in the analysis construction
from Chap. 3 and some of them are effectively integrated in
our AstréeA prototype analyzer (Sec. 6.2), they are of general
use. The present chapter focuses on variations of the polyhedra
domain and presents more fundamental constructions, while
the next chapter constructs more pragmatic domains geared
towards specific applications, namely the analysis of C data-
types as considered in the Astrée and AstréeA analyzers.

Since its introduction by Cousot and Halbwachs in the late
1970s [CH78], the polyhedra abstract domain has been widely
used in static analysis. However, its underlying algorithmic,
based on the double description method and Chernikova’s algo-
rithm on arbitrary precision rational coefficients, has remained
largely unchanged, until the mid 2000s when Simon and King
proposed to switch to a constraint-only representation [SK05].

Together with Patrick Cousot, we suggested to Liqian Chen,
then a PhD student of Ji Wang at the National University of
Defense Technology (Changsha, China) visiting the ENS, to
further advance the design of polyhedral domains. This chapter
reports on the results we achieved; it is a collaborative work
with Liqian Chen, Patrick Cousot, and Ji Wang.

On the semantic level, our work consists in changing the na-
ture of the coefficients appearing in the affine constraints: we
replace arbitrary precision rationals with floating-point num-
bers (Sec. 4.1) and with intervals with rational or float bounds
(Sec. 4.2). We thus study restrictions and extensions of the ex-
pressiveness of polyhedra. On the algorithmic level, changing
the nature of coefficients radically changes the way abstract
operations are performed. These changes require us to enrich
the classic polyhedra algorithms with new ones, often borrow-
ing from recent results in constraint programming and math-
ematical programming: we use in particular guaranteed linear
programming [NS04], interval linear programming [CR00], and
solvers for linear complementary problems [MP95].

Our results have been published as conference articles, as
well as in Liqian Chen’s PhD [CMC08, CMWC09, CMWC10,
CMWC11, Che10]. Moreover, the domains have been imple-
mented as prototypes and tested in the Apron library, a general

framework for numeric abstract domains, which we describe in
Sec. 6.1.

4.1 Floating-point polyhedra

Our first work consists in exploring the use of floating-point
numbers in order to improve the scalability of polyhedra.

4.1.1 Motivation

Classic polyhedra libraries following the early work by Cousot
and Halbwachs [CH78] (such as Apron [JM09]) scale up to only
a few variables: an experimental study conducted by Duong in
his PhD [NQ10] reports a significant number of time outs and
out of memory errors on polyhedra, starting from as few as
seven dimensions. A first issue, the explosion of the number of
generators output by Chernikova’s algorithm, can be avoided
by abandoning the double description method and using only
constraints [SK05]. Another cause of inefficiency is the use of
exact rational arithmetic: this may cause coefficients to grow
up to an unbounded size in theory. In practice, exponential
blow-ups are not uncommon, even for programs featuring only
variables with a small range, as observed in [NQ10].

A simple and practical solution consists in discarding con-
straints when their coefficients grow too large (e.g., when a
numerator or denominator cannot be represented in a machine
integer), thus trading precision for efficiency. It is always sound
to discard constraints, but may result in missed properties. As
machine integers, floating-point numbers benefit from a con-
stant memory and fast, hardware-assisted operations, but ad-
ditionally allow representing a much larger range of values.
Rounding errors will result in a gradual loss of precision in
constraints, which is more gentle than abruptly removing them.
The main challenge is to ensure that, despite rounding errors,
the domain stays sound, i.e., rounding can only enlarge poly-
hedra. We stress on the fact that simply replacing rationals
with floats in existing algorithms does not result in a sound
outcome.

4.1.2 Representation

We build on the constraint-only presentation of polyhedra from
Simon et al. [SK05] recalled in Sec. 2.4.2, but use floating-point
coefficients in F (Sec. 2.4.4). Hence, a floating-point polyhedron

on n variables is represented as a pair 〈A, ~B〉 composed of a

matrix A ∈ Fm×n and a vector ~B ∈ Fm. The polyhedron still
represents a set of real points in the vector space Rn, and its

concretization γp is unchanged: γp(〈A, ~B〉)
def
= { ~V ∈ Rn | A×

~V ≤ ~B }, where A × ~V is evaluated using real arithmetic. As
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before, we also denote polyhedra as sets of affine constraints
C = {

∑n
i=1 A1iVi ≤ B1, . . . ,

∑n
i=1 AmiVi ≤ Bm } when more

convenient.

Arithmetic. Following Sec. 2.4.4, we distinguish exact op-
erations on reals from float operations with rounding by using
plain operators +, −, ×, / for the former and circled ones ⊕r,
	r, ⊗r, �r for the letter, tagged with a rounding direction
r ∈ {+∞,−∞}. We also use interval arithmetic with float
bounds: ⊕]i , 	

]
i , ⊗

]
i , �

]
i (2.21), which we extend to operations

on vectors, matrices, affine expressions, and affine constraints
whose coefficients are intervals with float bounds. Likewise, �]i
denotes the dot product of two vectors of float intervals. As
float arithmetic and, by extension, float interval arithmetic,
does not enjoy the distributivity and associativity of reals, the
ordering of additions and multiplications matters. In our case,
we do not impose any order and note simply that the results
obtained with different orders, while possibly different, are all
sound.

4.1.3 Core algorithms

Recall from Sec. 2.4.2 that the constraint-only presentation of
the polyhedra domain relies on two main algorithms: linear
programming and projection. We show how to adapt soundly
these two algorithms using float operations only.

Linear programming. Recall that solving the linear pro-
gramming problem LP (2.12) given a polyhedron 〈A, ~B〉 and

a vector ~C consists in computing:

LP(〈A, ~B〉, ~C)
def
= min { ~C · ~V | A× ~V ≤ ~B } .

Generally LP(〈A, ~B〉, ~C) is not representable as a float, even if

both 〈A, ~B〉 and ~C are, and we will settle for upper and lower
bounds. We consider here only the problem of computing a
lower bound in F, denoted as LPF(〈A, ~B〉, ~C), i.e. we require:

∀~V : A× ~V ≤ ~B =⇒ ~C · ~V ≥ LPF(〈A, ~B〉, ~C)

being understood that computing an upper bound is similar.
It is interesting to note that most linear programming im-

plementations compute with floats, for the sake of efficiency,
and thus output an approximation of the result. This includes
modern interior point methods [Kar84] which proceed by suc-
cessive approximations, but also many implementations of the
Simplex algorithm [Sch86] (although an exact Simplex imple-
mentations based on arbitrary precision rational arithmetic is
possible). There is no guarantee that the computed approxi-
mate result is a lower bound. When an exact result is required,
a “purification scheme” is often employed to construct it from
an approximate one. For instance, in the case of Simplex, the
algorithm explores bases of the constraint system (i.e., subsets
of n constraints) to find an optimal feasible solution. Thus,
one method (used for instance in [SSM05]) is to perform most
of the search using floats, which outputs a basis that may not
be optimal nor feasible, and then bootstrap an exact Simplex
solver using arbitrary precision rationals with this basis, in the
hope that only a few extra exploration steps are necessary.

Purification methods are not adequate for us as we are more
interested in efficiency than in exactness, and we wish to per-
form the entire algorithm using solely floats. We thus use recent
advances in the field of rigorous linear programming : we use

a method by Neumaier and Shcherbina [NS04] that consists in
post-processing the approximate result into a lower approxima-
tion. More precisely, the method starts with an approximate
solution of the dual problem:

LP∗(〈A, ~B〉, ~C)
def
= max { ~B · ~W | At × ~W = ~C ∧ ~W ≤ ~0 }

(4.1)

given as a vector ~W that approximates the optimum. We con-
sider now the vector ~r that evaluates “how far” ~W is from
actually satisfying the dual constraint system At × ~W = ~C:

~r
def
= At × ~W − ~C .

Sound bounds for ~r can be computed using interval arithmetic:

[~r, ~r ]
def
= At ⊗]i ~W 	

]
i
~C .

Finally, we assume that we are given a bounding box [~V , ~V ]
of the polyhedron in the form of a lower and an upper bound
vector, so that we know that the (exact) optimal solution ~V of

the primal linear programming problem satisfies: ~V ≤ ~V ≤ ~V .
As ~W ≤ ~0 and A×~V ≤ ~B, we have ~W t×A×~V ≥ ~W · ~B. Thus,
~V · ~C = ~V · (At× ~W −~r) = ~W t×A× ~V −~r · ~V ≥ ~W · ~B−~r · ~V .

Hence, a lower bound of LP(〈A, ~B〉, ~C) can be computed by
interval arithmetic, using our interval approximations of ~r and

the bounding box [~V , ~V ]:

LPF(〈A, ~B〉, ~C)
def
= min( ~W �]i ~B 	

]
i [~r, ~r ]�]i [~V , ~V ]). (4.2)

Note that our interval computations are performed using the
float intervals domain from Sec. 2.4.4, hence the computation
is performed using solely floats.

Fourier–Motzkin’s elimination. Projecting (or eliminat-
ing) a variable Vk on a set of constraints C can be performed
by Fourier–Motzkin’s elimination algorithm FM (C, Vk) (2.14).
It consists in combining all possible pairs of constraints where
the coefficients of Vk have opposite signs (and keeping con-
straints where Vk does not appear). More precisely, given

c+
def
= ( ~A+ · ~V ≤ b+) ∈ C and c−

def
= ( ~A− · ~V ≤ b−) ∈

C such that A+
k > 0 and A−k < 0, we add the constraint:

c
def
= A+

k c
− + (−A−k )c+. Unfortunately, c is generally not rep-

resentable in floats. Our solution is to combine c+ and c− using
float interval arithmetic. Note however that, when computing
(A+

k ⊗
]
i c
−)⊕]i ((−A−k )⊗]i c

+), the coefficient of Vk may be an
interval not reduced to zero in the result, due to rounding er-
rors; hence, Vk is not eliminated. Instead of combining c+ and
c− by weighted addition, we combine them by simple addition
after normalizing the coefficient of Vk to 1 by division:

c
def
= (c+ �]i A

+
k )⊕]i (c− �]i (	]iA

−
k )) . (4.3)

We note that the (interval) coefficient of Vk in c is given by
the formula: (A+

k �
]
i A

+
k ) ⊕]i (A−k �

]
i (	]iA

−
k )), which evalu-

ates to [0, 0] as self-divisions as well as adding 1 to −1 are all
exact operations in float. We have effectively eliminated Vk.
Finally, we use the scalar linearization slin (2.17) to replace
the interval coefficients of variables with scalar ones, yielding a
constraint of the form

∑
j 6=k AjVj ≤ [b, c], which is equivalent

to
∑
j 6=k AjVj ≤ c. The resulting constraint is affine, does not

feature Vk, and is sound in the sense that it is implied by c+

and c−.
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We denote as FM F(C, Vk) the outcome after applying this
method to each pair of original constraints c+ and c− in C.
Then, FM F(C, Vk) over-approximates FM (C, Vk), and can be
computed using only floats.

4.1.4 Abstract operators

We now review the polyhedra abstract operators from Sec. 2.4.2
and show that, despite the approximations in FM F and LPF,
they are sound.

Comparison. Firstly, float linear programming can be used
to check for polyhedra inclusion v]p. Indeed, substituting LPF
for LP in (2.13) gives:

C v]p { ~A · ~V ≤ b } ⇐= LPF(C,− ~A) + b ≥ 0

C1 v]p C2
def⇐⇒ ∀c ∈ C2 : C1 v]p {c}

Note that, because LPF only computes a lower bound, we do
not have the equivalence: it can be used to prove that a polyhe-
dron definitively entails a constraint (and so, that a polyhedron
is definitely included in another), but not that it does not en-
tail it, making our abstract inclusion a sound semi-test for v]p.
Likewise, entailment can be used to remove redundant con-
straints, whereby the approximation causes only constraints
that are actually redundant to be removed but may fail to re-
move some redundant ones.

Tests and assignments. Tests and assignments are han-
dled as in the case of rational polyhedra (Sec. 2.4.2). Affine

tests S]pJ ~A · ~V + b ≤ 0 KC are handled by simply adding a con-
straint to C, which remains an exact abstraction. The non-
deterministic assignment S]pJVk ← [−∞,+∞] K is modeled by
a projection FM F(C, Vk) which, unlike the rational projection
FM (C, Vk), may incur a slight loss of precision. Then, arbitrary
affine assignments can be reduced, as before, to tests and pro-

jections using a temporary variable S]pJVk ← ~A · ~V + b K def
=

[Vn+1/Vk] ◦ S]pJVk ← [−∞,+∞] K ◦ S]pJVn+1 − ~A · ~V − b = 0 K.
This operator is no longer exact because the projection is not
exact.

Join and widening. As shown in (2.15), computing a con-
vex hull C1 ∪]p C2 can be reduced to projecting some variables;
we can thus approximate it through FM F. We observed in
[CMC08] that, due to over-approximations, the result some-
times fails to include some constraints from one polyhedron
which are entailed by the other one, and are thus obviously
satisfied by the join. To solve this imprecision, we tighten the
resulting polyhedron by adding any constraint c ∈ C1∪C2 such
that C1 v]p {c} ∧ C2 v]p {c} can be proved using LPF. Our
widening C1 Op C2 simply keeps the constraints in C1 that are
entailed by C2.1

Bounding box. Note that our definition of LPF implicitly
assumes that a bounding box of the polyhedron is available.
This is actually also the case for FM F (it is needed for the
scalar linearization slin that gets rids of interval coefficients).
In practice, it is useful to maintain such a bounding box at

1The refined widening from Fig. 2.12, which also considers constraints
in C2, cannot be used as it is well-defined only for completely non-
redundant polyhedra, and this cannot be ensured using our approximate
LPF.

while 0 = 0 do
X ← [−128, 128];
D ← [1, 16];
S ← Y ;
R← X 	r S;
Y ← X;
if R⊕r D ≤ 0 then Y ← S 	r D endif ;
if D 	r R ≤ 0 then Y ← S ⊕r D endif

done

Figure 4.1: Floating-point rate limiter.

all time. Sometimes, the bounding box of the result of an op-
eration can be computed solely based on the bounding boxes
of the arguments (this is the case for the convex hull, for in-
stance). When this is not the case, the bounding box can be
recovered by applying LPF on the basis vectors ~ei.

4.1.5 Experimental results

A proof-of-concept implementation was designed by L. Chen
and interfaced with Apron, a general library of numeric ab-
stract domains (Sec. 6.1). The implementation uses the GLPK
floating-point simplex library [Mak00], on top of which the rig-
orous linear programming algorithm LPF is constructed.

The domain was tested on a few simple examples and com-
pared to NewPolka, Apron’s built-in polyhedra library that
uses the double description method and arbitrary-precision ra-
tionals. Experiments were conducted using the Interproc static
analyzer [LAJ11] bundled with Apron; it analyzes simple pro-
grams in a toy numeric language. We refer the interested reader
to [CMC08] for the detailed experiments and only reproduce
here a synthesis of the results. A first test considered the anal-
ysis of the integer program examples from Apron (such as:
factorial, bubble sort, heap sort, Ackermann’s function); our
domain inferred the exact same invariants as NewPolka but
performed less efficiently (up to five times slower, with an av-
erage analysis time of 38ms). However, a second test based
on small floating-point programs showed that our domain per-
formed more efficiently (up to ten times faster, with an aver-
age analysis time of 195ms) and found similar invariants (up to
rounding of coefficients). These analyses use the floating-point
linearization of Sec. 2.4.4 to soundly model float operations in
the program. An example of such analysis is given below:

Example 4.1.1. Consider the program in Fig. 4.1, which is ex-
tracted from [Min06b, CMC08] and inspired from an actual
program. It implements a rate limiter: at each loop iteration,
it fetches an input X in [−128, 128] from a sensor and a max-
imal slope D in [1, 16], and computes an output value in Y
that tries to follow X but is limited to change at maximal rate
D (i.e., |S − Y | ≤ D where S is the last value output). Our
analysis finds, as output bound: |Y | ≤ 128.000047684, which is
actually optimal assuming a worse-case rounding. This exam-
ple requires relational information and is thus out of the reach
of the interval domain.

End of example.

The results are encouraging for an early implementation.
In particular, the domain really shines when it comes to ana-
lyzing programs featuring floating point numbers. The reason

35



CHAPTER 4. AFFINE ABSTRACTIONS

is that modeling float operations with exact rationals quickly
results in large coefficients and becomes impractical, while float
polyhedra are immune to this problem.

4.1.6 Discussion

This section has presented a polyhedra abstract domain pro-
grammed purely in floats, with an emphasis on ensuring its
soundness, which is a prime requirement for program valida-
tion. It also has an interesting theoretical significance: it pro-
vides the first sound implementation of a relational analysis for
float programs implemented fully with floats.

We now discuss briefly two other aspects: efficiency and
precision.

As a result of rounding errors, most operations that were
exact or optimal on polyhedra with rational arithmetic are no
longer exact nor optimal. In practice, our domain includes
several heuristics to limit the precision loss, including: bound
tightening using propagation algorithms, a reduced product
with intervals (which are less prone to rounding errors as they
use simpler algorithms), and a careful implementation of the
slin operator (e.g., by replacing an interval with a suitably
rounded value instead of its midpoint); we refer the interested
reader to [CMC08] for more information. An important re-
mark, however, is that programmers expect float programs to
suffer from computation drift due to rounding, and generally
include bound checks as a safety measure. Such checks are
abstracted exactly and tremendously help the analysis, com-
pensating for the drift in the abstract semantics as well as in
the concrete one. We believe that, when analyzing programs
written in such a defensive way, rounding errors in the analyzer
do not significantly degrade the result of the analysis.

The main bottleneck in efficiency is the large number of calls
to the linear programming algorithm, in particular triggered by
the need to remove the large amount of redundant constraints
generated by Fourier–Motzkin’s eliminations in joins. This
problem was already observed for rational polyhedra based on
constraints [SK05]. While [SK05, HLL92, Imb93] propose some
solutions, which can be directly applied to our float domain,
they are not sufficient to scale up. We believe that more work
on constraint-only polyhedra is required in this direction to
improve the scalability.

4.2 Interval polyhedra

Our second work stemmed from the first one, by observing the
importance of intervals when abstracting floats or abstracting
with floats. For instance, the value of a real expression cannot
always be represented as a float, but it can always be enclosed
in a float interval. Moreover, affine forms with interval coef-
ficients play an important role in modeling float expressions
(Sec. 2.4.4). They also appear internally in our floating-point
Fourier–Motzkin’s elimination (Sec. 4.1.3), only to be removed
by slin. This leads naturally to the design of polyhedra domains
where coefficients can also be intervals. A first construction, in
Sec. 4.2.1, arises naturally from that of the preceding section
by allowing intervals with float bounds as coefficients instead of
plain float coefficients. A second one, in Sec. 4.2.2, returns to
exact rationals and a double description method, while keep-
ing interval coefficients. A third one, in Sec. 4.2.3, consists in
restricting the expressiveness of interval polyhedra to interval
affine equalities.

(a) (b) (c)

Figure 4.2: Interval polyhedra examples.

4.2.1 Float interval polyhedra

Representation. We extend polyhedra to represent affine
interval constraints, of the form:

∑
j [aj , aj ]Vj ≤ bj . A con-

straint is satisfied by a vector ~V if
∑
j ajVj ≤ bj holds for

some choice of aj ∈ [aj , aj ]. A float interval polyhedron is
then defined by a matrix of intervals with float bounds, con-
veniently represented as a matrix A ∈ Fm×n of lower bounds
and a matrix A ∈ Fm×n of upper bounds, and by a vector
of floats ~B ∈ Fm. Then 〈[A,A], ~B〉 represents (extending ≤
element-wise):

γip(〈[A,A], ~B〉) def
=
⋃
{ γp(〈A, ~B〉) | A ≤ A ≤ A }

= { ~V ∈ Rn | ∃A ∈ Rm×n : A ≤ A ≤ A ∧A× ~V ≤ ~B } .
(4.4)

Interval polyhedra can represent all the classic (float) poly-
hedra, and are actually much more expressive. In particular,
they can represent non-convex and even unconnected sets, as
illustrated in Fig. 4.2 and the example below.

Example 4.2.1. Figure 4.2.(a) shows the set of points satisfying
the constraint [−1, 1]x + 2y ≤ 2. When x ≥ 0, the constraint
reduces to −x+2y ≤ 2 while, when x ≤ 0, it reduces to x+2y ≤
2; hence, the result is not convex. Figure 4.2.(b) is defined
by: [−1, 1]x + 2y = [−2, 2] ∧ 2x + [−2, 1]y = [−2, 2], i.e., the
conjunction of four constraints similar to that of Fig. 4.2.(a).
Finally, 4.2.(c) is generated by: [−1, 1]x = [−1, 1]y = 1∧x, y ∈
[−2, 2] ∧ x+ y ∈ [−1, 1] and is unconnected.

End of example.

An important remark is that, when the sign of each vari-
able is fixed, an interval affine constraint

∑
j [aj , aj ]Vj ≤ bj

can be reduced to an affine constraint using one bound from
each interval, i.e.,

∑
j ajVj ≤ bj where ∀j : aj ∈ {aj , aj}. As

a consequence, in each orthan, an interval polyhedron gives a
regular convex polyhedron. However, unlike disjunctive com-
pletions [CC79b], not all finite disjunctions of polyhedra are
interval polyhedra. As we show shortly, the special form of in-
terval polyhedra allows deriving more efficient algorithms than
for arbitrary disjunctions.

Interval linear programming. Given an interval polyhe-
dron 〈[A,A], ~B〉 and a vector ~C, the interval linear program-
ming problem generalizes linear programming (2.12) as follows:

ILP(〈[A,A], ~B〉, ~C)
def
=

min { ~C · ~V | A ≤ A ≤ A ∧A× ~V ≤ ~B } .
(4.5)

From a theoretical point of view, interval linear programming
is much harder than linear programming (the former is NP-
complete [Roh06] while the later is polynomial). However,
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techniques that perform well in practice have been proposed re-
cently, including smart orthan enumeration methods avoiding
the need to solve exponentially many linear programing prob-
lems [CR00], or iterative methods [Jan04]. These methods can
be adapted to compute a lower bound of the optimum (4.5)
using only floats. We refer the reader to [CR00, Jan04, Roh06]
for more information on the relevant algorithms and will not
discuss them here.

Given such a lower approximation, it becomes possible to
check constraint entailment, polyhedra inclusion, and remove
redundant constraints in a sound way, as in Sec. 4.1.4.

Projection. To implement variable elimination, used in the
semantics of assignments, a simple idea is to adapt Fourier–
Motzkin’s algorithm to affine interval constraints. It is suffi-
cient to explain how, given a variable Vk and two constraints

c+
def
= (

∑
j [a

+
j , a

+
j ]Vj ≤ b+) and c−

def
= (

∑
j [a
−
j , a

−
j ]Vj ≤ b−),

we can combine c+ and c− to derive a new constraint implied
by them where Vk does not occur. As in Fourier–Motzkin, we
only consider pairs of constraints where the coefficient of Vk has
a different sign: a+

k > 0 and a−k < 0. An important remark is
that it is possible to ensure that the coefficient of Vk is exactly
1 in c+ and −1 in c−, by dividing, with interval arithmetic, the
constraints by, respectively, [a+

k , a
+
k ] and [−a−k ,−a

−
k ]. Indeed,

we have for c+ (the result is similar for c−):∑
j [a

+
j , a

+
j ]Vj ≤ b+

⇐⇒ ∃a ∈ [a+
k , a

+
k ] : aVk +

∑
j 6=k[a+

j , a
+
j ]Vj ≤ b+

⇐⇒ ∃a ∈ [a+
k , a

+
k ] : Vk +

∑
j 6=k([a+

j , a
+
j ]/a)Vj ≤ b+/a

=⇒ Vk +
∑
j 6=k([a+

j , a
+
j ]/]i [a

+
k , a

+
k ])Vj ≤ b+/]i [a

+
k , a

+
k ] .

(4.6)
We can then add the normalized constraints which gives, sim-
ilarly to (4.3):

c
def
= (c+ �]i [a+

k , a
+
k ])⊕]i (c− �]i [−a−k ,−a

−
k ]) . (4.7)

This operation is then performed for each pair of constraints
〈c+, c−〉 with opposed sign. We note that (4.6) is not an equiv-
alence, so, our operator over-approximates the exact projec-
tion. Moreover, our operator can be performed soundly us-
ing floats only, which induces an extra loss of precision due
to rounding. However, unlike Fourier–Motzkin’s algorithm for
float polyhedra, we do not need to apply slin to remove interval
coefficients, which removes one cause of imprecision.

Join. The optimal abstraction of the join of two polyhedra
can be modeled as their convex hull; it can be implemented ex-
actly in rationals using Benoy et al.’s algorithm [BKM05] and
easily approximated in float polyhedra (Sec. 4.1.4). However,
this algorithm does not extend to interval polyhedra. Thus,
in [CMWC09], we suggested a simple join ∪]ip that combines
constraints pairwise, exploiting the ability of interval coeffi-
cients to be joined using the classic interval join ∪]i . More pre-
cisely, for each pair of constraints (

∑
j [a

1
j , a

1
j ]Vj ≤ b1) ∈ C1 and

(
∑
j [a

2
j , a

2
j ]Vj ≤ b2) ∈ C2, we add in C1 ∪]ip C2 the constraint:∑

j

([a1
j , a

1
j ] ∪]i [a2

j , a
2
j ])Vj ≤ max(b1, b2) . (4.8)

As for the float join of Sec. 4.1.4, it is worthwhile to refine the
result of the join by adding the constraints from C1 ∪ C2 that
are satisfied by both C1 and C2. This algorithm safely over-
approximates the join, but is not guaranteed to be optimal
(this problem will be addressed in Sec. 4.2.2).

Abstract operations. With the exception of the join, which
is handled as above, all the other abstract operations are han-
dled as the operations in the rational and float constraint-based
polyhedra: tests correspond to adding a constraint, assign-
ments can be reduced to tests and projections, and inclusion
checking and widening can be reduced to entailment checking.
We refer the reader to [CMWC09] for a verbose presentation
of these operators.

Application. The float interval polyhedra domain was im-
plemented by Liqian Chen in Apron as a proof-of-concept and
compared with the float polyhedra domain from the previous
section on the same benchmark (see Sec. 4.1.5). We refer again
the reader to [CMWC09] for the detailed experimental results
and present here only a qualitative synthesis: while interval
float polyhedra and float polyhedra give similar results in terms
of precision and cost, which one is more precise or more efficient
varies with the analyzed program.

On the one hand, interval polyhedra are more expressive
and employ more complex algorithms (such as interval linear
programming), which would imply that they are more precise
and more costly. On the other hand, they use a weak join,
unlike float polyhedra which try to over-approximate the exact
join; hence, interval polyhedra may be less precise in some
circumstances. Moreover, the weak join is less dependant on
linear programming; as linear programming accounts, in both
domains, for a large part of the cost, the weak join may improve
the domain efficiency in some cases. As an example, in the
analysis of the float rate limiter of Ex. 4.1.1, interval polyhedra
managed to be more precise (inferring non-convex invariants)
while being twice faster.

4.2.2 Exact interval polyhedra

While practical, the interval polyhedra domain presented in
the last section suffers from imprecise projection and join op-
erators; this is not only due to the use of floats, but also to fun-
damental algorithmic issues: even when computed with exact
arithmetic, our algorithms do not compute optimal abstrac-
tions. In this section, we show that optimal operators can be
constructed for interval polyhedra by returning to the original
double description method, the rationale being that joins and
projections are straightforward to compute on the generator
representation. As we now seek optimality at the expense of
efficiency, we consider rational bounds and exact arithmetic
(avoiding soundness and precision issues due to rounding).

Constraint representation. As in Sec. 4.2.1, a rational in-
terval polyhedron is then defined by an interval matrix [A,A]

and a vector ~B, but now A,A ∈ Qm×n and ~B ∈ Qm. The
concretization γip remains the same.

As stated before, an interval affine constraint reduces to
a regular affine constraint when the sign of each variable is
fixed. This leads to an equivalent formulation of an interval
polyhedron using only affine constraints but twice as many
variables. For each variable Vk, we denote respectively as V +

k

and V −k its positive and its negative parts: V +
k

def
= max(Vk, 0)

and V −k
def
= max(−Vk, 0), so that V +

k , V
−
k ≥ 0 and Vk = V +

k −
V −k . Additionally, for each k, only one of V +

k and V −k is non-

zero, which we note as: ~V +·~V − = 0. This non-linear constraint
is called the complementary condition. Hence, we represent an
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interval polyhedra in Rn as a set of complementary vectors in
R2n obeying constraints encoded in a matrix A ∈ Qm×2n and
a vector ~B ∈ Qm. We have:

γx(〈A, ~B〉) def
=

{ 〈~V +, ~V −〉 ∈ R2n | A×

[
~V +

~V −

]
≤ ~B,

~V +, ~V − ≥ ~0, ~V + · ~V − = 0 } .

(4.9)

The use of interval coefficients, which was justified on floats
by the imprecision caused by rounding errors, might not seem
as useful when considering exact computations. However, we
note that |Vk| = V +

k +V −k ; hence, γx(〈A, ~B〉) can also represent
constraints involving the absolute value of the variables. Such
relations occur in many programs, and inferring them is useful.
Due to this change of focus, this domain is also called the
linear absolute value relation domain [CMWC11] (although its
expressiveness is the same as interval polyhedra).

Example 4.2.2. The constraints x+2|x| ≥ 10 and [−1, 3]x ≥ 10
are equivalent. Both can be represented as 3x+ +x− ≥ 10 with
the extra conditions: x+, x− ≥ 0, x+x− = 0.
End of example.

We refer the reader to [CPS92, MP95] for more information
on complementary linear constraint systems, which are well-
studied in the literature, and to [Roh06, CMWC11] for more
information on the links between these systems, affine interval
constraints, and affine constraints with absolute values.

A generator representation. The main result underlying
the construction of our domain is that we can derive a genera-
tor representation for a polyhedron with complementary condi-
tions γx(〈A, ~B〉) from the generator representation of the poly-

hedron γp(〈A, ~B〉) considered without complementary condi-
tion (this result is proved in [CMWC11]). More precisely, as-
sume that we are given such a generator representation: P and
R such that γp([P,R]) = γp(〈A, ~B〉) (2.11). Then, to repre-

sent γx(〈A, ~B〉), it is sufficient to consider the complementary
generators, i.e., the sub-matrices P′ and R′ of columns of P
and R that obey the complementary condition (i.e., columns

[~C+t ~C−t]t such that ~C+ · ~C− = 0). We then consider all the
maximal subfamilies 〈P′′, R′′〉 of generators from 〈P′, R′〉 that
satisfy:

∀

[
~V +

~V −

]
∈ γp(〈P′′, R′′〉) : ~V + · ~V − = 0

i.e., each family corresponds to a polyhedron of vectors sat-
isfying the complementary condition, which we call a compli-
mentary polyhedron. Recall that an interval polyhedron is, in
general, composed of several convex polyhedra (at most one
per orthan). Intuitively, each complementary polyhedron in
R2n corresponds to a convex polyhedron in Rn in this decom-
position.

Representation conversion. The previous result suggests
a simple algorithm to convert constraints to generators: first,
apply Chernikova’s algorithm as in the classic double descrip-
tion method, and then filter out generators that do not obey
the complementary condition, and finally group them into fam-
ilies corresponding to a complementary polyhedron each. This
last step is very costly: it can be reduced to the problem of

finding maximal subgraphs of a directed graph, which is NP-
complete [GJ79]. Moreover, it makes the decomposition of an
interval polyhedron into its convex parts explicit. Fortunately,
this is not necessary: none of the abstract operations explic-
itly require this decomposition; it is sufficient to manipulate
unordered lists of complementary generators and leave the de-
composition into convex parts implicit. Thus, from an algo-
rithmic point of view, the operators are not equivalent to that
of a disjunctive completion [CC79b], that would manipulate
explicit lists of convex polyhedra. We note additionally that
the polyhedron 〈A, ~B〉 may contain many non-complementary
generators, and that it is wasteful to enumerate them all before
filtering them. To improve the efficiency, we can exploit the
incremental nature of Chernikova’s algorithm to filter them as
early as possible during the construction of the generator set,
the same way redundant generators are removed as soon as
possible by LeVerge’s modification to Chernikova’s algorithm
[LeV92]. Our algorithm is detailed fully in [CMWC11].

Abstract operations. The operators used on regular ratio-
nal polyhedra in the double description representation, pre-
sented in Sec. 2.4.2, can be reused as is, assuming that the rel-
evant representation is always available: tests consist in adding
constraints, projections and joins in adding generators, assign-
ments are reduced to projections and tests, entailment (and so
inclusion checking and widening) is reduced to checking that
generators satisfy a constraint. A point of note is that the
projection is no longer exact. Indeed, interval polyhedra are
not closed under projection, and so, no exact abstraction can
be devised; the same is also true of assignments. However,
the projection, the assignment of affine expressions, and the
join operators are all optimal: they always output the smallest
interval polyhedron encompassing the concrete result of the op-
eration. We refer the reader to [CMWC11] for a more detailed
presentation of these operators.

Application. The domain was implemented and tested in
the Apron library, and compared to both regular rational poly-
hedra based on the double description method, and float inter-
val polyhedra from the preceding section. As expected, the
domain is less efficient but more precise than the two others:
it can discover invariants out of their reach. In addition to its
ability to infer relations involving absolute values, the domain
surprised us by inferring exactly, in some cases, disjunctive
invariants after joining program branches. This suggests that
the domain can be an alternative to generic techniques, such as
disjunctive completion [CC79b] and trace partitioning [RM07],
to infer disjunctive properties.

In addition to its potential applications, this domain is in-
teresting from a theoretical point of view as all its operators are
optimal. Similarly to classic polyhedra (and unlike float poly-
hedra and float interval polyhedra) it is a perfectly semantic
domain, where the approximation is only caused by the choice
of abstract properties and by not the algorithms implementing
the abstract operators.

4.2.3 Interval affine equalities

In the last two sections, we discussed extensions of the poly-
hedra domain to interval coefficients. We now discuss the ex-
tension of another domain: the affine equality domain, initially
proposed by Karr [Kar76]. Affine equalities are less expressive
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than affine inequalities, but they are also much more efficient:
the domain is based on a quadratic memory representation
and a cubic-time Gauss elimination algorithm (while polyhedra
are unbounded in theory and exponential in practice [NQ10]).
Our goal is to try and extend affine equalities to interval co-
efficients, thereby achieving an expressiveness between regular
affine equalities and interval polyhedra, while not sacrificing
performance.

Our construction is presented on exact rationals, but can
be easily adapted to float arithmetic.

Representation. An abstract element in the interval affine
equality domain is composed of an interval matrix represented
as an upper bound matrix A in (Q ∪ {+∞})m×n and a lower
bound matrix A in (Q ∪ {−∞})m×n, and an interval vector

represented as an upper bound vector ~B in (Q∪ {+∞})m and

a lower bound vector ~B in (Q ∪ {−∞})m. Similarly to (4.4),
the concretization is:

γil(〈[A,A], [ ~B, ~B]〉) def
=

{ ~V ∈ Rn | ∃A ∈ Rm×n : A ≤ A ≤ A,

∃ ~B ∈ Rm : ~B ≤ ~B ≤ ~B, A× ~V = ~B } .
(4.10)

Note that we allow bounded as well as unbounded intervals.
Unbounded intervals in the constant part allow representing
inequalities: for instance, x = [1,+∞] simply means x ≥ 1.
Bounded interval coefficients for variables allow representing
non-convex and unconnected sets, similarly to interval polyhe-
dra: in each orthan, the system is equivalent to a regular affine

inequality system of the form ~B ≤ A × ~V ≤ ~B. Unbounded
interval coefficients for variables extend the expressiveness to
allow strict sign constraints: for instance, [−∞,+∞]x = 1 is
equivalent to x 6= 0.

An arbitrary interval affine inequality can be encoded as an
interval affine equality. Thus, allowing arbitrary interval ma-
trices [A,A] would result in a domain slightly more expressive
(due to the extension to unbounded intervals) than interval
polyhedra, and so, at least as costly. To ensure that our algo-
rithms are cubic in the worst case, we restrict [A,A] to be in
row echelon form:

∀i : ∃j : [Aij , Aij ] 6= [0, 0]∧∀j′ < j : [Aij′ , Aij′ ] = [0, 0]

∧∀i′ > i : [Ai′j , Ai′j ] = [0, 0]

i.e., each row of [A,A] contains a unique leading variable (first
column with non-zero coefficient), which does not appear in
subsequent rows. From an efficiency point of view, the choice
of a row echelon form is motivated by noting that a matrix in
row echelon form has at most n = |V| rows, which ensures that
abstract elements have a quadratic worst-case memory cost
(compare this to the unbounded size of interval polyhedra).
Concerning expressiveness, the rationale is that arbitrary con-
junctions of (non-interval) affine equalities can always be put
into an equivalent row echelon form, without loss of precision,
and so, we ensure that our domain is at least as expressive as
the affine equality domain.

Constraint addition. Adding a constraint in a polyhedral
domain is a simple syntactic operation, because a polyhedron
can maintain an arbitrary number of constraints. The opera-
tion is more complex in the interval affine domain as we must
ensure that the system remains in row echelon form. Assuming

that we are given a system in row echelon form and an interval

constraint to add c
def
= (

∑
j≥k[aj , aj ]Vj = [b, b]), with leading

variable Vk, we proceed as follows:
• if the system has no constraint where Vk appears in leading

position, we add c to the system and stop;
• if the system has a constraint c′ where Vk appears in leading

position, then:
− if c is more “precise than” c′ (for a notion of precision

presented below), we replace c′ with c in the system;
− we combine c and c′ to get a constraint c′′ with leading

variable Vl with l > k;
− and we recursively add c′′ to the system.

This algorithm terminates because the index of the leading
variable of the constraint to add increases strictly. It remains
to explain what is meant by “c is more precise than c′” and by
“combine c and c′”. Generally, the sets of points defined by two
different constraints are incomparable. Thus, we rely on syn-
thetic heuristics to assess the relative precision of constraints.
An example of such heuristic consists in choosing the con-
straint with the smallest width, where the width of a constraint∑
j [aj , aj ]Vj = [b, b] with respect to a bounding box Vj ∈

[V j , V j ] is defined as the constraint evaluated on the bounding

box using interval arithmetic:
∑
j [aj , aj ]×

]
i [V j , V j ]−

]
i [b, b]. We

refer the reader to [CMWC11] for more details on this heuristic
and several alternate ones. Likewise, there are several ways to
combine two constraints c and c′ that lead to the elimination
of Vk. For instance, when the coefficient [ak, ak] and [a′k, a

′
k] of

Vk in c and c′ have a different sign (i.e., ak > 0 and a′k < 0), we
can apply the same technique we used in the interval version
of Fourier–Motzkin’s elimination (4.7) and compute:

(c�]i [ak, ak])⊕]i (c′ �]i [−a′k,−a′k]) . (4.11)

This technique and other ones, as well as their respective merit,
are also discussed in [CMWC11]. Note that constraint addi-
tion is an approximate operation, which is in contrast to the
large majority of abstract domains (including all the polyhedral
domains we presented before; a notable exception in the liter-
ature is the zonotope domain [GGP10], which is a restriction
of polyhedra).

An important point of note is that, when the constraints
in the system and the constraint to add are all affine with-
out interval, our algorithm reduces to adding the constraint
and applying Gaussian elimination to re-normalize the system:
constraint addition is thus exact in this case.

Given an arbitrary set of constraints, it is possible to con-
struct a system in row echelon form by adding the constraints
one by one with this algorithm. While in the case of affine
equality constraints the construction of the row echelon form
is a normalization process keeping the semantic intact, for in-
terval affine equalities this process incurs an actual abstraction.

Projection. Eliminating a variable Vk in the regular affine
equality domain consists in using a row where Vk appears to
eliminate the occurrences of Vk in other rows. After this pro-
cess, there remains at most one constraint where Vk occurs,
which is removed. We extend this algorithm to interval affine
constraints, and eliminate Vk using the constraint combination
technique introduced for constraint addition. Note that this
projection is generally not exact nor optimal; however, as be-
fore, if the constraint system is actually affine, it reduces to
the projection on the affine equality domain, which is exact.
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Assignments are then modeled using projections and tests, as
usual.

Comparison. Exact entailment checking, and so exact com-
parison of abstract elements, can be achieved by interval linear
programming (4.5), similarly to the case of the interval poly-
hedra from Sec. 4.2.1. However, this is a costly operation. In
order to be consistent with our goal to construct a less precise
but cheaper abstract domain, we propose a coarser comparison
algorithm.

Given two constraints c
def
= (

∑
j≥k[aj , aj ]Vj = [b, b]) and

c′
def
= (

∑
j≥k[a′j , a

′
j ]Vj = [b′, b

′
]), we denote as c v]il c

′ the
element-wise inclusion of coefficients:

∀j : [aj , aj ] ⊆ [a′j , a
′
j ] ∧ [b, b] ⊆ [b′, b

′
] . (4.12)

Then, if c v]il c
′, any point satisfying c also satisfies c′. This is

extended to sets of constraints as:

C1 v]il C2 ⇐⇒ ∀c2 ∈ C2 : ∃c1 ∈ C1 : c1 v]il c2 (4.13)

which leads to a cubic-time algorithm. Then v]il implies the
inclusion of the concretizations of abstract elements. The con-
verse implication, however, does not hold.

Join. Similarly to the weak join of float interval polyhedra
(4.8), we can model the join by element-wise interval joins. For
each pair of constraints c ∈ C and c′ ∈ C′ with the same leading
variable, we generate the constraint:∑

j

([aj , aj ] ∪
]
i [a′j , a

′
j ])Vj = [b, b] ∪]i [b′, b

′
]

which is implied by both C and C′ (constraints with leading
variable appearing in only one system are discarded). The
conjunction of all these constraints is in row echelon form and
over-approximates the join. More precise joins are possible,
such as adapting the join by Benoy et al. [BKM05] used in
float polyhedra (Sec. 4.1.3). We refer the reader to [CMWC11]
for a description of more advanced joins.

Widening. On all the domains presented before, the widen-
ing always proceeds by filtering constraints in order to keep
only the stable ones. This requires an entailment check, which
is a precise or even exact operation in those domains, but is
rather coarsely approximated on interval affine equalities. In-
stead of relying on entailment checking, we construct a widen-
ing based on the point-wise extension of an interval widening.
More precisely, given any interval widening Oi (such as the
classic widening from Fig. 2.10), each pair of constraints c ∈ C
and c′ ∈ C′ with the same leading variable is replaced with:∑

j

([aj , aj ] Oi [a′j , a
′
j ])Vj = [b, b] Oi [b′, b

′
]

which indeed over-approximates the join and ensures the con-
vergence in finite time. More refined widenings are proposed
in [CMWC11], such as a widening that tries to keep affine con-
straints intact when they can be proved to be stable, in the
hope of discovering affine invariants as precise as the (non-
interval) affine equality domain.

Application. As the previous domains, the interval affine
equality domain has been implemented in Apron and tested
on some small programs. The domain is actually implemented
using float bounds instead of exact rationals; the soundness is
guaranteed by simply rounding upper bounds towards +∞ and
lower bounds towards −∞, as in the interval domain. When
compared to an implementation of the affine equality domain
with exact rationals, our domain was shown to be consistently
more precise, and similar in cost (from twice slower to twice
faster). The precision improvement is explained by the im-
proved expressiveness (in particular, the ability to represent
inequalities). When compared to NewPolka (Apron’s built-in
polyhedra domain using exact rationals) our domain proved
to have a similar speed for programs with few variables, but
additionally scaled up to programs with 32 or more variables
with a reasonable analysis time (less than 30s) while NewPolka
consistently timed-out after 1h. Concerning the precision, our
domain sometimes fails to discover constraints inferred by poly-
hedra, but it is often able to infer more; this can be explained
by a combination of extended expressiveness (in particular,
the ability to represent non-convex sets) and non-optimal ab-
stract operations. Comparing our domain to the float interval
polyhedra domain shows similar results, although the differ-
ences are less stressed because float interval polyhedra scale up
better and are more expressive than exact rational polyhedra.
Because both float interval affine equalities and float interval
polyhedra use their own, incomparable, approximated abstract
operators, each one can generally infer constraints not inferred
by the other. We refer the reader to [CMWC11] for a more
detailed analysis of the experimental results.

4.2.4 Discussion

In this section, we have proposed several new numeric abstract
domains that extend the expressiveness of polyhedra and affine
equalities by using interval coefficients. They enrich the ever
growing library of available domains. Our work remains, for
the moment, mostly fundamental. Future work includes the
construction of more robust implementations to test them in
the large, analyzing actual programs in realistic programming
languages. Some of our domains make deliberate choices to
sacrifice precision and improve efficiency and, in the absence of
a best abstraction, rely on local heuristics to make decisions.
This is the case in particular for interval affine equalities, which
are sensitive to the chosen ordering of variables and measure
of constraint precision. This is also the case for all the do-
mains that use the slin linearization function. New heuristics
should be developed once the limits of the existing ones in ac-
tual analyses become apparent. Concerning optimal and costly
domains, such as exact interval polyhedra, analyzing actual
programs will also be useful to develop restrictions that scale
better while maintaining a high precision where it matters in
practice (for instance, using packing techniques [BCC+10a]).

Related work. The search for new numeric domains is a
very active field of abstract interpretation. We now compare
the abstract domains we presented to other, related proposals.

Domains based on interval affine constraints can represent
natively non-convex and unconnected sets, which is quite rare.
Representing non-convex invariants is generally achieved using
a generic domain lifting, such as arbitrary disjunctive comple-
tions [CC79b] or disjunctions guided by the history of com-
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putations as in trace partitioning [RM07]. Arbitrary disjunc-
tions often suffer from scalability issues, triggering the need for
heuristics (such as periodically replacing elements with their
approximate join). Moreover, widenings for disjunctive com-
pletions are difficult to design [BHZ04]. Instead of representing
disjunctions of conjunctions of convex constraints, our domains
achieve non-convexity by a direct conjunction of non-convex
constraints. Another example of such domain is the max-plus
polyhedra domain by Allamigeon et al. [AGG08].

As the interval domain is often too imprecise and polyhedra
are not scalable, much effort has been devoted to the design
of domains in-between those two in terms of cost and preci-
sion. During my PhD, I participated in the design of some
weakly-relational domains, such as octagons [Min06b] that re-
strict polyhedra to constraints of the form ±Vi±Vj ≤ c. Other
proposals include: Two-Variable-Per-Inequality by Simon et al.
[SKH02], octahedra by Clarisó [CC04], pentagons [LF10]. Our
interval affine equality domain is in-between the affine equal-
ity domain by Karr [Kar76] and polyhedra; another instance of
such domain is the sub-polyhedra domain proposed by Laviron
[LL09], which is less expressive as intervals are only allowed in
the constant term. Another, less expressive proposal to add
bound information to affine equalities is to construct a par-
tially reduced product (Sec. 2.2) between intervals and affine
equalities, as proposed by Feret [Fer01].

We were inspired to use linear programming by the work by
Simon et al. on polyhedra [SK05]. Linear programming is also
used by Sankaranarayanan et al. to construct template polyhe-
dra [SSM05], a flexible restriction of polyhedra that generalizes
octagons and octahedra.

We advocate the use of float coefficients to analyze pro-
grams using float. The float domains we proposed are based
on constraints only, lacking a generator representation. Dually,
Ghorbal et al. propose to analyze float programs with zono-
topes [GGP09], a restriction of polyhedra based on a generator-
only representation. Zonotopes do not enjoy a simple and ex-
act modeling of tests; similarly to our interval affine equalities,
constraint addition must be over-approximated [GGP10]. It re-
mains, in future work, to bridge the gap between those domains
and construct a float double description method, complete with
a sound float version of Chernikova’s algorithm.
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Chapter 5

Abstracting C data-types

The idealized programming language that we introduced in
Sec. 2.3.1, then extended to parallel software in Chap. 3, and
analyzed using classic or novel abstract domains (Chap. 4),
offers only one data-type: mathematical reals in R. Even
when we extended the language to floating-point numbers, in
Sec. 2.4.4, we considered them as a subset of reals and ab-
stracted their operations using real operators. Considering a
real semantics allowed us to view invariants as subsets of a
vector space Rn and exploit classic results in linear arithmetic
to construct our abstract domains (for instance, Chap. 4 used
many results from linear programming). However, actual pro-
gramming languages feature more complex and numerous data-
types, which we must handle to construct a sound and useful
static value analysis.

In this chapter, we consider more realistic data-types, in-
spired from the C programming language, with their associ-
ated expressions and operator semantics. Firstly, we consider
machine integers with wrap-around, in Sec. 5.1. Secondly, we
discuss, in Sec. 5.2, the abstraction of structured types, such as
arrays or structures, but also union types and pointer opera-
tions that allow navigating within structured objects. Finally,
we go back to floating-point numbers in Sec. 5.3 with a more
detailed handling than in Sec. 2.4.4. In each case, we start
by defining a very precise concrete semantics of the consid-
ered data-type and its operations. These semantics go beyond
viewing a type as a set of values, and also take into account
their binary encoding in memory. We are then able to give a
proper semantics to operations that rely on it. For instance,
the binary representation of integers is useful to model bit-wise
operations in C, while the binary representation of structures
gives a semantics to “type-punning” constructions. Finally,
we provide abstractions able to exploit the knowledge of this
encoding. Our motivation is the precise static analysis of C
programs that rely on such knowledge for their correctness.

The work presented here has been published in [Min12a]
and [Min06a]. It stemmed from our experience developing the
Astrée C static analyzer (Sec. 6.2) and its extension AstréeA
(Sec. 6.3). While initial versions of Astrée [BCC+03] used
a straightforward modeling of data-types, it became obvious
when trying to extend the class of programs it supported that
many C programs are not portable and feature operations de-
pendent on the machine representation of data-types, hence the
need for the semantics and the abstractions presented here.

5.1 Machine integers

We start here by extending our language with machine integer
data-types and their associated operations.

5.1.1 Extended language

Syntax. To support machine integers, we slightly modify the
language syntax of Fig. 2.1. Firstly, we introduce machine
integer types, with the following grammar:

int-type ::= (signed | unsigned)
(char | short | int | long)

(5.1)

Types can vary in size (from char to long) and can be signed
or unsigned. In expressions, unary ◦ and binary � operators
are changed to match the C ones:

◦ ::= - |~ | ( int-type )
� ::= + | - | * | / | % | & | | | ^ | >> | <<

(5.2)

In addition to the operators based on classic mathematical in-
tegers (+, -, *, /, and the remainder %), there exists bit-level
operations: bit-wise negation ~, and &, or |, and exclusive or

^, as well as bit shifts >> and <<. Finally, we add a cast opera-
tor ( int-type ), which converts an expression to a given integer
type.

Type representation. Each type denotes a set of possible
values, but also a representation for these values as bit strings
in the memory. The actual size of each integer type depends
on the architecture and the compiler, so, we assume that we
are given a function sizeof ∈ int-type → N providing the size
of types in units of 8-bit bytes. Unsigned integers are repre-
sented using a pure binary representation: bn−1 · · · b0 ∈ {0, 1}n
represents

∑n−1
i=0 2ibi. Signed integers use a two’s complement

representation: bn−1 · · · b0 ∈ {0, 1}n represents −2n−1bn−1 +∑n−2
i=0 2ibi, which reduces to the unsigned representation for

positive numbers (bn−1 = 0), and to the complement to 2n for
negative numbers (bn−1 = 1).1 The range of a type is then:

range(t)
def
={

[0, 28×sizeof (t) − 1] if t is unsigned

[−28×sizeof (t)−1, 28×sizeof (t)−1 − 1] if t is signed .

(5.3)

Typing. We assume that each variable V ∈ V has a user-
provided type type(V ) ∈ int-type. Then, expressions can be
given a type type(expr) ∈ int-type by structural induction.
The C typing rules are somewhat complex, in order to account
for binary operations with arguments of heterogeneous types
and the preference towards a native integer type (denoted as

1In theory, the C standard [ISO07] allows other representations, but
our choice corresponds to the vast majority of architectures.
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int). As a consequence, the value of a sub-expression is of-
ten converted to another type when used as argument to an
operator. In the following, we assume that all these implicit
conversions have been materialized explicitly by cast operators
( int-type ). Without detailing these rules (see [ISO07]), we
illustrate their subtlety on one often overlooked rule: integer
promotion. It states that values of a type smaller than int
are converted to int. This rule causes values with the same
binary representation but different types to behave differently.
For instance, the unsigned byte 255 and the signed byte -1
have the same representation; however, 255 >> 1 = 127 while
(−1) >> 1 = −1. Integer promotion is in fact value preserving
[AI99], as opposed to representation preserving.

Concrete semantics. At the hardware level, integers are
bit strings of fixed length. One way to define the semantics
is thus at the bit level (so called “bit blasting” [BK11]). This
works well when representing value sets explicitly, for instance
with binary decision diagrams [Bry86], but it is not adapted to
abstraction in numeric domains. We provide, instead, a seman-
tics expressed using classic integer arithmetic. The choice of
using integers in Z rather than bit strings is justified when the
intent of the programmer is to use modular integers as mathe-
matical integers most of the time. Hence, arithmetic operators,
such as + and * can be modeled easily as long as no overflow
occurs, while we accept that overflow behaviors and less fre-
quently used operators, such as << and &, are more complex to
model, at the risk of being less precisely abstracted. We oppose
this to binary decision diagram representations that can model
easily & but do not scale up well for some arithmetic operators
such as *. At the language level, it is also justified by the value
preserving property of integer promotion.

The effect of a machine integer operation can be modeled
in two steps, similarly to the way floating-point operations are
performed (Sec. 2.4.4): it first computes an exact integer in Z,
and then maps it to the range of the result type by modular
wrap-around. For instance, we get, for binary operators:

EJ e1 �ω e2 Kρ
def
=

let 〈V1, O1〉 = EJ e1 K ρ in
let 〈V2, O2〉 = EJ e2 K ρ in
〈{wrap(v1 � v2, [l, h]) | vi ∈ Vi, � /∈ {/, %} ∨ v2 6= 0 },
O1 ∪O2 ∪ {ω if � ∈ {/, %} ∧ 0 ∈ V2 } ∪
{ω if ∃v1 ∈ V1, v2 ∈ V2 : v1 � v2 /∈ [l, h] }〉

where [l, h]
def
= range(type(e1 �ω e2))

where the wrap function models wrap-around :

wrap(v, [l, h])
def
=

min { v′ | v′ ≥ l ∧ ∃k ∈ Z : v = v′ + k(h− l + 1) } .
(5.4)

In case of an overflow, our semantics generates an error ω and
outputs the modular result, so that we can alert the user of the
wrap-around behavior while continuing the analysis in case the
wrap-around is intended.

It remains to define the semantics of the operators. The
arithmetic operators +, -, *, /, % have their usual meaning in

Z (with / rounding towards 0 and a % b
def
= a − (a/b)*b). To

provide a semantics for bit-level operators on Z, independently
from the machine representation of a given type, we use 2−adic
integers, i.e., infinite strings of 0 and 1. The 2−adic represen-
tation p(x) ∈ {0, 1}ω of an integer x ∈ Z generalizes the two’s

~x
def
= p−1(¬p(x)) = −x− 1

x & y
def
= p−1(p(x) ∧ p(y))

x | y
def
= p−1(p(x) ∨ p(y))

x ^ y
def
= p−1(p(x)⊕ p(y))

x << y
def
= bx× 2yc

x >> y
def
= bx× 2−yc

Figure 5.1: Definition of bit-wise operators.

complement representation:

(p(x))i
def
=

{
bx/2ic mod 2 if x ≥ 0

¬(p(−x− 1))i if x < 0 .
(5.5)

Note that p is one-to-one on its image { p(z) | z ∈ Z }, which
is exactly the set of infinite strings that are stable, i.e., either
always 0 or always 1 after a certain index. The semantics
of operators can then be defined as shown in Fig. 5.1, using
the element-wise and operator ∧, or ∨, exclusive or ⊕, and
complement ¬. Note that the operations defined in Fig. 5.1 are
directly available in existing arbitrary precision integer libraries
(such as GMP [GNUa]).

5.1.2 Adapting classic domains

Our machine integer semantics is completely defined in terms
of mathematical integers. Thus, we consider abstract domains
abstracting integer-valued environments, with concrete domain

D def
= P(V → Z). We first present existing techniques to adapt

the intervals and polyhedra domains to integers, and show their
shortcomings.

Intervals. The interval domain from Sec. 2.4.1 abstracting
P(V → R) can be easily adapted to machine integers. As
intervals enjoy a Galois connection (Fig. 2.9), we can construct
optimal abstractions of operators. We will not present them in
detail (in particular, +]i , -

]
i , *

]
i are defined as in Fig. 2.11) but

focus on the wrap-around effect. The best abstraction of wrap
is then:

wrap]i([l, h], [l′, h′]) =
[wrap(l, [l′, h′]),wrap(h, [l′, h′])]

if (l′ + (h′ − l′ + 1)Z) ∩ [l + 1, h] = ∅
[l′, h′] otherwise

(5.6)

which returns the full interval [l′, h′] when [l, h] crosses a bound-
ary in l′ + (h′ − l′ + 1)Z. This is the case when the set
{wrap(v, [l′, h′]) | v ∈ [l, h] } is not convex. This case results in
a great a loss of precision, as shown below.

Example 5.1.1. Consider computing:

X ← (signed char)((unsigned char) X+
(unsigned char) Y )

where X and Y have type signed char and range in [−1, 1].
Firstly, the cast to unsigned char computes, in the con-

crete, the set { 0, 1, 255 }. The interval abstraction of this set
is computed as wrap]i([−1, 1], [0, 255]) = [0, 255], which is op-
timal but not exact. Secondly, an addition is performed to
give an int result (due to integer promotion), which gives
[0, 255] +]

i [0, 255] = [0, 510]. Thirdly, the result is cast back
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to signed char, which gives wrap]i([0, 510], [−128, 127]), that
is, [−128, 127]. By comparison, the concrete result would be
[−2, 2]. We note that the concrete result is exactly repre-
sentable as an interval, and that each interval operation is op-
timal but, as the combination of optimal abstractions is not
optimal, the accumulation of imprecision gives a very coarse
interval result.

This example might seem unrealistic, and yet such code
patterns are used in actual industrial code generators, such as
TargetLink [dSp] where they are known as “compute-through-
overflow .”
End of example.

Polyhedra. The polyhedra domain (Sec. 2.4.2) and, more
generally, most relational domains, are based on field prop-
erties of reals that are not true of integers. However, with
a little care, polyhedra can be used to soundly abstract sets
of points with integer coordinates, in P(Zn). The principle
is to keep a syntactic representation based on constraints or
generators with coefficients in Q, but change its meaning: the
concretization γp (2.11) is replaced with γZp that keeps only
integer points:

γZp(P )
def
= γ(P ) ∩ Zn . (5.7)

Then, all the operators described in Sec. 2.4.2 implemented in
rationals are also sound with respect to γZp. However, some of
them that were exact or optimal for γp are no longer exact or
optimal for γZp.

Example 5.1.2. Consider the polyhedron P in R2 defined by
the constraint x = 2y. In integers, it represents γZp(P ) =
{ (x, y) ∈ Z2 | x = 2y }. Then, projecting y in the concrete
gives: SJ y ← [−∞,+∞] K(γZp(P )) = (2Z)×Z, which cannot be
represented exactly as a polyhedron. Applying the polyhedron
projection, we get γZp(S]pJ y ← [−∞,+∞] K(P )) = Z2. Hence,
the projection, which is exact with respect to γp, is no longer
exact with respect to γZp.
End of example.

Note that various methods exist to exploit the restriction
to integer coordinates in order to improve the precision. They
range from simple low-cost integer tightening of constraints,
as used for instance in Apron [JM09], to costly integer linear
programming methods, as in the Omega test [Pug92], but we
will not discuss them further.

We now discuss the problem of modeling machine integer
operations. Most polyhedra libraries only feature abstract op-
erators to model affine assignments and tests, as these enjoy
exact abstractions (on rational at least). Nevertheless, we pro-
posed in Sec. 2.4.3 a technique to abstract non-affine expres-
sions into (interval) affine ones, which can be extended to sup-
port bit-level operators as well: any application of ~, &, |, ^,
>>, << is replaced with an interval obtained by evaluating the
sub-expression using interval arithmetic.

For the cast operation, one simple solution is to test whether
the argument overflows the range of the type. If it does not,
then the semantics of the cast is the identity, and the cast
can be safely ignored. If it does overflow, a wrap-around oc-
curs, and we use the interval domain to compute its result.
Simon and King proposed a more precise wrap-around opera-
tor for polyhedra in [SK07]. It works by cutting polyhedra into
pieces at wrap-around thresholds, folding each piece, and join-
ing them. This method is able to infer affine relations preserved

or induced by wrap-around. However, neither using the inter-
val domain nor Simon and King’s solution is precise enough to
handle Ex. 5.1.1. Indeed, that example requires representing
(at least locally) a non-convex set, which is not possible with
polyhedra, whatever abstraction of wrap-around is used.

5.1.3 Modular intervals

We now propose a very simple variation on intervals in order
to model wrap]i more precisely and handle Ex. 5.1.1. Following
the ideas of Masdupuy [Mas93], we add a modular component
to intervals. The modular interval domain is defined as:

D]m
def
= { [l, h] + kZ | l, h ∈ Z ∪ {±∞}, k ∈ N }

γm([l, h] + kZ)
def
= {x+ ky | l ≤ x ≤ h, y ∈ Z } .

(5.8)

Unlike intervals, this domain does not feature a best abstrac-
tion function αm. We construct our abstract operators ◦]m as
in Fig. 5.2, by mixing standard interval operations ◦]i and sim-
ple coset identities [Gra89]. For the arithmetic operators +]m,
-]m, and *]m as well as the join ∪]m and the widening Om, it
is possible to derive a meaningful modular component form
the component of the arguments. For other operators (such
as /]m), we revert to classic interval arithmetic with no modu-
lar component (i.e., k = 0). The most interesting operator is
wrap]m([l, h] + kZ, [l′, h′]). When the modular interval folded
by wrap-around to [l′, h′] is an interval, it is directly returned.
Otherwise, we return the argument [l, h] + kZ with an extra
modular component (h′− l′+ 1)Z modeling the possible wrap-
around. The ability, in the later case, to keep the bounds l and
h of the original argument intact is key to precisely analyze
“compute-through-overflow” programs, as shown below:

Example 5.1.3. We analyze Ex. 5.1.1 again, using modular in-
tervals. Firstly, casting [−1, 1] to unsigned char gives:

wrap]m([−1, 1], [0, 255]) = [−1, 1] + 256Z .

Hence, we represent exactly the fact that the result equals
[−1, 1] wrapped-around. Unlike intervals, we cannot represent
the fact that it is bounded in [0, 255], but, as it will turn out,
this is not necessary. Then, adding twice this abstract ele-
ment simply gives [−2, 2] + 256Z. Finally, the cast back to
signed char gives:

wrap]m([−2, 2] + 256Z, [−128, 127]) = [−2, 2]

which is the exact concrete result. It is sufficient to know
that the final result is bounded in [−128, 127], due to the last
cast, to recover the interval [−2, 2] from the modular interval
[−2, 2] + 256Z.

End of example.

Compared to the domain proposed originally by Masdupuy
[Mas93], our domain is slightly less expressive. Indeed, the
former infers interval congruences of the form θ · [l, u]〈m〉 while,
in our case, θ is fixed to 1. The main difference lies in the
intended use and the design of abstract operators. Masdupuy’s
domain is designed to infer sets of array indexes encountered in
loops, while our domain focuses on abstracting precisely wrap-
around, and so, revolves around the definition of wrap]m.
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-]m([l, h] + kZ)
def
= [−h,−l] + kZ

~
]
m

([l, h] + kZ)
def
= [−h− 1,−l − 1] + kZ

([l1, h1] + k1Z) ◦]m ([l2, h2] + k2Z)
def
=

([l1, h1] ◦]i [l2, h2]) + gcd(k1, k2)Z if ◦ ∈ { +, -, *,∪,O }
([l1, h1] ◦]i [l2, h2]) + 0Z if k1 = k2 = 0 and ◦ ∈ { /, %, &, |,^, >>, << }
[−∞,+∞] + 0Z otherwise

wrap]m([l, h] + kZ, [l′, h′]) def
=

let k′ = gcd(k, h′ − l′ + 1) in{
[wrap(l, [l′, h′]), wrap(h, [l′, h′])] + 0Z if (l′ + k′Z) ∩ [l + 1, h] = ∅
[l, h] + k′Z otherwise

where gcd is the greatest common divisor, extended to gcd(0, x) = gcd(x, 0) = x.

Figure 5.2: Abstract operators in the modular interval domain.

[c1, c2]]b
def
= (~c1, c1) (when c1 = c2)

~
]
b
(z, o)

def
= (o, z)

(z1, o1) &]b (z2, o2)
def
= (z1 | z2, o1 & o2)

(z1, o1) |]b (z2, o2)
def
= (z1 & z2, o1 | o2)

(z1, o1) ^
]
b (z2, o2)

def
= ((z1 & z2) | (o1 & o2), (z1 & o2) | (o1 & z2))

(z1, o1) <<]b (z2, o2)
def
= ((z1 << n) | ((1 << n)− 1), o1 << n), when ∃n ≥ 0 : (z2, o2) = [n, n]]b

(z1, o1) >>]b (z2, o2)
def
= (z1 >> n, o1 >> n), when ∃n ≥ 0 : (z2, o2) = [n, n]]b

(z1, o1) ∪]b (z2, o2)
def
= (z1 | z2, o1 | o2)

(z1, o1) O]b (z2, o2)
def
= (z1 O z2, o1 O o2), with x O y

def
= if x = x | y then x else − 1

wrap]b((z, o), [0, 2
n − 1])

def
= (z | (−2n), o & (2n − 1))

wrap]b((z, o), [−2n, 2n − 1])
def
= ((z & (2n − 1)) | (−2n(p(z))n), (o & (2n − 1)) | (−2n(p(o))n))

Figure 5.3: Abstract operators in the bit-field domain.

5.1.4 Bit-field domain

While it is precise on wrap-around, the modular interval do-
main is not well-adapted to bit-level operations, such as mask-
ing bits. For instance, V & 5 always gives a result in {0, 1, 4, 5},
which cannot be represented as an interval nor a modular in-
terval. (We will see in Sec. 5.3.3 more realistic examples using
bit masks, in the context of bit-level float manipulations.) A
very natural solution is to complement interval domains with
a domain that tracks the value of each bit independently. Such
a non-relational bit-field domain has been proposed by Mon-
niaux [Mon07] and Regehr et al. [RD06]. These domains ab-
stract a concrete semantics of integers viewed as bit strings
of fixed length. We now show that a bit-field domain can be
constructed on a Z−based semantics, lifting the restriction to
fixed-length bit strings.

The bit-field domain D]b
def
= Z×Z associates to each variable

two integers, z and o, that represent the bit masks for bits that
can be set respectively to 0 and to 1:

γb(z, o)
def
= { b | ∀i ≥ 0 : (¬p(b)i) ∧ p(z)i or p(b)i ∧ p(o)i }

αb(S)
def
= (∨{¬p(b) | b ∈ S }, ∨{ p(b) | b ∈ S }) .

(5.9)
We have a Galois connection which allows defining optimal ab-
stract operators. The most interesting ones are presented in
Fig. 5.3. Note that we only handle the case of constants when
they are singletons, and limit shifts to the case where the right

argument is a positive singleton. In other cases, we can return

the greatest element >]b
def
= (−1,−1) that represents P(Z).

Wrapping around an unsigned interval [0, 2n − 1] is modeled
by masking high bits, while wrapping around a signed interval
[−2n, 2n−1] additionally performs a sign extension. As widen-
ing, we simply set all the bits in a bit mask (setting its value
to −1) if it is not stable. Note that this domain is extremely
easy to implement as the abstract operations can always be
expressed in terms of concrete operations in Z (Fig. 5.1).

5.1.5 Discussion

The modular interval and bit-field domains were described in
[Min12a], and developed as part of our work extending the
Astrée static analyzer to larger classes of programs. Our goal
was to analyze low-level programs that manipulate individual
bits in integers, as well as automatically generated code (in the
spirit of Ex. 5.1.3). The proposed domains are not intended to
replace existing ones (such as plain intervals or relational do-
mains), but to supplement them, through a reduced product,
to gain some precision in very specific cases. Moreover, each
domain is effectively tailored to specific coding practices. This
fits very well the design by refinement of a specialized static
analyzer, such as Astrée and AstréeA, which will be discussed
in Chap. 6. The added domains are lightweight; indeed, they
are non-relational and have a linear time cost. Our experience
[Min12a] shows that adding them does not degrade the per-
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formance of the analysis. They are moreover easy to design
and to implement. This justifies the use of many specialized
small domains instead of fewer large all-purpose ones. Future
work includes the design of new support domains adapted to
other programming idioms, should the need arise to improve
the analysis on newly considered programs.

5.2 Structured types

Additionally to numeric types (such as machine integers and
floats), the C language supports aggregate types (such as ar-
rays and structures) as well as pointers. In this section, we
assume that we are given abstract domains that support ma-
chine integers and floats (based on Secs. 5.1 and 2.4.4), and
show how to extend them to a C-like type system (Sec. 5.2.1).
After presenting a classic semantics for well-structured variable
accesses (Sec. 5.2.2), we show its limitations and introduce a
new, lower-level semantics (Sec. 5.2.3). That semantics models
in precise details the memory representation of types in order
to analyze precisely programs that rely on it.

5.2.1 Extended types

We extend our integer types (5.1) with the following type al-
gebra, accounting for the main features of C:

type ::= scalar -type
| type [n] (arrays, n ∈ N)
| struct {type1, . . . , typen} (structures)
| union {type1, . . . , typen} (unions)

scalar -type ::= int-type | float-type | ptr
float-type ::= float | double

(5.10)
Integers, floats, and pointers are collectively referred to as
scalar types. Note that we use a single type, ptr, to represent
all pointers, disregarding the kind of objects they are pointing
to (it can be assimilated to C’s void* type). Our language
also allows structured types: arrays of fixed size, structures,
and unions. Structures are aggregates storing a fixed collection
of fields of heterogeneous types. Unions are also collections of
fields, but all the fields occupy the same place in memory, so
that only one of them can be stored at a given time (this results
in a gain in memory, but can also be used for special effects as
detailed in Sec. 5.2.3).

Machine integers and floats are both subsets of R. Given a
set of variables V of scalar type, we thus use as concrete domain

DV
def
= P(V → R). We assume that we are given a family of

abstract domains D]V abstracting DV for each V, and we will
lift this family to aggregate and pointer types.

5.2.2 Well-structured semantics

We first consider the simple case where only arrays and struc-
tures are used, but not pointers nor unions, which leads to a
straightforward memory model. Most field-sensitive analyses
follow this model, and this was also the case of early versions of
the Astrée analyzer [BCC+03]. We present briefly this model
mainly to show its limitations and motivate for the lower-level
model we present next.

Cells. In order to retrieve a purely numeric semantics, we
decompose recursively and statically aggregate variables into

expr ::= lval (left-value)
| [c1, c2] (constant)
| ◦ω expr (unary operator)
| expr �ω expr (binary operator)

lval ::= V (variable access, V ∈ V)
| lval .n (field access, n ∈ N)
| lval [ expr ]ω (array access)

stat ::= lval ← expr (assignment)

Figure 5.4: Syntax of expressions with structured types.

collections of scalar-typed fields. To distinguish between the
original set of variables of type in type and the derived vari-
ables of type in scalar -type, we call the latter “cells.” Given
a variable V ∈ V, each cell is a sequence of the form V · p
where p ∈ N∗ is a sequence of integers denoting structure field
and array element selectors; p ranges in sel(type(V )) defined
as follows, based on the type type(V ) of V :

sel(t)
def
= ε if t ∈ scalar -type

sel(t[n])
def
= { i · c | c ∈ sel(t), i ∈ [0, n− 1] }

sel(struct {t1, . . . , tn})
def
= { i · c | c ∈ sel(ti), i ∈ [1, n] } .

(5.11)
We denote by cell the set of all cells in V:

cell
def
=
⋃
{V · p | V ∈ V, p ∈ sel(type(V )) } . (5.12)

A set of memory states is then abstracted in a numeric domain
D]cell abstracting P(cell → R).

Operators. The syntax of expressions is enriched in order
to gain access to aggregate objects: plain variable accesses are
replaced with accesses to lvalues lval (short for “left-value” as
these also appear on the left of assignments) that are sequences
of array and structure field accesses and denote assignable
memory parts. The new syntax is shown in Fig. 5.4. The
concrete semantics of assignments SJ lval ← expr K and tests
SJ expr ./ 0 K is modeled in two steps: lvalues are first replaced
with cell sets (dynamic cell resolution), and then lvalue-less
expressions are fed to the numeric domain D]cell . The first step
involves evaluating (possibly recursively) expressions that ap-
pear as array indexes into value sets. The second step involves
a slight generalization of expressions and statements semantics
(Figs. 2.2, 2.6) to cell sets. Formally, we have:

EJ {X1, . . . , Xn } Kρ
def
= 〈{ ρ(Xi) | i ∈ [1, n] }, ∅〉

SJ {X1, . . . , Xn } ← e K〈R, O〉 def
=
⊔
i SJXi ← e K〈R, O〉 .

(5.13)
An abstract semantics can be derived easily. The first step,
index expression evaluation, can be performed, for instance,
in the interval domain D]i , which additionally allows detecting
array overflows. The second step involves extending the seman-
tics of expressions and statements from Fig. 2.11 as follows:

E]i J {X1, . . . , Xn } KR]
def
= 〈

⋃]
i R

](Xi), ∅〉

S]i J {X1, . . . , Xn } ← e K〈R, O〉 def
=

let 〈I, O′〉 = E]i J e KR
] in{

〈R][X1 7→ I], O ∪O′〉 if n = 1

〈R][∀i : Xi 7→ R](Xi) ∪]i I], O ∪O′〉 otherwise .

(5.14)
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typedef unsigned char uint8;

typedef unsigned short uint16;

union {
struct { uint8 al, ah, bl, bh; } b;

struct { uint16 ax, bx; } w;

} regs;
`1

regs.w.ax = 0x1234;`2

if (!regs.b.ah) `3 regs.b.bl = regs.b.al; `4

else regs.b.bh = regs.b.al;`5

`6regs.b.al = 0xab;`7

// here regs.w.ax == 0x12ab

Figure 5.5: Non-portable use of C unions.

This definition resorts to weak updates when assigning into a
non-singleton set of cells. The case of relational domains, such
as polyhedra and octagons, is only slightly more complicated.
We refer the reader to the work of Gopal et al. on array summa-
rization [GDD+04], which provides example implementations
for weak updates.

Extensions. The C standard [ISO07] defines the semantics
of union types only in the case where a single field is active in
a given environment: the program can only read back from a
union using the same field used for the preceding write. Other
accesses are undefined. It is possible to extend the previous
semantics to support unions if we limit ourselves to the usage
allowed by the standard. A union is modeled as a structure,
plus an extra information tracking which field is active. We
can then abstract a set of environments as a numeric abstract
element, plus a map from unions to the set of possible active
elements.

Moreover, the only well-defined use of pointers in the C
standard corresponds to navigating within arrays. Such pointer
uses can be modeled in our semantics by associating to each
pointer a numeric variable tracking its index, and keeping a
map from pointers to the sets of arrays they can point to.

Remark. Another standard way to support pointers in analyses
is to resolve all pointer dereferences in a separate pass before
the numeric analysis, using one of the many existing points-to
analyses (we refer the reader to the survey by Hind [Hin01]
for more information on points-to analyses). However, there is
experimental evidence [PH99] that combined points-to and nu-
meric analyses are more precise than separate ones. In abstract
interpretation, this is related to the well-known fact that a re-
duced product of abstract domains is more precise than their
product without reduction (Sec. 2.2). Additionally, an analysis
expressed as a combined pointer and numeric analysis benefits
directly from numeric domains to abstract pointer arithmetic.
End of remark.

Limitations. While attractive due to their simplicity, these
extensions are of limited use in practice as many C programs
abuse unions and pointers. Such programs rely on behaviors
that are unspecified or undefined by the standard, but never-
theless ensured by a specific compiler on a given architecture,
and yet, cannot be handled easily in a well-structured mem-
ory abstraction. Figure 5.5 presents a simple C program that
mixes accesses to different fields of a union. It relies on the

uint16 ax, bx;

ax = 0x1234;

if (*(((uint8*)&ax)+1))

*((uint8*)&bx) = *((uint8*)&ax);

else

*(((uint8*)&bx)+1) = *((uint8*)&ax);

*((uint8*)&ax) = 0xab;

Figure 5.6: Non-portable use of pointer casts in C.

sizeof (int)
def
= sizeof (long)

def
= sizeof (ptr)

def
= 4

sizeof (char)
def
= 1 sizeof (short)

def
= 2

sizeof (float)
def
= 4 sizeof (double)

def
= 8

if t ∈ scalar -type, then alignof (t)
def
= sizeof (t)

if t = t′[n], then

alignof (t)
def
= alignof (t′)

sizeof (t)
def
= n× sizeof (t′)

if t = struct { t1, . . . tn}, then

alignof (t)
def
= lcm { alignof (ti) | i ∈ [1, n] }

offset(t, 1)
def
= 0

offset(t, i+ 1)
def
= align(offset(t, i) + sizeof (ti), ti+1)

sizeof (t)
def
= align(offset(t, n) + sizeof (tn), t)

if t = union { t1, . . . tn}, then

alignof (t)
def
= lcm { alignof (ti) | i ∈ [1, n] }

offset(t, i)
def
= 0

sizeof (t)
def
= align(max { sizeof(ti) | i ∈ [1, n] }, t)

where align(o, t)
def
= min {x ∈ (alignof (t))Z | x ≥ o }

and lcm is the least common multiple.

Figure 5.7: System V ABI for a 32-bit architecture.

fact that, when run on the correct architecture (here, an ia32
architecture), after writing 0x1234 into the field ax, the high
order byte of its representation, 0x12, can be retrieved from
ah. Figure 5.6 achieves a similar result, but uses pointer casts.
By converting a pointer on 16-bit integers to a pointer on 8-bit
integers and dereferencing it, the individual bytes of its repre-
sentation can be accessed. This bypassing of the language type
system is often referred to as “type punning .” These two exam-
ples show that statically decomposing the memory into disjoint
parts assigned to independent cells is not always possible: one
must consider possibly overlapping views of the memory. In
the first example, the set of possible views can be derived from
the static type information, i.e., from the type of the union
fields. In the second example, the type of the variable does
not give any insight on the possible ways it may be used: it is
intricately tied to the dynamic value of the pointers when the
cast is executed.

5.2.3 Low-level semantics

We now present a semantics that supports union types and
pointers, and is able to model precisely the examples in Figs. 5.5
and 5.6. Our concrete semantics is based on a low-level byte-
based representation of C variables.
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expr ::= lval (left-value)
| &V (variable address, V ∈ V)
| [c1, c2] (constant)
| ◦ω expr (unary operator)
| expr �ω expr (binary operator)

lval ::= ∗scalar-type,ω expr (dereference)

stat ::= lval ← expr (expression assignment)

Figure 5.8: Syntax of low-level expressions.

Layout. A first step is to make explicit all the assumptions
on the layout of data in memory that a program may rely on:
• the byte size sizeof (t) of each type t ∈ type;
• the offset offset(t, i) of the i−th field of a structure of type t,

i.e., the position in bytes of the first byte of the field relative
to the first byte of the structure;

• the alignment alignof (t) of a type, which imposes constraints
on the offset of structure fields with this type; alignment is
enforced by inserting padding bytes between fields and at the
end of structures;

• the ordering of bytes in scalar types (either least significant
or most significant first).

Hence, the analysis is parametrized by these choices, and will
only be sound for the chosen parameter instance. These choices
are generally documented in an ABI (Application Binary In-
terfaces). Figure 5.7 provides an example definition: it uses a
general algorithm defined in the System V ABI [ATSCOI97] to
derive the sizes, alignments, and offsets in a systematic way by
induction on types, based on the size and alignment of scalar
types. The example definition in Fig. 5.7 matches a standard
32-bit architecture.

Expressions. Our expressions, presented in Fig. 5.8, now
support pointers and pointer arithmetic (overloading the oper-
ators +, - ∈ �). Most of the syntax of lvalues has disappeared.
Indeed, they can be encoded in terms of pointer arithmetic and
dereferences. More precisely, an lvalue l of type t appearing in
an expression is replaced with ∗t,ω(&l), and the & operator is
“pushed inside” using the following rules:

&(l.f)  &l + offset(t, f)
&(l[e]ω)  &l + sizeof (t′)× e where t = t′[n] .

Note that pointer arithmetic is expressed as offset arithmetic,
at the byte level. Note also that our expressions can only return
a scalar value, and we support only assignments of scalars. The
only operation supported on non-scalar objects in C is the copy
assignment, which we can statically convert into a set of scalar
assignments (either field by field or byte by byte).

Pointers. In our language, valid pointers can only be con-
structed by taking the address of a variable and performing
pointer arithmetic. We restrict our analysis to the case of flat
memory models, in which addresses, and thus pointers, are
plain integers.2 However, no assumption can be made on the
base address of variables, which can change each time the vari-
able is recreated (for local variables) or the program is run
again. Hence, we model pointer values as (semi-)symbolic ad-
dresses of the form 〈V, i〉 ∈ V×Z, which indicates an offset of i

2We thus ignore here the case of segmented architectures.

bytes from the first byte of V . This choice is quite standard for
C analyses that take pointer arithmetic into account (see for
instance [WL95] for an early example). We must add a special
pointer value, NULL, to model C’s NULL pointer. Moreover,
we add a special value, invalid, denoting pointers that are
not obtained by taking the address of any variable (e.g., con-
structed by converting from an integer or a float value) and
can thus point anywhere. The set of pointer values is then:

Ptr def
= (V × Z) ∪ {NULL, invalid} . (5.15)

An important subset of Ptr is the subset Addr of pointers
to addressable memory bytes:

Addr def
=
⋃
{ 〈V, o〉 | V ∈ V ∧ o ∈ [0, sizeof (type(V ))− 1] }

⊆ Ptr
(5.16)

where type(V ) denotes the type of the variable V ∈ V. De-
pending on the actual base address of variables, dereferencing
a pointer outside Addr may actually access a valid memory
region (inside another variable) or cause a non-deterministic
error. In order to enforce the (desirable) property that the
program semantics does not depend on the base addresses and
to always consider the worst possible scenario, we consider that
it is a run-time error to access bytes outside Addr. However,
we allow constructing pointers pointing outside Addr, as long
as they are not dereferenced. It also becomes possible, in our
semantics, to start from a pointer to a field of a structure or
union and construct, by pointer arithmetic, a pointer to an-
other field of the same variable and dereference it. Note that all
these operations are undefined in the C standard [ISO07]; our
semantics is thus laxer. While this means that more programs
can be given a semantics, it also means that the analysis will
report fewer kinds of errors than the well-structured semantics
(i.e., violations of the standard that we now accept). In our
experience, the choice of the concrete semantics is a trade-off
and can vary depending on the kind of programs and properties
one wishes to analyze.

Pointer arithmetic is straightforward and reduces to integer
arithmetic on offsets. For instance, adding an integer i to a
pointer p gives:

p+p i
def
=


〈V, o+ i〉 if p = 〈V, o〉 ∈ V × Z
NULL if p = NULL ∧ i = 0

invalid otherwise .

(5.17)

We must however be careful that physically distinct symbolic
pointers may represent the same address and compare equal.
In fact, only distinct pointers to addressable bytes as well as
NULL are guaranteed to be distinct. For instance, if V and W
are 4-byte integers, then the pointers 〈V, 4〉 and 〈W, 0〉 may be
equal if V and W are allocated at contiguous addresses. This
leads to the following definition of equality =p:

p =p p
′ def

= { true | p = p′ ∨ {p, p′} 6⊆ Addr ∪ {NULL} } ∪
{ false | p 6= p′ ∨ {p, p′} 6⊆ Addr ∪ {NULL} }

(5.18)
which returns {true, false} when comparing 〈V, 4〉 and 〈W, 0〉
as, depending on the addresses chosen by the compiler, they
may compare equal or not.
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Byte-based memory model

Our modeling of memory accesses as performing a byte-based
address computation and then dereferencing some data at this
location suggests modeling also the contents of the memory
at the byte level. In the computer, each byte has a value in
[0, 255] but, to account for our symbolic pointers, we enrich
byte values with pairs 〈p, i〉 ∈ Ptr×N denoting the i−th byte
in the memory representation of the pointer value p. Hence
byte values are:

B def
= [0, 255] ∪ (Ptr × N) . (5.19)

An environment is now an element of E def
= Addr → B.

Expressions manipulate scalar values, which may be nu-
meric (machine integers or floats) or pointer values. We denote
the set of values as V:

V def
= R ∪ Ptr . (5.20)

The final component required to define our most concrete
semantics is a representation function benct that converts a
scalar value of a given type t into a sequence of sizeof (t) byte
values, and the conversion back bdect. The conversion is para-
metrized by the type, which defines a binary representation of
scalars (for instance, the scalar 1 has a different byte encoding
when seen as an integer and as a float). An example definition,
corresponding to a 32-bit Intel (i.e., little endian) architecture,
is presented in Fig. 5.9 (the case of floats is omitted here; it
will be handled in Sec. 5.3). Note that the mapping between
byte and scalar values is not unique; hence, the functions benct
and bdect are non-deterministic (they output a set of possible
values). For instance, when decoding with integer type some
bytes representing symbolic pointers, the whole range of inte-
gers is returned.

The functions benct and bdect are used in Fig. 5.10 to give a
meaning to pointer dereferences: bytes are fetched and decoded
with bdect when reading from the memory in an expression
EJ ∗t,ω e K, while values computed by expressions are encoded
to bytes with benct when written into the memory in an as-
signment SJ ∗t,ω e1 ← e2 K. The semantics also reports illegal
memory accesses (i.e., dereferencing non-addressable bytes) as
errors at location ω.

Example 5.2.1. The semantics gives its intended meaning to
our examples from Figs. 5.5 and 5.6. As another example, con-
sider a variable V of type unsigned int. Then, writing a value
v into V and then reading it back with ∗signed int &V reduces
to evaluating (bdecsigned int ◦ bencunsigned int)(v). Given our
definitions of benct and bdect, it turns out to have the exact
same semantics as a regular integer cast: (signed int)v.
End of example.

5.2.4 Cell-based memory model

The byte-based concrete semantics is quite attractive as it can
precisely model the memory and yet all the computations actu-
ally performed by expressions are expressed using only scalars
in V, i.e., mathematical integers and reals (as opposed to bit
blasting). However, abstracting this semantics directly in a
numeric domain is not advisable. Firstly, it requires domains
to abstract two kinds of values: bytes in B (to model envi-
ronments) and scalars in V (to model expression values). A
more severe problem is that the concrete operators (Fig. 5.10)
rely heavily on systematic conversions between the two kinds

of values, and so, the conversions must be precisely approxi-
mated in the abstract domain. At the very least, we would ex-
pect that reading a value with the same type as it was written
last in the memory gives back the exact same value, i.e., that
benc]t ◦ bdec]t = λX.X. This would require relational domains
able to reason precisely on the linear equalities and the dis-
junctions appearing in bdect and benct. This imposes a heavy
burden on the abstract domain and prevents the use of the
most scalable ones, such as intervals.

Concrete semantics

We propose instead to abstract a slightly less concrete seman-
tics, that reasons at the level of cells and scalars only (and not
byte values). The gist of the method, which we introduced first
in [Min06a], is to decompose the memory into a set of possibly
overlapping cells, that evolves dynamically during the analysis.

We first consider the (finite) universe Cell of cells that may
be dereferenced. Each cell is denoted, similarly to pointers, as
a variable V and an offset o, to which we add a scalar type t
indicating an encoding of values:

Cell def
= { 〈V, o, t〉 | V ∈ V, t ∈ scalar -type,

0 ≤ o ≤ sizeof (type(V ))− sizeof (t) } .
(5.21)

By construction, all the bytes in a cell are addressable: we
have 〈V, o〉, . . . 〈V, o + sizeof (t) − 1〉 ∈ Addr. Our domain of
environments, denoted as E[, is modeled as a choice of a cell
set C ⊆ Cell and a set of scalar environments on C:

E[ def
=

⋃
C⊆Cell

{ 〈C, R〉 | R ∈ P(C → V) } . (5.22)

Note that an address in Addr may be covered by several cells,
or none at all. To give a meaning to such environments, we use
a conjunctive semantics: if a concrete element provides several
information on a given byte, then they must be simultaneously
true. Hence, a concrete element 〈C, R〉 ∈ E[ represents the fol-
lowing set γCell〈C, R〉 ∈ P(Addr → V) of byte-level memories:

γCell〈C, R〉
def
= { ρ ∈ Addr → V | ∃r ∈ R : ∀〈V, o, t〉 ∈ C :
∃(b0, . . . , bn−1) ∈ benct(r〈V, o, t〉) :
∀i < sizeof (t) : ρ〈V, o+ i〉 = bi } .

(5.23)
The use of a conjunctive semantics matches the intuition that
union types and type punning may give access to several typed
views of the same underlying sequences of bytes, and that all
these views are valid simultaneously.

Two key operations in our domain are cell addition and
cell removal. Due to our intersection semantics, it is sound
to remove any cell: it corresponds to removing information.
Formally, we have: γCell〈C, R〉 ⊆ γCell〈C \D, R|C\D 〉. It is also
possible to add new cells, as long as we are careful to initialize
their value according to the constraints imposed by existing
cells overlapping them. We use a value synthesize function φ ∈
Cell → P(Cell) → expr such that φ(c)(C) returns a syntactic
expression denoting (an abstraction of) the value of the cell
c as a function of cells in C. An example implementation is
proposed in Fig. 5.11. Firstly, if the cell already exists (c ∈ C),
it is directly returned. Secondly, it converts between integers of
the same size and different signedness using the wrap function
from (5.4). Thirdly, it extracts unsigned bytes from integers,
and aggregates unsigned bytes into integers. When all fails, it

50



5.2. STRUCTURED TYPES

bencscalar-type ∈ V→ P(B∗)

if t ∈ int-type and t is unsigned, then:

benct(v)
def
= { (b0, . . . , bn−1) } where ∀i < n : bi ∈ [0, 255] ∧

∑n−1
i=0 28×ibi = v

if t ∈ int-type and t is signed, then:

benct(v)
def
= { (b0, . . . , bn−1) } where ∀i < n : bi ∈ [0, 255] ∧

∑n−1
i=0 28×ibi =

{
v if v ≥ 0

v + 28×n if v < 0

bencptr(v)
def
= { (〈v, 0〉, . . . , 〈v, n− 1〉) }

bdecscalar-type ∈ B∗ → P(V)

if t ∈ int-type and t is unsigned, then:

bdect(b0, . . . , bn−1)
def
=

{
{x } if ∀i < n : bi ∈ [0, 255] ∧ x =

∑n−1
i=0 28×ibi

range(t) otherwise

if t ∈ int-type and t is signed, then:

bdect(b0, . . . , bn−1)
def
=


{x } if ∀i < n : bi ∈ [0, 255] ∧ x =

∑n−1
i=0 28×ibi < 28×n−1

{x− 28×n } if ∀i < n : bi ∈ [0, 255] ∧ x =
∑n−1
i=0 28×ibi ≥ 28×n−1

range(t) otherwise

bdecptr(b0, . . . , bn−1)
def
=

{
{p} if ∀i < n : bi = 〈p, i〉
{invalid} otherwise

where n = sizeof (t)

Figure 5.9: Byte-encoding and decoding of scalars.

EJ ∗t,ω e1 Kρ
def
=

〈
⋃
{ bdect(ρ(v), . . . , ρ(v +p (n− 1))) | v ∈ V ρ1 , ∀i < n : v +p i ∈ Addr },

Oρ1 ∪ {ω | ∃v ∈ V
ρ
1 , i < n : v +p i /∈ Addr }〉

SJ ∗t,ωe1 ← e2 K〈R, O〉
def
=

〈∅, O〉 t
⊔
ρ∈R 〈{ ρ[∀i < n : v1 +p i 7→ bi] | v1 ∈ V ρ1 , v2 ∈ V ρ2 , (b0, . . . , bn−1) ∈ benct(v2) },

Oρ1 ∪O
ρ
2 ∪ {ω | ∃v ∈ V

ρ
1 , i < n : v +p i /∈ Addr }〉

where 〈V ρ1 , O
ρ
1〉

def
= EJ e1 Kρ, 〈V ρ2 , O

ρ
2〉

def
= EJ e2 Kρ, and n = sizeof (t)

Figure 5.10: Memory reads and write in the byte-based semantics.

returns the full range of the type (or invalid, for a pointer).
Cell addition, add-cell : Cell → E[ → E[, then simply adds the
cell and initializes its value using the φ function:

add-cell(c)〈C, R〉 def
=

〈C ∪ {c}, { ρ[c 7→ v] | ρ ∈ R, v ∈ fst(EJφ(c)(C) Kρ) }〉 .
(5.24)

A cell can sometimes be synthesized in several ways (for in-
stance, when synthesizing a byte which is overlapped by sev-
eral integer cells); in this case, we consider all the possible
choices and intersect their result. There is much freedom in
designing φ, and it is possible to refine it by adding more cases
(for instance, Sec. 5.3 will add float synthesis). The only re-
quirement is to obey the following simple soundness condition,
stating that add-cell over-approximates the identity function:

∀〈C, R〉 ∈ E[, c ∈ Cell :
γCell(add-cell(c)〈C, R〉) ⊇ γCell〈C, R〉 .

(5.25)

The converse inclusion naturally holds as add-cell(c)〈C, R〉 has
more cells than 〈C, R〉, and so, more constraints; in practice,
we thus have an equality in (5.25).

We are now ready to present our concrete cell-based assign-
ments and tests. Similarly to the well-structured semantics, ex-

pressions are first transformed into purely scalar expressions by
resolving lvalues bottom up. More precisely, any lvalue ∗t,ω e
where e does not contain any dereference is transformed into a
cell set by:
• evaluating e into a set of values V and of errors O;
• gathering the cells L corresponding to valid pointers in V :

L
def
= { 〈V, o, t〉 | 〈V, o〉 ∈ V ∧ ∀i < sizeof (t) : 〈V, o + i〉 ∈

Addr };
• realizing all the cells in L using add-cell .

The returned cell set is L, while the returned error set is O
with the possible addition of ω in case some value in V does
not correspond to a valid pointer to a cell. The semantics of cell
sets EJ {X1, . . . , Xn } K appearing in expressions is straightfor-
ward: it is the same as in (5.13). The semantics of assignments
SJ {X1, . . . , Xn } ← e K is slightly more complicated. Because
of our conjunctive semantics, it is not sufficient to update the
value of X1, . . . , Xn as in (5.13); it is also necessary to update
the value of all the cells that overlap X1, . . . , Xn, which may be
complex and costly. We propose an efficient alternate solution:
we simply remove all the cells that overlap X1, . . . , Xn (these
cells can always be created again when needed, i.e., when they
are the target of a read or a write).

In addition to assignments and tests, we require a final
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φ〈V, o, t〉(C)
def
=

〈V, o, t〉
if 〈V, o, t〉 ∈ C

wrap(〈V, o, t′〉, range(t))
else if 〈V, o, t′〉 ∈ C ∧ t, t′ ∈ int-type ∧ sizeof (t) = sizeof (t′)

(〈V, o− b, t′〉/28b) mod 256
else if 〈V, o− b, t′〉 ∈ C ∧ t = unsigned char ∧ t′ ∈ int-type ∧b < sizeof (t′)

wrap(
∑n−1
i=0 28i × 〈V, o+ i, t′〉, range(t))

else if n = sizeof (t) ∧ ∀i < n : 〈V, o+ i, t′〉 ∈ C∧
t ∈ int-type ∧t′ = unsigned char

range(t)
else if t ∈ scalar -type

invalid
else if t = ptr

Figure 5.11: Cell synthesize function.

concrete operator: the join. It must now merge environment
sets defined on heterogeneous cell sets. Given two concrete
elements, 〈C1, R1〉 and 〈C2, R2〉, we first unify the cell sets

into C
def
= C1 ∪ C2 by adding, with add-cell , in R1 and R2,

the missing cells (respectively C \C1 and C \C2) to obtain the
elements 〈C, R′1〉 and 〈C, R′2〉. The result of the join is then
〈C, R′1 ∪R′2〉.

Abstract semantics

As for the well-structured semantics, it is straightforward to
abstract our concrete cell-based semantics using an arbitrary
numeric abstract domain. We assume that we are given, for
each possible cell set C ⊆ Cell, an abstract domain D]C , with

concretization γC ; it abstracts P(C → R) ' P(R|C|), i.e., sets
of points in a |C|−dimensional vector space. A cell of integer or
float type naturally corresponds to a dimension in an abstract
element. We also associate a distinct dimension to each cell
with pointer type; it corresponds to the offset o of a symbolic
pointer 〈V, o〉 ∈ Ptr. In order to abstract fully pointer values,
we enrich abstract environments with a map P associating to
each pointer cell the set of variables it may point to (i.e., the V
components in 〈V, o〉) which we call the pointer base. The base
additionally expresses whether the pointer may be NULL or
invalid. Hence, the abstract domain becomes:3

D]mem
def
=

{ 〈C, R], P 〉 | C ⊆ Cell, R] ∈ D]C ,
P ∈ { 〈c, o, ptr〉 ∈ C } → (V ∪ {NULL, invalid }) }

(5.26)
and the concretization is:

γmem〈C, R], P 〉
def
=

〈C, { ρ′ | ∃ρ ∈ γC(R]) : ∀c = 〈V, o, t〉 ∈ C :
ρ′(c) = ρ(c) if t 6= ptr

ρ′(c) = 〈p, ρ(c)〉 if t = ptr ∧ p ∈ P (c) ∩ V
ρ′(c) = p if t = ptr ∧ p ∈ P (c) \ V

}〉 .

(5.27)

Recall that the cell-based concrete semantics reused the classic
numeric concrete semantics of Sec. 2.3; likewise, the cell-based

3This is a slight over-simplification. In practice, when a pointer cell
admits only values in {NULL, invalid }, its offset dimension is omitted.

abstract operators can be derived from the classic numeric ones
we presented in Sec. 2.3.6. In particular, cell addition can be
expressed as adding a new variable and initializing it with an
abstract assignment, as: S]J c← φ(c)(C) K, and lvalue resolu-
tion methods can reduce the expressions occurring in any as-
signment or test to expressions without dereference (in some
cases, leading to weak updates, as in (5.14)). Pointer expres-
sions are handled by firstly computing the set of possible bases
(which is straightforward as the bases are stored in extension
in the P component of abstract elements), and constructing a
numeric expression expressing the pointer offset, which can be
fed to the underlying numeric domain. The join ∪] reduces,
after unifying the cell sets of both arguments, to a join in the
numeric abstract domain and an element-wise join of sets of
pointer bases. The widening O is constructed the same way,
but uses the underlying numeric widening instead of the join
(while pointer base sets are still joined with unions). This is in-
deed sufficient to enforce the termination because the cell sets
are subsets of the cell universe Cell which is finite, and the set
of pointer bases V ∪ {NULL, invalid} is also finite.

We do not present formally all these operators here, as they
are straightforward; we only illustrate some of them on an ex-
ample and refer the reader to [Min06a] for more information.

Example 5.2.2. Consider the program in Fig. 5.5 using a union
type. We present in Fig. 5.12 the dynamic evolution of the cell
set during an abstract analysis:

1. when the program starts, the cell set is empty;
2. the assignment regs.w.ax = 0x1234 creates a new cell

c1
def
= 〈regs, 0, uint16〉 initialized to [0, 65535], and is-

sues an assignment S]J c1 ← 0x1234 K;
3. the test on regs.b.ah then creates another cell, c2

def
=

〈regs, 1, uint8〉, which is initialized by φ by the assign-
ment S]J c2 ← (c1/256) mod 256 K; the cell c2 is then
used in the abstract tests S]J c2 = 0 K and S]J c2 6= 0 K;

4–5. both the then and else branches create the cell c3
def
=

〈regs, 0, uint8〉 for regs.b.al; the then branch creates

the cell c4
def
= 〈regs, 2, uint8〉 for regs.b.bl, and the

else branch creates the cell c5
def
= 〈regs, 3, uint8〉 for

regs.b.bh;
6. the join after the branches unifies the cell sets by ensuring

that both arguments have the cell set { c1, c2, c3, c4, c5 }.
7. the assignment into regs.b.al is translated into the as-
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Figure 5.12: Cell sets during the analysis of Fig. 5.5.

signment S]J c3 ← 0xab K; the cell c1, which overlaps c3,
is removed as it contents is no longer valid after updating
c3.

In this simple example, all the cells take constant values, so that
an analysis with the interval domain gives a precise result. The
example from Fig. 5.6, containing pointer casts, would similarly
be precisely analyzed.

End of example.

Implementation and experimentation

From the point of view of the analyzer’s programmer, the
cell-based abstract semantics is a functor that lifts any nu-
meric abstract domain to an abstract domain reasoning on
arbitrary C types. While the underlying numeric domain as-
sumes (wrongly) that cells denote independent quantities, the
functor corrects this assumption dynamically by maintaining
the correspondence between cells (i.e., their overlapping) and
issuing cell creation and destruction orders when necessary. A
practical benefit is that it makes it easy to convert an abstract
interpreter supporting only a well-structured semantics into
one supporting a low-level semantics, while reusing all existing
numeric abstract domains. This technique was used to adapt
the Astrée C analyzer (Sec. 6.2), as reported in [Min06a]. In
addition to enabling Astrée to analyze a larger class of soft-
ware, our experiments showed that switching to a cell-based
semantics did not degrade the analysis of software that were
analyzed previously with the well-structured semantics: it does
not change the precision and only slightly increases the anal-
ysis time and memory usage, due to the need to maintain cell
maps in addition to abstract invariants. We refer the reader
to [Min06a, BCC+10a] for a detailed description of the imple-
mentation and experimental results.

5.2.5 Discussion

Precision. Our concrete cell semantics is not complete with
respect to the byte-based one, and this can cause some impre-
cision in the static analysis, whatever numeric abstract domain
is chosen. A main source of incompleteness is the cell synthesis
function φ, which is not exhaustive. Note, however, that φ is a
parameter of the analysis and it can be refined at will, at the
cost of efficiency. Hence, it fits well the design by refinement of
static analyzers such as Astrée (Sec. 6.2). For instance, Sec. 5.3
will present a refinement of φ to expose the binary encoding
of floats. Another source of incompleteness is the choice to re-
move invalidated overlapping cells after an assignment. More
precision could be achieved by keeping and updating overlap-
ping cells. Maintaining more cells results in numeric abstract
elements with more dimensions, and comes at a greater cost.

Compared to the byte-level semantics, there is no system-
atic conversion between scalars and bytes at each memory ac-
cess. Instead, conversions only occur when trying to read a cell
that does not exist, either because no value of the cell’s type
has been written at this location, or because it was removed
by a latter assignment into an overlapping location. Most of
the time, φ(c)(C) simply returns c as the cell already exists;
this is always the case if the program refrains from exploiting
type punning. Hence, our low-level static analysis is a strict
extension of the well-structured analysis and gives the same re-
sults for programs obeying strictly the C standard; and it can
additionally analyze non-conforming programs.

A final, structural cause of imprecision in the analysis is
that pointer bases are abstracted in a non-relational way. Nev-
ertheless, when the underlying numeric domain is relational,
the analysis can infer relations between pointer offsets. It
can also infer relations between pointer offsets and numeric
cells, which shows the benefit of performing a single, combined
pointer–numeric analysis instead of trying to resolve all pointer
values before performing a purely numeric analysis.

Example 5.2.3. If p points to { 〈V, o〉 | V ∈ {X,Y }, o ∈
[0, 10] }, after the assignment q ← p using the polyhedra do-
main, we can deduce that p and q have the same offset, but
not that they point to the same variable.

End of example.

Moreover, using a relational numeric domain also allows retain-
ing and exploiting the relations imposed by φ on the different
views of the same portion of memory.

Example 5.2.4. Consider a variable A covered with cells of

the form ci
def
= 〈A, i, unsigned char〉 for 0 ≤ i < n. Then

∗unsigned short &A creates a cell c initialized with c0 +256×c1.
If the numeric domain can represent the relation c = c0 +256×
c1, then the test ∗unsigned short &A ≤ 1000 will not only refine
the value of c, but also the value of c1.

End of example.

Offset domains. Due to the use of numeric abstract do-
mains to abstract byte-level offsets, we may need to represent
new kinds of numeric properties. In particular, pointers are
frequently aligned, which means that the offsets are multiple
of alignof (t) for some type t (on some processors, dereferencing
non-aligned pointers generates a run-time error). These can be
represented using the non-relational congruence domain intro-
duced by Granger [Gra89]. In more complex cases, such as
traversals of multi-dimensional arrays in nested loops, it might
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be necessary to infer relational congruence properties, for in-
stance by using the linear congruence equality domain, also
proposed by Granger [Gra91].

Related work. There is a relative lack of support in existing
literature for analyses that handle type-punning and creative
uses of union types and pointer operations. These uses are gen-
erally frowned upon, and more research has been devoted to
remove them than to analyze them. This includes the design of
static analyzers employing a well-structured model (such as the
analysis by Whaley and Lam [WL02]) or the construction of
safer dialects of C forbidding them (such as CCured [NMW02]).
These methods would reject constructs that are found legiti-
mate by end-users and force them to rewrite their software.
Our approach, on the contrary, is to understand these con-
structs and provide a precise concrete semantics defining their
correct and incorrect use, before constructing a static analyzer.

Nevertheless, some existing analyses do support low-level
memory operations. This is the case in particular of all field-
insensitive analyses. Yong et al. [YHR99] and Venet [Ven04]
propose mixed approaches, where only the part of the memory
accessed in accordance to the well-structured semantics is ab-
stracted in a field-sensitive way (where the partitioning of the
memory can be performed either prior to or during the value
analysis). Balakrishnan et al. [BR04] and Wilson et al. [WL95]
choose, instead, to use a field-sensitive analysis that returns an
imprecise value (e.g., the whole range of the type) for reads
that do not match the declared C type. Our analysis is more
precise in that it allows the whole memory to be analyzed in
a field-sensitive way and tries to synthesise a precise value for
accesses that do not obey the well-structured semantics.

There is a large body of work [Hin01] on pointer analy-
sis. Many analyses are intended to be used in optimizing com-
pilers, for instance to check pointer aliasing. They naturally
have a large emphasis on scalability over precision. This is the
case, for instance, of the popular unification-based analyses pi-
oneered by Steensgaard [Ste96]. Our context, value analysis,
is quite different: on the one hand we wish for very precise
pointer information in order to limit the amount of weak up-
dates (that degrade the precision of the analysis); on the other
hand, our numeric analysis already uses a field-sensitive, flow-
sensitive (and, in the case of Astrée, context-sensitive) engine.
It is thus natural to include pointers as regular values inferred
by a combined pointer and numeric analyzer. In future work,
we wish however to evaluate the benefit of performing a fast
pointer pre-analysis using one of the existing techniques, with
the hope of simplifying the subsequent combined pointer and
numeric analysis.

5.3 Bit-aware float abstractions

In Sec. 2.4.4, we showed how to abstract floating-point com-
putations using standard numeric abstract domains originally
designed for real arithmetic: we represented floats as reals, and
modeled float computations as real computations and round-
ing as a non-deterministic choice in an interval. This model
is already an abstraction of actual float computations: it loses
some information, but it is sufficient to analyze most programs;
it matches the programmer’s expectation that floats compute
as reals up to some rounding error. In this section, we discuss
a refined concrete model, first introduced in [Min12a], designed
to analyze some programming idioms where this abstraction is

double validate(double d) {
unsigned* p = (unsigned*)&d;

if (((*p & 0x7ff00000) >> 20) == 2047)

d = 0.;

return d;

}

Figure 5.13: Floating-point validation.

union u { int i[2]; double d; };
double cast(int i) {

union u x,y;

x.i[0] = 0x43300000;

y.i[0] = x.i[0];

x.i[1] = 0x80000000;

y.i[1] = i ^ x.i[1];

return y.d - x.d;

}

Figure 5.14: Integer to floating-point conversion.

insufficient. This new model includes the special floats: infini-
ties and Not-a-Numbers (NaN), which were not represented in
the semantics before. Moreover, it takes into account the bit-
level encoding of floats, which can be exposed by type-punning
through the cell-based memory semantics of Sec. 5.2.3. We
then propose a parametric abstract domain based on a well-
chosen set of predicates. Similarly to our work on machine
integers (Sec. 5.1) this abstraction is quite simple and tied to
specific programming patterns; it acts as a complement, not as
a replacement, for more generic domains (such as intervals and
polyhedra).

5.3.1 Examples

Our main motivation comes from the example programs in
Figs. 5.13, 5.14, and 5.15.

Example 5.3.1. Figure 5.13 presents a validation function that
examines the bit-pattern of the double-precision float d in order
to filter out all special numbers (which are replaced with 0). It
always returns a non-special float.
End of example.

Example 5.3.2. Figure 5.14 presents a function that converts
a 32-bit signed integer i to a 64-bit float, using only integer
arithmetic and a float subtraction. It first constructs the float
representation for x.d = 252 + 231 and y.d = 252 + 231 +i using
integers, and then computes y.d − x.d = i in float. As all 32-
bit integers can be represented in a double precision float, this
conversion is exact (there is no rounding error). This program
example is a C version of the assembly code generated by com-
pilers for PowerPC processors (this is necessary because these
processors lack a native instruction to perform the cast). It is
common practice for critical software to use a hand-written C
function instead of relying on compiler-generated code.
End of example.

Example 5.3.3. Figure 5.15 presents (a simplified version of) a
function to compute the square root of a 64-bit float. It first
decomposes the argument d into a mantissa in [1, 4] and an even
exponent. Then, it computes the square root of the mantissa
through a polynomial (for the sake of concision, we omit the
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double sqrt(double d) {
double r;

unsigned* p = (unsigned*)&d;

int e = (*p & 0x7fe00000) >> 20;

*p = (*p & 0x801fffff) | 0x3fe00000;

r = ((c1*d+c2)*d+c3)*d+c4;

*p = (e/2 + 511) << 20;

p[1] = 0;

return d * r;

}

Figure 5.15: Square root computation.

value of the coefficients c1,. . . ,c4) and divides the exponent by
two (with truncation).
End of example.

5.3.2 Concrete semantics

For the sake of presentation, we focus solely on 64-bit double-
precision numbers as defined by the widespread IEEE 754 stan-
dard [IEE85], and assume a big-endian architecture. A 64-bit
float 〈s, e, m〉 is composed, from the most significant bit to the
least significant bit, of:
• a 1-bit sign s;
• a 11-bit exponent e = e10 · · · e0;
• a 52-bit mantissa m = m0 · · ·m51;

which can be described graphically as:

052

52−bit ms

63

11−bit e

Float values F now include, in addition to a finite subset of
reals F, three special numbers: NaN (Not-a-Number), +∞,
and −∞. Hence, we state:

F ⊆ V def
= R ∪ {+∞,−∞,NaN } . (5.28)

The mapping between the bit-encoding of a float and its value
is described by the dbl function in Fig. 5.16. Note that dbl is
not one-to-one as several representations for NaN exist. More-
over, the IEEE 754 standard distinguishes between positive
zero and negative zero, while F has a single, unsigned zero.
These simplifications are justified by the lack of realistic pro-
grams where these differences matter (for instance, +0 and −0
compare equal with the C operator ==).

5.3.3 Abstract semantics

Abstracting float values. We first consider the problem of
abstracting, using a numeric abstract domain, environments
X ∈ P(V → V) that may include special float values. A
straightforward solution is to decompose X into environments
R containing only reals (e.g., replacing special values with zero)
and a map M from variables to the set of special values they
can hold, i.e.:

R
def
= { ρ ∈ V → R | ∃ρ′ ∈ X : ∀V ∈ V :

ρ(V ) = ρ(V ′) ∈ R ∨ (ρ(V ) = 0 ∧ ρ′(V ) /∈ R) }
M

def
= λV . { v ∈ {+∞,−∞,NaN } | ∃ρ ∈ X : ρ(V ) = v } .

(5.29)
Then R can be abstracted using any numeric domain (such as
intervals and polyhedra), while M is represented in extension.

Note that this is an abstraction: special values are maintained
in a non-relational way, which we justify below.

Special values appear for ill-defined operations (e.g., 1/0 =
+∞, 0/0 = NaN ) and obey simple algebraic rules (e.g., −2×
+∞ = −∞, +∞ + −∞ = NaN ). Hence, it is easy to enrich
abstract domain operations to maintain M soundly. Few pro-
grams exploit the algebra of special values; generally, floats are
often meant as an approximation of reals and the occurrence
of a special value is a non-recoverable error. We can model
this in the semantics of expressions by returning a run-time
error ω ∈ Ω instead of an environment at the location of the
offending operator. It is nevertheless useful to represent special
floats in our abstract domain as, although they can no longer
be created as a result of an operation, they can still appear as
program inputs. We wish to analyze programs that input ar-
bitrary (possibly special) values and validate them before use,
as in Fig. 5.13. Thus, our analyzer must handle specials, if
only to prove that they are successfully removed. In this con-
text, where special values are not propagated, a non-relational
information on specials is sufficient.

Bit-level expressions. The bit-level structure of floats can-
not be exposed using only float operations. The examples in
Figs. 5.13 to 5.15 resort to type punning (using pointer casts
and union types). We naturally exploit the low-level memory
model of Sec. 5.2.3 to detect such manipulations, but then rely
on specific numeric domains to model their effect. To enable
some communication between memory and numeric semantics,
we enrich the language of numeric expressions with operators
that convert values based on their bit-representation:

expr ::= dbl-of -word(expr , expr)
| hi-word-of -dbl(expr)

(5.30)

where dbl-of -word converts two 32-bit integers into a 64-bit
float, and hi-word-of -dbl extracts the hi-order 32 bits of a 64-
bit float as an unsigned integer. Their semantics is defined
formally in Fig. 5.18. The operators are not intended to be used
directly in programs; they are introduced by the cell synthesis
function to express a float cell as a function of existing integer
cells, and the other way round. This is achieved by enriching
the φ function from Fig. 5.11 as shown in Fig. 5.17.

Example 5.3.4. In the program of Fig. 5.13, the expression ((*p

& 0x7ff00000) >> 20) == 2047 first triggers the creation of a
cell c = 〈d, 0, unsigned int〉 which is initialized in the numeric
domain by S]J c← hi-word -of -dbl(〈d, 0, double〉) K. Then, the
test is evaluated as: S]J ((c & 0x7ff00000) >> 20) == 2047 K.
End of example.

Predicate abstract domain. It is difficult to envision a
general domain able to reason about arbitrary binary float ma-
nipulations. On the other hand, the programs in Figs. 5.13 to
5.15 are rather idiomatic. Hence, we suggest using a domain
based on pattern matching of expressions to detect selected
predefined uses. It is not sufficient to match each expression
independently as computations are generally spread across se-
quences of statements. We need, in addition, to maintain some
state that retains and propagates information between state-
ments. We maintain this state in a predicate domain D]Pred,
which maps each cell in C to a syntactic predicate in a lan-
guage Pred. The exact language of predicates depends on the
idioms to be analyzed. For instance, to analyze Fig. 5.14, we
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dbl ∈ {0, 1}64 → V

dbl(s, e10, . . . e0,m0 . . . ,m51)
def
=

(−1)s × (1 +
∑51
i=0 2−i−1mi)× 2(

∑10
i=0 2iei−1023) if

∑10
i=0 2iei /∈ { 0, 2047 }

(−1)s × (
∑51
i=0 2−i−1mi)× 2−1022 if ∀i : ei = 0

(−1)s ×∞ if ∀i : ei = 1 ∧ ∀j : mj = 0

NaN if ∀i : ei = 1 ∧ ∃j : mj = 1

Figure 5.16: Bit-encoding of 64-bit floats.

φ〈V, o, t〉(C)
def
=

hi-word -of -dbl(c) if c = 〈V, o, t′〉 ∈ C ∧ t ∈ int-type ∧ t′ = double ∧ sizeof (t) = 4

dbl-of -word(c1, c2) if c1 = 〈V, o, t′〉 ∈ C ∧ c2 = 〈V, o+ 4, t′〉 ∈ C ∧
t = double ∧ t′ ∈ int-type ∧ sizeof (t′) = 4

Figure 5.17: Cell synthesize function for floats.

need to express symbolically the reinterpretation of integers as
floats and the flipping of the high-order bit of an integer, so,
we choose:

D]Pred
def
= C → Pred

Pred ::= >
| c ^ 0x80000000 (c ∈ C)
| dbl-of -word(0x43300000, c) (c ∈ C)

(5.31)

where > denotes the absence of information. The ordering is
a flat one based on syntactic predicate equality:

X] v]Pred Y
] def⇐⇒ ∀c ∈ C : X](c) = Y ](c) ∨ Y ](c) = > .

(5.32)
An abstract element X] ∈ D]Pred denotes the set of environ-
ments that satisfy all the predicates in X], where predicates
are evaluated as expressions using EJ K:

γPred(X
])

def
= { ρ ∈ C → V | ∀c ∈ C :

X](c) = > ∨ ρ(c) ∈ fst(EJX](c) Kρ) } .
(5.33)

We present the abstract operators in Fig. 5.19. They ac-
tually operate on a pair of a predicate and an interval map,
i.e., in a partially reduced product of D]Pred and the interval

domain D]i (Sec. 2.4.1). This is necessary because, on the one
hand, pattern matching of constants requires evaluating ex-
pressions (this way, we are able to match complex constant
expressions, not reduced to syntactic constants) and, on the
other hand, the identities discovered using predicates can lead
to identities expressed with intervals (for instance, when we
discover that a code is equivalent to an exact conversion from
integers to floats, we can safely state that the float bounds are
equal to the integer ones). Assignments c← e and tests e ./ 0
are handled in several steps. Firstly, the predicate abstract
information is used by the combine function to perform some
symbolic computation on the argument expression e. Secondly,
this new expression is used in the interval assignment or test.
Additionally, the assignment c ← e removes the binding for c
in the predicate map, as well as all the bindings where c occurs.
If the assigned expression matches that of a predicate in Pred,
a new binding is created. The abstract join filters predicates
to keep only bindings that are equivalent in both arguments.
There is no need for a widening in D]Pred as the domain is flat.

As for the choice of predicates in (5.31), the abstract oper-
ators we have chosen were especially tailored for the analysis
of the conversion example from Fig. 5.14.

Example 5.3.5. Consider the analysis of Fig. 5.14 and, more
precisely, the evaluation of y.d - x.d. Just before this expres-
sion, the interval domain states that x.i[0] and y.i[0] equal
0x43300000, while x.i[1] equals 0x80000000. Moreover, the
predicate domain states (symbolically) that y.i[1] equals i ^
x.i[1]. The first step of the evaluation of y.d - x.d is per-
formed by the memory domain: it creates two cells c1 (for x.d)
and c2 (for y.d) initialized respectively as:

S]PredJ c1 ← dbl-of -word(x.i[0], x.i[1]) K
S]PredJ c2 ← dbl-of -word(y.i[0], y.i[1]) K .

These synthetic assignments induce the predicates:

c1 = dbl-of -word(0x43300000, x.i[1])
c2 = dbl-of -word(0x43300000, y.i[1]) .

Finally, the memory domain passes the expression c2 − c1 to
the predicate domain, which transforms it into (double)x.i[1]
by the pattern matching in combine, and passes it to the in-
terval domain. Hence, the interval domain only sees a regular
conversion from integers to floats.
End of example.

Due to the lack of space, we describe only very concisely
how our two other examples, in Figs. 5.13 and 5.15, can be han-
dled. To handle them, it is necessary to extend the predicate
language and the abstract functions. As our examples extract
the high-order word of their float argument, we enrich Pred
with the predicate hi-word-of -dbl(c), where the parameter c
denotes a float cell. Secondly, as these examples use bit-wise
operations to apply bit-masks, we perform a reduced product
between our predicate domain and the bit-field domain from
Sec. 5.1.4, in addition to the interval domain. The validation
example of Fig. 5.13, additionally uses a reduction with the
maps P storing the set of special values contained in a cell
(5.29). In all cases, the domain is straightforward and all the
subtlety lies in the reduction: it must transfer information be-
tween the various numeric abstractions, based on equivalences
of the form c1 = hi-word-of -dbl(c2) discovered by the predicate
domain.
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EJ hi-word-of -dbl(e1) Kρ def
= 〈{

∑31
i=0 2ibi+32 | ∃b0, . . . , b31 : dbl(b63, . . . , b0) ∈ V ρ1 }, O

ρ
1〉

EJ dbl-of -word(e1, e2) Kρ def
= 〈{ dbl(b131, . . . , b

1
0, b

2
31, . . . , b

2
0) | ∀j ∈ {1, 2} :

∑31
i=0 2ibji ∈ wrap(V ρj , [0, 2

32 − 1]) }, Oρ1 ∪O
ρ
2〉

where 〈V ρ1 , O
ρ
1〉

def
= EJ e1 K ρ and 〈V ρ2 , O

ρ
2〉

def
= EJ e2 K ρ

Figure 5.18: Concrete semantics of bit-level conversions between floats and integers.

S]PredJV ← e K〈X]
p, X

]
i 〉

def
=

let Y ]i = S]i JV ← combine(e,X]
p, X

]
i ) KX

]
i in

let Y ]p = λW. if W = V or V ∈ var(X]
p(W )) then > else X]

p(W ) in

if ∃e1,W : e = W ^ e1 ∧ E]i J e1 KX]
i ∈ {{2

31}, {−231}} then

〈Y ]p [V 7→W ^ 0x80000000], Y ]i 〉
else if ∃e1,W : e = dbl-of -word(e1,W ) ∧ E]i J e1 KX]

i = {1127219200} then

〈Y ]p [V 7→ dbl-of -word(0x43300000,W )], Y ]i 〉
otherwise

〈Y ]p , Y ]i 〉

S]PredJ e ./ 0 K〈X]
p, X

]
i 〉

def
= 〈X]

p, S]i J combine(e,X]
p, X

]
i ) ./ 0 KX]

i 〉

X]
p ∪]Pred Y

]
p

def
= λV . if X]

p(V ) = Y ]p (V ) then X]
p(V ) else >

where combine(e,X]
p, X

]
i ) replaces sub-expressions of the form V1 - V2 in e with (double)I when:

∃V ′1 , V ′2 : ∀j ∈ {1, 2} : X]
p(Vj) = dbl-of -word(0x43300000, V ′j ) ∧

X]
p(V

′
1 ) = I ^ 0x80000000 ∧X]

i (V
′
2 ) = [−231,−231]

and var(p) denotes the set of cells appearing in the predicate p.

Figure 5.19: Abstract operator examples in the partially reduced product D]Pred ×D
]
i of the predicate and interval domains.

Experiments. We have implemented the predicate domain
in the Astrée analyzer (described in Sec. 6.2) in order analyze
programs featuring some idiomatic manipulations of floats at
the bit level, similar to the examples in Figs. 5.13 to 5.15. Our
experience shows that the predicate domain is scalable and its
added cost is negligible with respect to the domains already
included in Astrée. This comes as no surprise as the predi-
cate domain maintains a single, small information per variable
and the abstract operators only perform simple reductions with
non-relational domains. By design, it is precise enough to an-
alyze the idioms embedded in its predicate language. We refer
the reader to [Min12a] for the detailed experimental results.

The domain is parametrised, but adapting it to new idioms
requires developing new abstract functions, which is a costly,
non-automated process. So, a natural question is whether the
design by refinement scales up. In our experience, refining
the predicate domain was never a bottleneck: a fixed set of
a dozen predicates is sufficient to analyze our code base of
several millions of lines. We attribute this to the facts that
the predicates are sufficiently generic and the reduction with
the numeric domains provide sufficient semantic information
to balance the syntactic nature of the predicates.

5.3.4 Future work

A natural continuation of this work is to keep enriching the
domain when needed by novel idioms encountered in newly
analyzed programs, with the hope of building a library of pred-
icates covering most analysis needs. Future work include alle-
viating the burden on the analysis designer when the domain
needs to be refined. We could envision more general pred-
icates and more powerful propagation methods (possibly at

the expense of scalability). An attractive solution consists in
transferring some burden to the end-user by allowing him to
add predicates and rules using a dedicated language (a source
of inspiration for this is the TVLA system [LAMS04], which
defines such a language for parametric shape analysis).

5.4 Conclusion

In this chapter, we have proposed an heterogeneous set of do-
mains, with the common purpose of switching from the static
analysis of an idealized language (whether it is a pure numeric
language, as introduced for the sake of formal exposition in
Sec. 2.3.1, or the abstract, fully-portable C language described
by the C specification) to a static analysis of a real language
(the C language as it is used most often in practice). This
chapter shows, in particular, the importance of providing an
adequate concrete semantics, capturing precisely the complex
effects of actual languages (such as two’s complement arith-
metic or type punning) in a clear, mathematical way. Once
the concrete semantics is defined, the solutions to abstract it
often follow without effort.

These domains found an application in our static analyzers
for C programs, Astrée and AstréeA. In fact, applications often
came first, bringing the need to refine the analysis by the con-
struction of new, adapted domains. Language implementations
are pragmatic, as they must take into account the limitations
of hardware. Our domains are pragmatic as well. The classic
domains discussed in Chap. 2 and the domains we introduced
in Chap. 4 were constructed on an ideal semantics, and the
domains we introduced here sometimes lack their formal per-
fection. Faced with a lack of Galois connections and optimal
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operators, we rely on practical use-cases and experiments to
guide the design of our abstractions.
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Chapter 6

Applications

One of the expected results of our work is the development
of new static analysis methods that have practical usefulness
and positively impact the quality of software. We thus spend
significant efforts to implement the proposed techniques and
validate them by experiments. While the soundness of the
methods is guaranteed by our careful application of the ab-
stract interpretation methodology, its actual usefulness is not.
Firstly, it is important to assess the efficiency of the methods
and their capacity to scale up to realistic programs (that now
count in millions of lines of code). Secondly, it is necessary
to assess their precision as they are, by necessity, incomplete.
The use of non-exact and non-monotonic abstract operators
(in particular widenings) makes the theoretical prediction of
the precision on actual analyses quite difficult. Thirdly, ex-
periments become an integral part of the analysis development
when considering specialized analyzers aiming at proving a spe-
cific class of properties on a specified class of programs with few
or no false alarm. In this context, the classes of programs and
properties are set first, and the abstractions developed later,
so that only experimentation provides a measure of the success
of those abstractions. Moreover, experimental failures provide
a positive feedback as they uncover the need for more complex
abstractions, trigger a refinement of the specialized analyzer,
and drive further the research on static analysis by abstract
interpretation, until the precision goal is reached.

For these reasons, we have implemented and tested all the
static analysis techniques introduced in this report. This is a
time-consuming task, that can only be envisioned as a team ef-
fort. We participated in two kinds of implementations. Firstly,
we developed research tools, intended for academic use. They
provide reusable components that can be easily perused by aca-
demic peers, integrated into a variety of academic tools, thus
encouraging further researches. The core example is the Apron
library of numeric abstractions, described in Sec. 6.1. Secondly,
we developed analysis tools intended for industrial use. They
can be directly applied to real programs with minimal knowl-
edge of abstract interpretation. A first example is the Astrée
analyzer, dedicated to proving the absence of run-time error
in embedded synchronous C programs (Sec. 6.2). Astrée is
now industrialized by AbsInt [Abs]. A second example is the
AstréeA analyzer, that extends Astrée to analyze concurrent
programs (Sec. 6.3). AstréeA is still a prototype in heavy de-
velopment, but nevertheless targets realistic programs and is
intended to be industrialized.

6.1 Apron: numeric abstract domain library

Apron is a library of numeric abstract domains. It was devel-
oped mainly by Bertrand Jeannet and myself. Its development

started in 2006, following the theoretical work during a French
project, also named Apron, coordinated by François Irigoin.
The Apron library is described in the publication [JM09] and
available on-line [JM06].

Motivation. Apron has three main goals.
Firstly, it provides a robust and versatile implementation

of classic abstract domains under a common API. We wish to
facilitate the work of analysis implementers by providing ready-
to-use building blocks. The common API makes it possible to
switch between and experiment with the various domains with
minimal effort. Moreover, bindings are available for a variety
of popular languages: C, C++, OCaml, and Java.

Secondly, it encourages the research in numeric abstract
domains. Apron provides a platform allowing the integration
of new domains with minimal efforts. Domain implementers
benefit from a ready-to-use toolbox facilitating domain devel-
opment: scalar and interval arithmetic in many types (machine
integers and floats, but also arbitrary precision integers and
rationals through the GMP library [GNUa], and extended pre-
cision floats through the MPFR library [GNUb]), operations
on affine expressions, interval affine expressions, as well as ar-
bitrary expression trees. Domain implementers are required to
provide only a core set of operators, as many operations benefit
from generic fallback implementations (these can be overloaded
with custom ones if the domain implementer sees a benefit in
it, such as improved efficiency).

Thirdly, it provides a teaching and demonstration tool to
disseminate knowledge on abstract interpretation. Apron is
freely available on-line under the LGPL license [JM06]. It is
accompanied with a sample static analyzer, Interproc [LAJ11],
developed by Gaël Lalire, Mathias Argoud, and Bertrand Jean-
net. It performs a forward and backward analysis to infer in-
variants on a toy inter-procedural numeric language. Interproc
is intuitive and can be used on-line from a Web browser without
installation.

Principles. A distinguishing feature of Apron is that its API
is not tied to a specific abstract domain, but rather to a con-
crete semantics. This in unlike many other libraries, which only
provide exact or best abstractions for operations matching the
expressive power of one domain, ignoring other operations, and
give access to the internal representation of abstract elements
(examples include the Parma Polyehdra Library [BHZ08], as
well as the NewPolka and octagon library precursors to Apron).
By contrast, a domain in Apron is only required to implement
a sound abstraction of the concrete semantics, using best effort
to ensure a good precision despite the limited expressiveness of
the domain and its implementation details (for instance, in case
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float arithmetic is used internally). This enables Apron to ex-
pose a rich set of semantic operations, which are supported by
all domains. These include: assignments, tests, and substitu-
tions of affine and non-affine expressions, including the support
for integer and floating-point expressions and non-deterministic
expressions, joins, meets, widenings, narrowings, projections,
as well as a host of less standard operations such as: n-ary joins,
parallel assignments, dimension folds and expands [GDD+04],
etc. Hence, many kinds of program semantics can be directly
mapped to Apron operators.

Included abstractions. In addition to its well-defined API,
Apron is useful for the abstractions it already contains. Apron
includes an implementation of the polyhedra domain based on
the double description method and exact rational arithmetic
[CH78] and its restriction to affine equalities [Kar76]; it also
includes an implementation of the octagon domain [Min06b]
and the interval domain [CC76] with bounds of arbitrary type.
More recently, the Zonotope domain [GGP09] was added to
Apron. On relational domains, non-linear and floating-point
expressions are handled using linearization [Min04a]. These
domains also support integer tightening to model more pre-
cisely integer-valued variables. The library currently consists
of 130,000 lines of C, C++, OCaml, and Java.

Applications. The Apron library has been used in several
research projects, including the construction and experimen-
tation of real-life analyzers [OHL+12]), the inference of non-
numeric invariants [BDES12], the inference of properties be-
yond invariants such as termination [BCC+07], and novel uses
of abstract interpretation such as solving constraint program-
ming problems [PMTB13]. We also used Apron in our re-
search work described here: all the abstract domains developed
in Chap. 4 were implemented as proofs-of-concepts by Liqian
Chen in the Apron library and tested using Interproc.

Apron is now a stable platform for research. In the future,
we wish to enrich Apron with new domains, in particular: ro-
bust versions of the domains developed in Chap. 4, and the
most popular domains proposed in the recent literature (such
as template polyhedra [SSM05]).

6.2 Astrée: proving the absence of run-time
error in synchronous embedded C soft-
ware

Astrée is a static analyzer by abstract interpretation checking
for the absence of run-time error in embedded C programs. It
has been developed since 2001 at ENS by the Abstraction team:
Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret,
Laurent Mauborgne, David Monniaux, Xavier Rival, and my-
self. Astrée is industrialized and made commercially available
since 2009 by AbsInt [Abs]. Astrée stands for Analyseur sta-
tique de logiciels temps-réel embarqués, i.e., real-time embed-
ded software static analyzer.

This section only briefly describes Astrée. We refer the
reader to [BCC+10a] for more information, as it is the most
comprehensive and up-to-date publication on Astrée. Sev-
eral additional articles describe the scientific aspects of Astrée
[BCC+02, BCC+03, CCF+06, CCF+07, CCF+09, BCC+10b],
while others focus on its industrial use [DS07, SD07, BCC+09,

KFW+09, KWN+10, BCC+11]. More information on Astrée
is also available on its web-site [BCC+].

I started working on Astrée from its beginning, in 2001.
My early contributions are reported in my PhD [Min04b]. I
continued working on Astrée after my PhD, in particular by
developing the abstractions described in Chap. 5 and by ex-
tending it to parallel programs (Sec. 6.3).

6.2.1 Scope and limitations

Language. Astrée accepts programs written in a large subset
of C 99 [ISO07]. However, it does not support dynamic memory
allocation nor recursivity. Given that Astrée targets embedded
software, this is not a strong limitation: these features are
generally forbidden in such software. Astrée does not support
parallel nor concurrent software (this imitation is addressed by
AstréeA, in Sec. 6.3). Astrée performs a monolithic analysis
of whole programs, which must not contain undefined symbols.
The source code of all libraries or, alternatively, stubs modeling
their effect, must be provided. The range of input values (such
as memory-mapped registers of input devices) must also be
specified. The analysis is sound only with respect to these
model stubs and input specifications.

Semantics. The semantics of Astrée is based on the C99
standard [ISO07] (including stubs modeling the standard C li-
brary), supplemented by the IEEE 754 standard [IEE85] defin-
ing floating-point computations.

Given the low-level nature of most C programs, the C lan-
guage standard is surprisingly high-level and abstract: many
features are not specified concretely in order to allow differ-
ent interpretations by compiler designers. The actual effect of
under-defined features can range from producing a well-defined
and documented outcome on a given implementation to pro-
ducing a completely non-deterministic effect, possibly causing
the program to exhibit erratic behaviors at some later point
(for instance, when silently corrupting the memory). The large
majority of C programs are not portable and make specific hy-
potheses about some of these behaviors. This is especially the
case in embedded programs, which are designed to run on a
single platform and often require a low-level access to the sys-
tem. Thus, it is important when analyzing them to take this
refined semantics into account.

As a consequence, the semantics used by Astrée is actually
slightly stricter and much lower-level than that of the C stan-
dard. It assumes two’s complement integer arithmetic, a flat
memory model (pointers as integers), and it models precisely
the layout of variable fields in memory. It is also more permis-
sive, allowing type-punning as described in Sec. 5.2.3. Finally,
it is parametrized by platform-specific choices, such as the bit-
size and alignment of types, the byte ordering (endianess), etc.
Once the platform parameters are fixed, an analysis is only
sound with respect to the program executions on this platform.

Run-time errors. Astrée performs a value analysis in order
to check for run-time errors. Such errors include:
− overflows in signed and unsigned arithmetic,
− division and modulo by zero,
− bit shifts exceeding the bit-size of arguments,
− invalid values for enumerated types,
− overflows and invalid operations in float (generating infini-

ties or NaN ),
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C parser
↓

syntax tree linker
↓

constant propagation
↓

automatic parametrization
↓

abstract interpreter (Fig. 6.2)

Figure 6.1: Architecture of Astrée.

− out-of-bound array accesses,
− invalid, NULL, dangling, or unaligned pointer dereferences,
− invalid pointer arithmetic or comparison,
− violated user assertions (arbitrary boolean C expressions).

Most errors correspond to a lack of conformance with respect to
the definition of the language (such as: no division by zero) or
good programming practices (such as: no wrap-around). How-
ever, assertions allow the user to specify its own safety require-
ments and introduce a slight amount of functional property
checking. The analysis is sound in that it reports all run-time
errors in the above list. Due to abstractions, it is incomplete
and may report false alarms but, if the analysis reports no
alarm, then the program is effectively free of errors.

In addition to defining which behaviors cause run-time er-
rors, the semantics must also specify the behavior of the pro-
gram after a run-time error. Three choices are possible. Firstly,
the program can have a well-defined behavior; for instance, an
integer overflow silently results in a modular wrap-around. De-
spite its benign nature, this class of errors is useful to warn the
programmer that the actual semantics may differ from the in-
tended or natural one, such as the semantics in perfect integers
Z. Secondly, the program can have a range of specified behav-
iors; for instance, an invalid arithmetic operation may result in
any value in the type of the expression to be returned. Thirdly,
the program can halt. This last case is used to model actual
program termination (such as an uncaught signal caused by a
division by zero), but also cases where the outcome is truly
unpredictable (such as a memory corruption caused by writing
through an invalid pointer) and there is no meaningful way to
analyze the program after the error occurs. The semantics af-
ter each kind of run-time errors can be parametrized to suit
the intended platform and programming rules.

An important point is that Astrée tries as much as possi-
ble to continue analyzing program executions, even those that
exhibit errors. This requires more complex concrete semantics
and abstractions (e.g., taking wrap-around into account, as in
Sec. 5.1), but rewards us with a more powerful analyzer, able
to precisely analyze low-level programs that exhibit these be-
haviors on purpose. By contrast, an analyzer stopping at each
benign error would leave large parts of such programs unana-
lyzed.

6.2.2 Architecture

Front-end. As shown in Fig. 6.1, the analysis starts by pre-
processing and parsing the C sources. Each C file is con-
verted into an abstract syntax tree; they are then merged by a
linker to resolve symbols and incomplete definitions. A simple
and fast intra-procedural constant analysis is then performed,

iterator
↓

trace domain
↓

memory domain
↓

pointer domain
↓

reduced product of numeric domains

×

octagons ×

filters ×

decision
trees

��

intervals

intervals

Figure 6.2: Abstract domain hierarchy in Astrée.

in order to remove constant variables and simplify the pro-
gram before more costly analyses are performed. An automatic
parametrization phase then occurs. It consists in examining
the program to determine which variables and which parts of
the code would benefit from an improved precision, such as
inferring relational or disjunctive properties. The automatic
parametrization is based on simple syntactic pattern match-
ing algorithms. For instance, we identify loop counters, array
search loops, and boolean variables encoding control informa-
tion. The result serves to parametrize the subsequent abstract
analysis.

Iterator. The abstract analysis itself is performed as an ab-
stract interpretation by induction on the program syntax, in
the spirit of the big-step semantics of Sec. 2.3.5, but extended
to the more complex control structures offered by the C lan-
guage. When encountering a function call, the interpreter calls
itself recursively to analyze it. Hence the analysis is both fully
flow-sensitive and context-sensitive (this also explains the lack
of support for recursive functions in the language). Jumps,
such as gotos, breaks from loops, and early returns from func-
tions, disrupt the normal flow of a structured program; they are
integrated into the big-step semantics by using continuations
(i.e., we maintain a table of abstract environments for jump
instructions the target of which has not been encountered yet).
Backward gotos, which are equivalent to loops, are handled by
extra function-level iterations with widening.

Abstract domains. Astrée has a modular design: instead
of using a single abstraction, it uses a combination of many
abstract domains. This is illustrated in Fig. 6.2.

Firstly, Astrée employs trace partitioning [MR05], a tech-
nique to improve the precision of abstract analyses by imbuing
them with a small degree of path-sensitivity: at a given pro-
gram point, we distinguish environments coming from different
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classes of execution paths, which are abstracted separately, en-
abling a limited form of disjunctive invariants. This is imple-
mented in Astrée as a generic functor that lifts any (trace-
unaware) state abstraction into a trace abstraction. Trace
partitioning can be costly, and so, it is only applied to the
parts of the programs that have been selected by the automatic
parametrization.

The pointer and the memory domains add the support for
pointer data-types and structured C data-types (arrays, struc-
tures, unions) to plain numeric abstractions. They follow the
technique described in details in Sec. 5.2.4.

Finally, numeric environments (composed of only machine
integers and floats) are abstracted using a reduced product of
numeric domains. We find there the interval domain, which is
quite important as it is scalable and infers the bounds required
to express the absence of run-time error. Figure 6.2 shows a
few other example domains used in Astrée: octagons [Min06b]
to infer a limited subset of affine relations, a domain specialized
for the analysis of digital filters [Fer04], and a domain to parti-
tion numeric invariants with respect to boolean variables based
on decision diagrams [Bry86]. In total, Astrée, features over 30
numeric domains, many of which are described in [BCC+10a].
More costly domains, such as octagons and boolean partition-
ing, are only applied to the variables selected by the automatic
parametrization. Astrée performs a partial reduced product
of these domains and it is very parsimonious in the amount
of information exchanged between them (given the large num-
ber of domains, propagating each invariant to every domain
would not scale up). We use a modular framework for domain
communication, including the ability for domains to request in-
variants of a specific shape and to broadcast a portion of their
invariants; it is described in details in [CCF+06].

6.2.3 Specialization

Principle. The main difference between Astrée and other
sound static analyzers for C based on abstract interpretation
(such as [Ya, The]) is that it is specialized: Astrée is de-
signed to perform with a high precision (few or no false alarm)
and efficiency on a specific class of programs, while other pro-
grams are analyzed soundly but possibly imprecisely or less
efficiently. Astrée has thus been specialized towards embedded
control-command avionic software, and later extended to em-
bedded space control-command software. The specialization
corresponds to choosing a specific set of abstract domains and
control/precision trade-offs. The specialization is achieved by
considering a set of representative programs in the class of in-
terest and iteratively refining the abstractions until no false
alarm remains on this set. We describe this process below and
refer the reader to [CCF+07] for a more detailed comparison
between Astrée and other static analyzers.

Target codes. Control-command embedded software, tar-
geted by Astrée, generally have a simple form, described by
the following pseudo-code:
• initialize state variables;
• loop for the duration of the mission (e.g., 10h):
− read input variables from sensors;
− update state variables and compute output variables;
− output variables to actuators;
− wait for next clock tick (e.g., every 10ms).

Thus, programs are composed of a large synchronous loop,
driven by a clock, that computes a flow of outputs based on a
flow of inputs. (This is, of course, a simplified view; in prac-
tice, the body of the loop is broken into functions; the input,
compute, and output steps may be intertwined; some compu-
tations may be triggered only at some multiple of clock ticks.)
The computation performed at each iteration step is numeric
intensive (using mostly floating-point arithmetic). Moreover,
boolean state variables are used to store and propagate control
information from one iteration to the following ones.

Programs are generally quite large, from 100 Klines to more
than 1 Mlines (most of which are effectively executed at each
loop iteration), and have a large state (around 10 K global
variables, the value of which must be tracked from one loop
iteration to the other).

Another feature of these programs is that they are automat-
ically generated from graphical block-languages, such as Scade
[Est]. One benefit is that the programs are very regular: they
are composed of many instances of a small set of hand-written
macro-instructions. The disadvantage is that code generators
often group unrelated computation arbitrarily and flatten any
high-level structure the original program may have.

Abstraction refinement. We started in 2001 with a sim-
ple interval analyzer, which is fast but quite coarse. We then
iteratively refined the analyzer based on its result on our tar-
get programs. By examining by hand the alarms it raised, we
were able to determine that some properties required to prove
the absence of error were not inferred by the analyzer. We
proceeded to construct the relevant abstract domains and add
them to Astrée. In some cases, this consisted in implement-
ing in Astrée an existing domain. For instance, the need for
simple relational loop invariants (Ex. 2.4.2) triggered the ad-
dition of the octagon domain [Min06b]. We also encountered
the case where no domain existed to infer the required invari-
ants, and new domains had to be designed. An example is the
digital filter domain developed by Feret [Fer04]. The need for
this domain is closely tied to our target application domain,
avionic control-command software, where such digital filtering
is commonplace, while it may not occur in other kinds of em-
bedded software. Hence, Astrée is specialized to an application
domain by the choice of its abstractions. Note that this refine-
ment process is greatly facilitated by the modular design of
Astrée, allowing us to easily add a new domain or modify a
domain independently from the others.

As we start from an efficient analyzer and only add precision
when actually needed, the result remains an efficient analyzer.
This is in contrast to methods that reduce the problem at hand
to a class of well-studied but very costly problems (such as the
inference of arbitrary affine relations with polyhedra, that do
not scale up well, while octagons may be sufficient to solve the
problem at hand and are more efficient).

We stress on the fact that the refinement process cannot
be achieved by automatic means as it is done, for instance,
in counter example guided abstract refinement [CGJ+00] (CE-
GAR). Indeed, refinement in CEGAR consists in automatically
selecting a finite subset of potential invariants in an fixed in-
finite domain (such as Vi − Vj ≤ c for a finite set of c) which
is not needed in our case as we employ infinite domains with
widening [CC92b] (such as octagons, that represent directly
the infinite family Vi − Vj ≤ c). In the context of Astrée,
by refinement we mean switching to another infinite family of
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properties (e.g., to analyze digital filters), which requires the
design of a new domain; it is an intellectual process out of the
reach of current automatic refinement methods.

In some circumstances, adding a new abstract domain is not
actually necessary and Astrée already posses a domain able to
represent the required invariant. It is thus sufficient to enable
the domain where needed, which is achieved by refining the
automatic parametrization that selects the degree of relation-
ality and path-sensitivity (for instance, we can consider more
variables in octagons). Additionally, we may need to refine
the communications between the sdomains so that the invari-
ants inferred by one domain can be effectively exploited by the
other ones (for instance, propagating bounds from octagons to
intervals).

Semantic specialization. In addition to improving the pre-
cision of the analysis by refining its abstractions, it was also
sometimes necessary to refine the concrete semantics. Indeed,
we started in 2001 with a high-level semantics that was very
close to the C specification and left undefined many aspects of
the language. They were modeled either as errors that stop
the program or errors that return a large set of possible val-
ues. Later, we encountered programs that made very precise
hypotheses on the semantics of some operations that are unde-
fined by the C standard but perfectly well defined and docu-
mented on their particular platforms. This triggered the work
described in Chap. 5. More precisely, our initial semantics of
signed and unsigned integer overflow was non-deterministic,
and later refined to wrap-around (Sec. 5.1). Likewise, we first
assumed that no infinity nor NaN float could be constructed
as these cause run-time errors, before modeling them precisely
in our semantics in order to analyze programs that manipu-
late them (Sec. 5.3). The largest change consisted in switching
from a well-structured semantics of memory to a low-level one
allowing unrestricted pointer arithmetic, casts, union types,
and type-punning (Sec. 5.2).

Throughout the changes in semantics, we could reuse all of
the abstract domains included in Astrée with minimal change.
This can be explained by two reasons. Firstly, in many cases,
the new semantics is a refinement of the former one, so that
domains that are sound with respect to the former are also
sound with respect to the newer (for instance, modeling wrap-
around as a non-deterministic choice is still sound). The change
simply allows new domains to be included, that would not be
sound with respect to the former semantics (such as the modu-
lar intervals from Sec. 5.1.3). Secondly, in many cases, the new
concrete semantics is expressed as a function or reuses parts of
the former one. For instance, our machine integer semantics is
expressed using mathematical integers. Likewise, our low-level
memory semantics reduces to a semantics on independent cells,
which can be abstracted using classic pointer and numeric do-
mains that are not aware of type-punning. Nevertheless, these
changes of semantics triggered the need for new abstract do-
mains to maintain an acceptable level of precision; for instance,
it was necessary to add a congruence domain [Gra89] to pre-
cisely abstract pointer offsets and avoid mis-aligned dereference
alarms (which could not occur in the former, structured mem-
ory semantics). Experimental results show that changing the
semantic model and adding the required abstract domains did
not impact the performance much, while greatly widening the
range of C programs that can be analyzed by Astrée (precise
figures are reported in [Min06a, Min12a]).

Parametrization. Astrée has many user-visible configura-
tion options and analysis directives that allow changing the
cost/precision tradeoff. In particular, the parametrization al-
gorithms can be configured (and even overridden) by the user.
Unlike the addition of new domains and reductions, which
requires an intervention from the analysis developers, tuning
these options can be performed by a knowledgeable end-user.

6.2.4 Interface

Astrée outputs its results as a set of alarms at positions where
run-time errors could not be ruled-out by the value analysis,
with some context information (such as the full call stack, as
the analysis is context-sensitive). It is however quite impor-
tant to present to the user, in addition to the list of locations,
the inferred invariants. Firstly, it helps the user determine if
an alarm is justified or spurious and, in this case, the origin
of the imprecision causing the alarm (which must sometimes
be traced to one or several computations occurring much ear-
lier). Secondly, these invariants provide valuable information
to validate the analyzed software beyond the simple absence of
run-time error (for instance, by checking the range of outputs
against those provided by functional specification documents).
Thirdly, it improves the confidence of the end-user in the re-
sult of the analysis by allowing him to reconstruct the reasoning
made by the analyzer.

The main challenge, when analyzing large programs, is to
store invariants and present them to the user. We have devel-
oped methods to filter invariants and compress them at anal-
ysis time, and store them to the disk. We then developed a
graphical interface to interactively navigate the invariants af-
ter the analysis has completed. A screenshot of this interface
is presented in Fig. 6.3. The invariant storage mechanism and
the graphical interface was used as a starting point by AbsInt
to develop an industrial-strength interface for the industrial
version of Astrée.

6.2.5 Industrial applications

We describe succinctly our experience adapting Astrée to in-
dustrial programs. More information on the analyzed programs
is also available on Astrée’s Web page [BCC+].

A first application of Astrée was the analysis of two fam-
ilies of avionic embedded control-command applications. We
present in Fig. 6.4 benchmark analyses on programs of increas-
ing size in each family. The analyses are performed on our 64-
bit 2.66 GHz Intel server. We started from small representative
program fragments and ended analyzing several revisions of the
complete program. The initial development of Astrée and its
specialization to the first family was performed from 2001 to
2003, while the specialization for the second family was per-
formed from 2003 to 2004. Compared to the first family, soft-
ware in the second family are much larger and perform more
complex computations; they use a different code generator and
different macro-instructions. Nevertheless, it was possible to
reuse all the abstractions developed for the first family, which
considerably sped up the analysis refinement. We feel that the
analysis times reported in Fig. 6.4, a few tens of hours, are suf-
ficiently low to enable the use of Astrée in production: it is only
a fraction of the time devoted to testing. More importantly,
industrial users report zero alarm when analyzing production
versions of the software [DS07], thereby achieving a proof of
absence of run-time error in a realistic, industrial context.
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Figure 6.3: Academic graphical user interface for Astrée

# lines time memory alarms

370 5s 205 MB 0
70,000 2h 10mn 740 MB 2

166,000 6h 14mn 1.2 GB 10

82,000 41mn 588 MB 2
290,000 7h 2mn 1.2 GB 3
492,000 13h 21mn 2.2 GB 2
647,000 22h 40mn 2.2 GB 13
808 800 50h 13mn 2.7 GB 1

Figure 6.4: Analysis with Astrée of two families of avionic
applications.

A second application of Astrée was the analysis of space
software. From 2006 to 2008, we specialized Astrée to analyze a
C version of the Monitoring and Safing Unit software of the Au-
tomated Transfer Vehicle built by the European Space Agency
(the original version is written in Ada, which is not supported
by Astrée). Most of the domains developed for avionic appli-
cations were useful, which is natural as both applications are
synchronous embedded control-command software with float
computations. Additionally, a new domain was developed by
Feret in order to analyze quaternions [BCC+10a], which are a
specificity of space software which we never encountered when
analyzing avionic code. After specialization, the absence of
run-time error could be proved by Astrée in under 1h of anal-
ysis time. This experiment provides some information on the
cost, in term of research effort, required to adapt Astrée to a
new application domain.

Finally, the industrialization of Astrée by AbsInt [Abs] in
2009 considerably broadened the set of analyzed programs,
triggering a new round of refinements. For instance, we devel-
oped the integer domains described in Sec. 5.1 to improve the

precision when analyzing code generated by TargetLink [dSp],
a popular back-end for Simulink heavily used in the automotive
industry.

Even after specializing Astrée to a family of programs, the
analysis can be easily adapted to handle new software in the
same family (such as new versions or corrections). Ideally, this
adaptation should only require fine-tuning by the end-user of
the user-visible configuration options, and not any modifica-
tion by the analyzer developers to the core of the analyzer or
its domains. This is indeed the case, according to some of our
end-users [DS07, SD07]. This validates the claim that the spe-
cialization by abstraction refinement does not targets a single
program, but a whole family of similar programs, and that spe-
cialized analyzers can be a useful tool to help the production
of verified programs in an industrial context.

6.3 AstréeA: detecting run-time errors in con-
current embedded C software

AstréeA is an extension of Astrée that focuses on the static
analysis of concurrent embedded C software. It is based on the
theoretical results described in Chap. 3. Similarly to Astrée,
it is also an analyzer designed by specialization which aims
towards high precision and efficiency on a given class of appli-
cations. Unlike Astrée, however, AstréeA is still a prototype in
heavy development: it is being refined on our target software
as the precision goal (zero false alarm) has not been reached
yet.

The first results on AstréeA were published in [BCC+10a].
We refer the reader to [Min12d] and AstréeA’s Web site [CCF+]
for the most up-to-date description of AstréeA.1

1Some publications still refer to AstréeA using its former name,
“Thésée.” The name was changed to better reflect the lineage to Astrée,
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Figure 6.5: Abstract domain hierarchy in AstréeA. Added
domains with respect to Astrée (Fig. 6.2) are shown in boldface.

6.3.1 Architecture

AstréeA directly benefits from Astrée’s front-end, iterator, and
multiple abstract domains. While the global architecture from
Fig. 6.1 is still valid, the domain hierarchy presented in Fig. 6.2
is now enriched to give that of Fig. 6.5 (where modifications
are shown in boldface).

Firstly, we added a new parallel iterator. It iterates individ-
ual thread analyses until the inferred interferences are stable.
Astrée’s classic iterator that iterates by induction on the syn-
tax is still present: it is used, without modification, to perform
each thread analysis. The analysis is thus effectively thread-
modular.

Secondly, we added a scheduler partitioning domain. It
tracks an abstraction of the scheduler state (such as the set
of mutexes currently held by the analyzed thread) and en-
sures that program states and interferences coming from differ-
ent scheduler states are abstracted separately, as advocated in
Sec. 3.4.1 to analyze precisely critical sections. The scheduler
domain also intercepts all the instructions related to synchro-
nization (such as mutex locking) so that all the other domains
can completely ignore this aspect of the semantics.

Thirdly, we added a new hierarchy of domains to model
thread interferences, which is parallel to the hierarchy modeling
local environments. It is actually built by combining existing
non-relational domains from Astrée (including non-relational
numeric domains, such as intervals, and the pointer domain
to abstract sets of pointed-to variables). The memory domain
was also modified to drive the interference domain: it feeds
it the values written to variables (extracted from the abstrac-
tion of the local environments) and queries the interferences
on variables that are read. The memory domain takes care of
integrating interferences from other threads into each expres-

and a final “A” was added to mean “asynchronous” and emphasize the
difference with the synchronous programs targeted by Astrée.

sion before passing them to the underlying pointer and numeric
domains, which are completely unaware of interferences. This
scheme allowed us to reuse all the numeric and pointer domains
from Astrée without any change.

In total, all the changes and additions amounted to only
10% of the size of Astrée and did not require any significant
structural modification.

6.3.2 Target code

AstréeA targets embedded avionic concurrent C applications.
These are increasingly prevalent since the adoption of Inte-
grated Modular Avionics [WW07], which transitions from the
use of a network of mono-application processors communicat-
ing on a bus to a single processor running concurrent applica-
tions communicating in a shared memory. These applications
obey the restrictions imposed on Astrée which are related to
the embedded critical nature of the target software: there is no
dynamic memory allocation nor recursive call. Additionally,
there is no dynamic creation of thread nor of synchronization
object.

Analyzed code. The particular software we currently focus
on is a large industrial application provided by our industrial
partner. It consists of 1.7 Mlines of C code and 15 threads,2

corresponding to different services that run concurrently and
communicate implicitly through the shared memory and ex-
plicitly through synchronization objects offered by the system.
It runs under an operating system based on ARINC 653 [Aer],
an avionic specification describing a real-time operating sys-
tem. The analyzed program is quite complex and heteroge-
neous. While some services contain code generated automat-
ically from a block-diagram specification, similar to the soft-
ware targeted by Astrée, other services are hand-written and
exhibit a large variety of programming styles and C idioms.
In particular, some services implement string formatting, ma-
nipulations of arrays (such as sorting), messages to implement
network protocols, and even linked lists (where individual cells
are allocated from static array pools using custom allocators
due to the lack of actual dynamic memory allocation service).

Operating system modeling. The ARINC 653 specifica-
tion [Aer] supports a set of concurrency-related objects, which
includes: threads, synchronisation objects (semaphores and
events), and communication objects (blackboards and message
queues). They are manipulated through a well-documented
API. In order to analyze our program, we wrote a set of stubs
implementing the ARINC 653 API. To simplify the design of
the analyzer, AstréeA implements only a restricted set of low-
level synchronization objects, which are moreover identified by
simple integers. The stubs must then map high-level ARINC
objects to these low-level AstréeA objects; it maintains maps
storing the properties of objects and implements the necessary
look-up mechanisms. Moreover, the stubs must map the se-
mantics of the rich set of ARINC operations to sequences of
lower-level ones understood by AstréeA. For instance, AstréeA
models only simple mutexes that block forever, as described in
Sec. 3.4.1. Nevertheless, an ARINC lock with a timeout can be

2Individual execution units in a shared memory are called “processes”
in the ARINC 653 terminology. Most other operating systems call these
“threads” and reserve the word “process” to denote execution units with
their own memory space. To avoid any confusion, we use the term
“threads” here.
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modeled as a non-deterministic choice that either successfully
locks the mutex or returns with a failure. The system model
is approximately 2,500-line long.

Our stubs do not define a concrete implementation of an op-
erating system, but rather an abstract modeling that soundly
includes all the behaviors documented in the ARINC 653 spec-
ification and may also exhibit extra behaviors. For instance,
as AstréeA does not model the physical time, any time-related
property is modeled abstractly as a non-deterministic wait (i.e.,
a yield). Moreover, ARINC 653 features concurrency primi-
tives that are not yet supported by AstréeA. The main exam-
ple is that of events, which can be set, reset, or waited on by
threads to perform a form of synchronization. As events only
restrict the set of thread interleavings, it is sound to ignore
them, which is what AstréeA currently does. This naturally
results in a loss of precision that we wish to address in future
work.

We found it is more convenient to specify the operating
system in the target language of the analyzer, C, as much as
possible, rather than in the analyzer itself. Such a model can
be easily inspected by the end-user and modified to suit a par-
ticular instance of an ARINC 653 implementation. We also
hope to build models of other systems while reusing AstréeA’s
low-level primitives for concurrency.

Execution model. The execution model enforced by the
ARINC 653 specification ensures that all the concurrency ob-
jects (including threads and mutexes) are created during a
mono-thread initialization phase, prior to the multi-thread pha-
se, where they are used. Our analysis also works in two phases:
the first one analyzes the initialization code and collects the
set of concurrency objects it creates. Then, the actual multi-
thread analysis proceeds from the entry-points of the collected
threads. Hence, there is no real dynamic creation of threads.

ARINC 653 specifies a real-time operating system, where
threads have fixed and distinct priorities and these are obeyed
strictly by the scheduler. Moreover, our target application
schedules all its threads by time-sharing on a single execution
unit. Hence, only the unblocked thread with highest priority
actually runs and there is no true parallelism. AstréeA uses
the scheduling semantics described in Sec. 3.4.2, which is more
precise than a semantics assuming arbitrary preemption and
true parallelism.

As we do not have any information on the memory consis-
tency model in case of data-races, we err on the safe side and
use the model proposed in Sec. 3.5, which is quite general and
justifies the flow-insensitive abstraction of non synchronized
interferences.

Run-time errors. AstréeA reports the same set of run-time
errors as Astrée. AstréeA also reports data-races, i.e., variables
that can be accessed by two threads, one access at least being
a write, while the threads do not lock a common mutex. After
a data-race, the analysis continues assuming a weakly consis-
tent memory semantics: the value written to the variable may
be visible by any read that forms a data-race with the write.
Additionally, AstréeA reports any violation of the ARINC 653
API (such as creating a thread while in multi-thread mode)
through the use of assertions in the ARINC 653 stub. Our tar-
get application never issues blocking calls and systematically
uses timeouts. Hence, there is no dead-lock by construction.

6.3.3 Results

Following the design by refinement that made the success of
Astrée, we focused on a single program in a well defined fam-
ily of applications, and started refining our analysis in order
to approach the zero false alarm goal. We performed all our
analyses on a 64-bit 2.66 GHz Intel server.

In order to test our idea, we first considered, in 2009, a
lightweight version of our target software, reduced to a func-
tional fraction composed of 100 Klines and 5 threads. After
some initial refinements, we could analyze this slice in 1h and
find 64 alarms. In 2010, we turned our attention to the full
code, consisting of 1.7 Mlines and 15 threads. Initial anal-
yses exhibited around 12,000 alarms. This number could be
reduced to around 7,000 in early 2011, and then to 2,000 in
early 2012. Our latest analyses now exhibit 1,208 alarms, for
an analysis time of 43h. An important remark on efficiency
is that only six iterations of the parallel iterator are required
into order to stabilize the abstract interferences. Intuitively,
it means that the analysis of the concurrent software is not
much more costly (around six times) than an analysis of a
synchronous program of the same size and complexity. The
analyzer is not very efficient in memory as 32 GB of memory
are needed for the analysis to proceed. This is due in part to
the scheduler partitioning, which duplicates abstract elements
(in average, we manipulate four partitions in the abstract en-
vironments and 52 in the abstract interferences; note however
that abstract interference partitions are inexpensive as they are
flow-insensitive and non-relational).

The improvement in precision could be achieved by an iter-
ative refinement of our abstraction. A significant improvement
in precision was brought by the addition of the scheduler par-
titioning domain and the ability for the analysis to exploit the
real-time features of the system. This is naturally explained
by the fact that the program exploits heavily these features
(in particular to avoid locking when priorities are sufficient to
ensure mutual exclusion). We note, however, that the large ma-
jority of alarms could be removed by improving the abstract
domains inherited from Astrée and by adding new domains, un-
related to the issue of concurrency. In particular, we brought
some improvements to the memory and pointer domains, as
well as the integer numeric domains used to model pointer off-
sets and the trace partitioning domain (helping to model dis-
junctions); this helped improving the precision when analyzing
strings, large arrays, message buffers, and linked lists.

We refer the reader to [Min12d] for more information on
our experiments.

6.3.4 Future work

The design of AstréeA is much a work in progress, as is our
research on the analysis of concurrent programs by abstract
interpretation described in Chap. 3 on which it is based.

A first avenue of future work is a theoretical one. Chapter 3
ends with a set of examples that we cannot precisely analyze as
they require relational or flow-sensitive abstract interferences.
Some examples are inspired by current false alarms in our tar-
get program. Our framework needs to be extended before new
abstractions can be defined.

Secondly, we wish to reduce the number of alarms on our
target program. Developing new interference abstractions will
surely be necessary, but not sufficient. Many remaining alarms
are caused by imprecisions that are not related to concurrency,
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but rather to the use of strings, lists, and buffers in the target
program. We believe that we have reached the limit preci-
sion that can be achieved on these data-structures with the
generic memory abstraction used in AstréeA (Sec. 5.2). In
order to improve the analysis further, it seems necessary to de-
velop specialized memory abstractions, with a built-in knowl-
edge of the data-structures that are abstracted. This echoes
our work on Astrée, where generic numeric abstractions were
supplemented with specific numeric abstractions tied to each
application domain. For instance, the precise analysis of lists
might be achieved by a dedicated shape abstract domain, that
would supplement our current memory domain through a re-
duced product. A mid-term goal consists in achieving by spe-
cialization a similar result as Astrée did: the proof of absence
of run-time error of an actual industrial (concurrent) program.

Finally, we would like to extend AstréeA to support the
analysis of programs running under alternate operating sys-
tems, such as POSIX Threads [IT95] or Autosar (a popular au-
tomotive standard). This requires defining the concrete seman-
tics of their scheduler and their synchronization primitives, and
modeling all the system calls as we did for ARINC 653. Sup-
porting a variety of widespread operating systems in a sound
way is a natural requirement before AstréeA can be industri-
alized.
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Chapter 7

Conclusion and perspectives

Ensuring the correctness of software has been a constant
concern since the birth of computers and programming lan-
guages, starting with the early program proofs by Alan Tur-
ing [Tur49] and the development of the first fully formal sys-
tems to reason about programs [Flo67, Hoa69]. Formal verifi-
cation, once the province of theoreticians, has slowly entered
the industry in the last one and half decade, with the realisa-
tion that software errors have an important economic impact
[Lio96, NIS02]. Industrial semantic-based static analysis tools
and, in particular, verification tools based on abstract inter-
pretation, have been made available starting in the early 2000s
with the introduction of the Polyspace static analyzer [The],
after which other tools followed, including Sparrow [Ya], Code
Contracts [LF], Astrée [BCC+], etc.

Our aim is to advance the research in static analysis by
abstract interpretation to ensure the safety of software. Our
contributions concern the development of new analysis meth-
ods, with two focuses: the analysis of concurrent programs
(reported in Chap. 3) and the design of abstract domains (re-
ported in Chaps. 4 and 5). These contributions are both the-
oretical and applied. All the methods we propose are not only
proved correct (sound) mathematically, but also implemented
and validated experimentally. One part of our research is mo-
tivated by more fundamental concerns. This is the case for our
work on the links between abstract interpretation and proof
methods for concurrent programs (Sec. 3.2). This is also the
case when designing new abstract domains extending polyhe-
dra and affine equalities, with a focus on semantic expressive-
ness and algorithms, and not (yet) on application in existing
tools (Chap. 4). Finally, in an attempt to ease the fundamen-
tal research on numeric abstract domain, we designed with
Bertrand Jeannet the Apron library (Sec. 6.1).

However, another part of our research is motivated by more
practical concerns. This is the case when adapting existing do-
mains to handle the semantics of realistic programming data-
types: machine integers, floating-point arithmetic, and C-like
data-structures (Chap. 5). As we escape the ideal case of math-
ematical numbers and the Galois connection based abstract
interpretation framework, we use pragmatic methods to guide
the choice of abstract properties and the design of abstract op-
erators: we design ad-hoc domains for specific use-cases and
rely on experimental evaluations on actual programs to vali-
date their usefulness. Finally, we participated in the design
of specialized static analyzers: Astrée (Sec. 6.2) and AstréeA
(Sec. 6.3). In order to achieve a good precision and perfor-
mance, these analyzers target specific classes of programs and
properties, namely: proving the absence of run-time error in
embedded critical synchronous control-command C software
and embedded critical concurrent C software (with a predilec-

tion for aerospace software). These are also pragmatic tools
as they target actual industrial programs and must compose
with existing programming practices and semantic irregulari-
ties. Moreover, they are designed by refinement of their ab-
stractions on instances of software in the target family. Their
design is thus guided by experimentation.

We end this report with some perspectives for future re-
search, in the short and in the long term.

7.1 Concurrency analysis

Our main research topic has been, for the last few years, and
still remains the analysis of concurrent software. Chapter 3 de-
scribed our early results. It the future, we would like to extend
our analysis and improve its precision while keeping its main at-
tractive features: thread-modularity, scalability, parametriza-
tion by numeric abstract domains, and the ability to reuse
existing analysis methods and implementations available for
sequential programs.

Interference abstraction. Chapter 3 concludes with a list
of concurrent program examples that our analysis cannot han-
dle precisely. The cause of these imprecisions can be traced
back to our flow-insensitive and non-relational modeling of
thread interactions. In fact, our latest results (Sec. 3.2) present
formally this modeling as an incomplete abstraction of a com-
plete semantics based on rely–guarantee proof methods. We
thus wish to explore this connection further and derive new
classes of interference abstractions that embed some amount of
flow-sensitivity and relationality. We now describe two classes
of properties that seem promising to us.

Firstly, we would like to infer lock invariants, i.e., properties
that are true outside critical sections. These properties may be
invalidated locally by a thread while in a critical section but,
as long as all the variables involved are protected by a common
lock in all the threads, these modifications are invisible for the
other threads, which can thus assume the properties to be uni-
formly true (i.e., in a flow-insensitive way). Such properties
play, on concurrent programs, the same role as class invari-
ants in object-oriented languages, or contracts in procedural
languages [LF]; they are key to proving complex properties in
a (thread-)modular way. Note that our well synchronized in-
terferences are a very imprecise, non-relational version of lock
invariants. We wish to extend them to more expressive invari-
ants by exploiting relational numeric domains. As always when
relational domains are concerned, a main challenge consists in
ensuring the scalability. One solution would consist in using
packing techniques inspired from Astrée [BCC+10a] to limit
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the degree of relationality and replace a single large relational
abstract element with many small ones.

Secondly, we wish to infer properties that depend on the
inter-thread flow of execution. A first example consists in prov-
ing that an event in a thread always precedes another event in
another thread, which is useful to prove well-initialization prop-
erties. A more complex example consists in inferring quantita-
tive properties, relating for instance the number of events gen-
erated by different threads using numeric abstractions. Such
properties appear naturally in producer/consumer concurrent
programming patterns, which are found in many applications.
The main challenge consists in describing an abstraction of the
inter-thread control flow while keeping a thread-modular analy-
sis and avoiding constructing explicitly all the thread interleav-
ings. A possible solution is to introduce auxiliary and history
variables, as used classically in proof methods for concurrent
programs. This would allow us to express, in the abstraction
of the local thread state, properties related to the current loca-
tion of the other threads or to the history of thread interleav-
ings. The main problem to solve is then to design adequate
abstractions to discuss about these properties (for instance,
it is necessary to determine precisely the required amount of
disjunctive information as we want to avoid using a too expres-
sive, and so, too costly, domain). We would also like to bridge
the gap between our interference-based analysis and the fully
flow-sensitive but not thread-modular method by Goubault et
al. [GH05]. This may allow us to incorporate, in our analysis,
their geometric semantics and the abstractions they developed.

Scheduling models. A scheduler controls the execution of
concurrent programs by deciding which thread gets to run. Our
experience with AstréeA showed us that actual programs rely
on the guarantees provided by most schedulers and are not
correct when assuming a completely non-deterministic schedul-
ing. This is in particular the case for embedded applications
running under real-time operating systems, where schedulers
enforce strict policies on the ordering of thread executions.

Our current analysis can only exploit very few properties of
schedulers. Indeed, such properties cannot be expressed in our
flow-insensitive abstraction of thread interactions. Once flow-
sensitive inter-thread abstractions are in place, it will become
possible to exploit more information on the ordering of thread
executions.

A second concern is that our current analysis can only ex-
ploit the case of threads of fixed distinct priorities scheduled
on a single execution unit (preventing true parallelism). We
revert to non-deterministic scheduling if these hypotheses do
not hold. We thus need to extend our analysis to handle more
cases. For instance, we wish to support dynamic priority poli-
cies, such as priority ceiling and priority inheritance, which are
widespread in embedded systems.

A last extension consists in supporting more synchroniza-
tion objects, such as events, conditional variables, and fences.
Indeed, we currently only support mutual exclusion locks and
soundly ignore other objects. As scheduler properties, the
properties enforced by synchronization mechanisms are related
to the inter-thread control flow, and so, will benefit from and
motivate the design of flow-sensitive inter-thread abstractions.

Fairness and liveness. In all our work, we restrict ourselves
to inferring invariance properties, ignoring liveness properties
[LS85]. This limitation comes from the initial abstraction of

the maximal trace semantics into the partial finite trace seman-
tics. Intuitively, while invariant properties state that nothing
bad ever happens (such as a run-time error), liveness properties
state that something good eventually happens (such as termi-
nating with a result). On concurrent programs, liveness can
express highly desirable properties, such as the absence of star-
vation or livelock. One of our long-term goals is the automatic
inference of such properties. They have been mainly studied
(by model checking) in the case of finite-state models, but sel-
dom in the case of infinite abstract domains which are the norm
in abstract interpretation. A possible inspiration comes from
existing proof methods for liveness properties. The connections
between these proof methods and abstract interpretation have
been extensively studied by Radhia Cousot [Cou85]. We still
need to design computable abstractions adapted to properties
of interest. Another source of inspiration comes from the re-
cent work by Cousot and Cousot [CC12] on proving program
termination (a special case of liveness property) using abstract
interpretation. It will be necessary to extend the proposed
abstractions to the case of concurrent programs.

Once the inference of liveness properties is established, it
will become possible to consider proofs under fairness condi-
tions. These conditions restrict the set of program executions
by ensuring that threads are not denied indefinitely the right to
run. Hence, they correspond to idealized models of schedulers.

Time properties. Another long-term goal consists in in-
ferring properties related to the physical time. Indeed, our
analysis currently ignores time, which is not modeled in the
program semantics. However, time-related properties are of-
ten desirable, in particular in the realm of real-time embedded
critical software. While successful methods exist to infer exe-
cution time [HF04], these are limited to sequential programs.
Hence, we wish to develop time-related abstractions for concur-
rent programs. We will naturally exploit the numeric abstract
domains we developed and design new ones adapted to time-
related invariants.

Time-related properties are more precise than liveness ones
as, in addition to stating that some expected event will oc-
cur, they can also bound the time it will take for it to occur.
In particular, liveness alone is not sufficient to verify programs
that feature intermittent starvation and livelock phenomenons.
However, a timing analysis may bound the duration of a star-
vation or a livelock, and prove that they are acceptable.

Applications. Our analysis of concurrent programs was ini-
tially motivated by the success of the Astrée analyzer on syn-
chronous embedded C software, and the desire to extend this
success to the ever growing set of concurrent embedded C soft-
ware. Hence the design of the AstréeA analyzer. As reported in
Sec. 6.3, AstréeA still exhibits more that a thousand alarms on
our main target program. Hence, a natural future work consists
in improving our prototype and, in the mid-term, get closer to
the zero false alarm goal. This will require in particular more
precise abstractions of thread interferences and schedulers. The
analysis with AstréeA of our target code will thus serve as an
incentive, guide, and validation for these abstractions. How-
ever, it will surely also trigger the design of abstractions that
are not related to concurrency and will enrich the ever grow-
ing library of abstract domains that are motivated by practical
uses-cases and validated experimentally.

In the mid-term, we also wish to industrialize AstréeA, as it
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was done for Astrée. For this, it is not only necessary to prove
that the analyzer can reach a high precision by specialization
on a selected code family, but also to extend its scope. In
particular, we need to extend it to support new concurrency
models, scheduler policies, and synchronization primitives from
a large set of operating systems (for instance, POSIX Threads
and Autosar).

7.2 Numeric abstractions

The design of numeric abstract domains was the main subject
of my PhD [Min04b], and I continued working on this topic on
a fundamental level with the design of affine domains (Chap. 4)
and, on the practical level, with the design of domains for ma-
chine integers and floats (Chap. 5).

In future work, however, we wish to explore two different
and novel applications of numeric abstract domains: the design
of abstract under-approximations, and the connection between
abstract interpretation and constraint programming. Our re-
search on these two subjects started very recently and we did
not care to report here the very preliminary results we ob-
tained, preferring instead to present them as perspectives for
future work.

Under-approximations. The large majority of abstractions
considered in abstract interpretation correspond to over-appro-
ximations. This is in particular the case of all the abstractions
presented in this report. Existing methods to achieve under-
approximations either employ actually exact numeric abstrac-
tions (as in disjunctive completions, which are costly) or are
restricted to deterministic programs (which makes it difficult
to handle program inputs or floating-point rounding errors).

In [Min12b], we introduced under-approximating backward
operators for the polyhedra domain that solve both problems:
they permit an abstraction to a given class of properties (here,
affine inequality constraints) and an effective approximation
to achieve a cost versus precision trade-off. In the presence of
loops, it is necessary to under-approximate greatest fixpoints,
and we designed an effective lower widening operator (theo-
rized by Cousot [Cou78] but never effectively constructed be-
fore) to compute such an approximation in finite time. Appli-
cations include the inference of sufficient pre-conditions ensur-
ing program correctness (e.g., function or class contracts), or
the derivation of definite counter-examples. However, our con-
struction is very preliminary and mostly untried. Much work is
still required to refine our design, construct new polyhedral ab-
stract operators, and consider under-approximations in other
numeric abstract domains.

A main theoretical issue is that, while most abstract do-
mains enjoy a simple notion of best over-approximations (at
least on the semantic level), such a notion seldom exists for
under-approximations. Several solutions for this problem have
been proposed, such as the construction by Schmidt [Sch06];
while these are aesthetically pleasing on a theoretical level, they
do not seem very practical to us as they incur a change in do-
main expressiveness and algorithms, which may degrade scal-
ability (such as powerset or lower closure constructions). Our
pragmatic solution consists in designing non-optimal under-
approximating operators guided by the properties we need to
prove on selected examples. Much more work is required in
that direction, including a systematic experimentation on a re-
alistic code base. In addition to the design of new operators in

existing domains, we also wish to uncover new classes of prop-
erties that may better match those that appear naturally when
inferring pre-conditions or counter-examples, and then design
the corresponding abstract domains.

Constraint programming. In a collaboration with Marie
Pelleau, Charlotte Truchet, and Frédéric Benhamou, we stud-
ied the connections between constraint programming and ab-
stract interpretation. In particular, we exhibited in [PMTB13]
a few semantic and algorithmic correspondences between these
two fields, and used them to design a constraint solving algo-
rithm based on abstract interpretation principles. It is parame-
trized by the choice of a numeric abstract domain and, un-
like classic solving algorithms, enables the use of relational do-
mains, as well as reduced products of domains to handle mixed
integer-real constraint programming problems.

The connection between the two fields seems deep and we
wish to pursue our collaboration in order explore it further.
On the theoretical side, we wish to understand more precisely
how fixpoint solving with iteration compares in both fields. An
open question is whether there exists a constraint programming
analogue to widenings. On the practical side, a possible future
work consists in improving abstract interpretation techniques
by using methods from constraint programming. In particular,
constraint programming features techniques for precise post-
fixpoint refinement by decreasing iterations, which are much
more advanced than the narrowings used in abstract interpre-
tation. Moreover, the split operators used in constraint pro-
gramming could be useful to refine partitioning and disjunctive
completion domains used in abstract interpretation.
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[KWN+10] D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R.
Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival.
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[ŠA08] J. Ševč́ık and D. Aspinall. On validity of program
transformations in the Java memory model. In Proc. of
the 22nd European Conf. on Object-Oriented Program-
ming (ECOOP’08), volume 5142 of LNCS, pages 27–51.
Springer, July 2008.

[Sch86] A. Schrijver. Theory of linear and integer program-
ming. John Wiley & Sons, Inc., 1986.

[Sch06] D. A. Schmidt. Underapproximating predicate trans-
formers. In Proc. of 13th Int. Static Analysis Sympo-
sium (SAS’06), volume 4134 of LNCS, pages 127–143.
Springer, 2006.

[Sch09] D. A. Schmidt. Abstract interpretation from a de-
notational semantics perspective. In Proc. 25th Conf.
Mathematical Foundations of Programming Semantics
(MFPS’09), volume 249 of ENTCS, pages 19–37. Else-
vier, Aug. 2009.

[SD07] J. Souyris and D. Delmas. Experimental assessment
of Astrée on safety-critical avionics software. In Proc.
Int. Conf. Computer Safety, Reliability, and Security
(SAFECOMP’07), volume 4680 of LNCS, pages 479–490.
Springer, Sep. 2007.

[SJMvP07] V. A. Saraswat, R. Jagadeesan, M. M. Michael,
and C. von Praun. A theory of memory models. In Proc.
of the 12th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programs (PPoPP’07), pages 161–
172. ACM, Mar. 2007.

[SK05] A. Simon and A. King. Exploiting sparsity in polyhe-
dral analysis. In Proc. of the 12th Int. Symp. on Static
Analysis (SAS’05), volume 3672 of LNCS, pages 336–351.
Springer, Sep. 2005.

[SK07] A. Simon and A. King. Taming the wrapping of integer
arithmetic. In Proc. of the 14th Int. Symp. on Static
Analysis (SAS’07), volume 4634 of LNCS, pages 121–
136. Springer, Aug. 2007.

78



BIBLIOGRAPHY

[SKH02] A. Simon, A. King, and J. M. Howe. Two variables
per linear inequality as an abstract domain. In Proc.
of the 12th Int. Conf. on Logic based program synthe-
sis and transformation (LOPSTR’02), volume 2664 of
LNCS, pages 71–89. Springer, 2002.
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INDEX OF NOTATIONS

Index of notations

Order theory
@ partial order §2.1, p. 5

⊥ least element §2.1, p. 5

> greatest element §2.1, p. 5

t least upper bound §2.1, p. 5

u greatest lower bound §2.1, p. 5

lfp f least fixpoint of f §2.1, p. 5

lfpa f least fixpoint greater than a §2.1, p. 5

lim f limit of an iteration §2.3.6, p. 12

Functions
A→ B functions from A to B §2.1, p. 5

f [x 7→ y] function update §2.1, p. 5

Πa:A.Ba dependent type §2.1, p. 5

Sequences, traces
Σn sequences of length n §2.1, p. 5

Σ∗ finite sequences §2.1, p. 5

Σω infinite sequences §2.1, p. 5

Σ∞ finite or infinite sequences §2.1, p. 5

Tr n(Σ,A) traces of length n §2.1, p. 5

Tr ∗(Σ,A) finite traces §2.1, p. 5

Tr ω(Σ,A) infinite (countable) traces §2.1, p. 5

Tr ∞(Σ,A) finite or infinite traces §2.1, p. 5

ε empty sequence §2.1, p. 5

· sequence concatenation §2.1, p. 5

t
a→ t′ trace concatenation §2.1, p. 5

Arithmetic
R set of reals

N set of natural integers

Z set of integers

F set of floats §2.4.4, p. 17

F — with specials (5.28), p. 55

gcd greatest common divisor F. 5.2, p. 46

lcm least common multiple F. 5.7, p. 48

· dot product §2.1, p. 5
~V (column) vector §2.1, p. 5
~V t transpose (row vector) §2.1, p. 5
~0 null vector §2.1, p. 5

M matrix §2.1, p. 5

Mt matrix transpose §2.1, p. 5

~ei basis vector §2.1, p. 5

× matrix multiplication §2.1, p. 5

+]
i , −

]
i , ×

]
i ,

/]i

interval operators F. 5.2, p. 46

+]
m, −]m, modular interval operators F. 2.11, p. 14

×]m, ~
]
m

⊕r, 	r, ⊗r,
�r

float arithmetic (2.20), p. 17

⊕]i , 	
]
i , ⊗

]
i ,

�]i
interval float arithmetic (2.21), p. 17

⊕]i , 	
]
i , ⊗

]
i ,

�]i
interval float vector and ma-
trix operations

§4.1.2, p. 33

�, �, �, � affine form operators (2.16), p. 16

+, -, *, /, % machine integer arithmetic (5.2), p. 43

~, &, |, ^ bitwise operations (5.2), p. 43

>>, << bit-shift (5.2), p. 43

~
]
b
, &

]
b, |

]
b,

^
]
b. >>

]
b, <<

]
b

bit-field operators F. 5.3, p. 46

( int-type ) cast (5.2), p. 43

lin linearization F. 2.13, p. 17

slin scalar linearization (2.17), p. 17

eval affine form evaluation F. 2.13, p. 17

LP linear programming (2.12), p. 16

LP∗ dual linear programming (4.1), p. 34

LPF float linear programming (4.2), p. 34

ILP interval linear programming (4.5), p. 36

FM Fourier-Motzkin elimination (2.14), p. 16

FM F float Fourier-Motzkin elim. §4.1.3, p. 34

R+∞ float rounding up (2.18), p. 17

R−∞ float rounding down (2.18), p. 17

ε rounding error (2.22), p. 18

C set of constraints §2.4.2, p. 14

〈A, ~B〉 constraint representation §2.4.2, p. 14

[P,R] generator representation §2.4.2, p. 14

wrap integer wrap-around (5.4), p. 44

wrap]i interval wrap-around (5.6), p. 44

wrap]m modular int. wrap-around F. 5.2, p. 46

wrap]b bit-field wrap-around F. 5.3, p. 46

p 2-adic encoding (5.5), p. 44

benc byte encoding of scalars F. 5.9, p. 51

bdec byte decoding of scalars F. 5.9, p. 51

φ cell synthesis F. 5.11, p. 52

Language
V program variables §2.3.1, p. 8

Vt — w. auxiliary variables (3.6), p. 23

T threads §3.1.1, p. 19

M mutexes (3.20), p. 27

` statement location F. 2.1, p. 9

L, L(P ) set of statement locations F. 2.1, p. 9
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ω error location F. 2.1, p. 9

Ω, Ω(P ) set of error locations F. 2.1, p. 9

[e1/e2] substituting e1 with e2 §2.1, p. 5

� unary operator F. 2.1, p. 9

◦ binary operator F. 2.1, p. 9

./ comparison operator F. 2.1, p. 9

X ← e assignment F. 2.1, p. 9

e ./ 0 guard F. 2.1, p. 9

lock mutex lock (3.20), p. 27

unlock mutex unlock (3.20), p. 27

islocked mutex test §3.4.2, p. 29

yeild thread yield §3.4.2, p. 29

dbl-of -word float composition (5.30), p. 55

hi-word-of -dbl float decomposition (5.30), p. 55

prog sequential program F. 2.1, p. 9

prog concurrent program (3.1), p. 19

stat statement F. 2.1, p. 9

expr expression F. 2.1, p. 9

lval left-value F. 5.4, p. 47

int-type machine integers (5.1), p. 43

scalar -type scalar type (5.10), p. 47

float-type float type (5.10), p. 47

sizeof byte-size of type §5.1.1, p. 43

alignof byte-alignment of type F. 5.7, p. 48

offset byte-position of field F. 5.7, p. 48

range range of type (5.3), p. 43

type(expr) type of an expression §5.1, p. 43

lval .n field access F. 5.4, p. 47

lval [ expr ]ω array access F. 5.4, p. 47

&V variable address F. 5.8, p. 49

∗type,ω pointer dereference F. 5.8, p. 49

sel field and array selectors (5.11), p. 47

cell well-structured cells (5.12), p. 47

Cell low-level cell universe (5.21), p. 50

Pred float predicates (5.31), p. 56

var variables in predicate F. 5.19, p. 57

path control paths (3.21), p. 30

 path transformation §3.5.2, p. 30

Semantic domains
Σ program states §2.3.2, p. 8

Σ concurrent program states §3.1.2, p. 19

Σt local states (3.6), p. 23

A action set §2.3.2, p. 8

A concurrent action set §3.1.2, p. 19

τ transition relation §2.3.2, p. 8

τ concurrent — §3.1.2, p. 19

I concrete initial states §2.3.2, p. 8

I concurrent initial states §3.1.2, p. 19
a→τ transition §2.3.2, p. 8
a→τ concurrent transition (3.2), p. 20

E environments §2.3.2, p. 8

Et local environments (3.6), p. 23

E[ cell-based environments §5.22, p. 50

E]0 abstract initial states §2.3.6, p. 12

enbl enabled transitions (3.3), p. 20

M maximal trace semantics (2.3), p. 9

F partial trace semantics (2.4), p. 10

R state semantics (2.7), p. 10

Rl local state semantics (3.7), p. 23

I interference semantics (3.8), p. 23

Fair fair traces §3.1.3, p. 20

X concrete environment §2.3.4, p. 10

X ] abstract environment §2.3.4, p. 10

D concrete domain §2.2, p. 6

DV — on a set of variables §5.2.1, p. 47

D] abstract domain §2.2, p. 6

D]V — on a set of variables §5.2.1, p. 47

D]i interval domain §2.4.1, p. 13

D]p polyhedra domain §2.4.2, p. 14

D]m modular interval domain (5.8), p. 45

D]C abstraction of P(C → R) §5.2.4, p. 52

D]Pred float predicate domain (5.31), p. 56

D]mem low-level memory domain (5.26), p. 52

D]chg value change domain §3.2.3, p. 23

DItf domain with interference (3.3.1), p. 25

D]Itf abstract — (3.18), p. 26

Itf interference domain (3.3.1), p. 25

Itf ] abstract — §3.18, p. 26

α abstraction function §2.2, p. 6

αpref partial trace abstraction (2.5), p. 10

αreach reachability abstraction (2.7), p. 10

αi interval abstraction F. 2.9, p. 13

αitf interference abstraction (3.8), p. 23

αaux auxiliary variables abs. (3.11), p. 24

αflow flow-insensitive abstraction (3.12), p. 24

αchg variable change abstraction (3.14), p. 24

γ concretization function §2.2, p. 6

γreach reachability concretization (2.7), p. 10

γi interval concretization F. 2.9, p. 13

γp polyhedra concretization (2.11), p. 14

γZp integer polyhedra conc. (5.7), p. 45

γip interval polyhedra conc. (4.4), p. 36

γx complementary conc. (4.9), p. 38

γil interval affine equality conc. (4.10), p. 39

γm modular interval conc. (5.8), p. 45

γCell cell-set concretization (5.23), p. 50

γC numeric conc. on P(C → R) §5.2.4, p. 52

γmem low-level memory conc. (5.27), p. 52

γPred float predicate conc. (5.33), p. 56

γchg variable change conc. (3.13), p. 24

πt local state projection (3.7), p. 23

Ptr pointer values (5.15), p. 49

Addr valid addresses (5.16), p. 49

NULL null pointer (5.15), p. 49

invalid invalid pointer (5.15), p. 49

B byte values (5.19), p. 50

V scalar values (5.20), p. 50
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Semantic operators
{P} stat {Q} Hoare triple §2.3.4, p. 10

{P} stat {Q} Owicki–Gries triple §3.2.1, p. 21

R,G ` Rely-Guarantee quintuple (3.5), p. 22

{P} stat {Q}
τ [] program transition system F. 2.3, p. 9

eq [], eqst [] program equation system F. 2.4, p. 10

eq [], eqst [] concurrent — (3.4), p. 21

F partial trace operator (2.6), p. 10

R reachability operator (2.8), p. 10

Rt local reachability operator (3.9), p. 23

Rt∗ — for unbounded instances (3.15), p. 25

B interference extraction op. (3.10), p. 23

H thread reachability operator T. 3.2.1, p. 23

itf interference operator (3.16), p. 25

itf ] abstract interference op. (3.19), p. 27

v]i interval inclusion F. 2.9, p. 13

v]p polyhedra inclusion F. 2.12, p. 15

vR expression abstraction §2.4.3, p. 16

v]il interval affine eq. inclusion (4.12), p. 40

v]Pred predicate inclusion (5.32), p. 56

+p pointer addition (5.17), p. 49

=p pointer equality (5.18), p. 49

=]
p polyhedra equality F. 2.12, p. 15

∪] abstract join §2.3.6, p. 12

∪]E abstract join without error §2.3.6, p. 12

∪]i interval join F. 2.10, p. 13

∪]p convex hull of polyhedra F. 2.12, p. 15

∪]ip interval polyhedra join (4.8), p. 37

∪]m modular interval join F. 5.2, p. 46

∪]b bit-field join F. 5.3, p. 46

O widening (2.2.1), p. 7

OE widening without error §2.3.6, p. 12

Oi interval widening F. 2.10, p. 13

Op polyhedra widening F. 2.12, p. 15

O]m modular interval widening F. 5.2, p. 46

O]b bit-field widening F. 5.3, p. 46

EJ K concrete sem. of expressions F. 2.2, p. 9

E]ΩJ K abstract errors in expression (2.10), p. 12

E]i J K interval expression sem. F. 2.11, p. 14

EItf J Kt expr. with interferences F. 3.3, p. 26

SJ K concrete sem. of statements F. 2.6, p. 11

SEJ K — without errors F. 2.4, p. 10

S]J K abstract sem. of statements F. 2.7, p. 12

S]EJ K — without errors §2.3.6, p. 12

S]i J K interval statement sem. F. 2.11, p. 14

S]pJ K polyhedra statement sem. F. 2.12, p. 15

S]PredJ K predicate statement sem. F. 5.19, p. 57

SItf J Kt statements w/ interferences F. 3.4, p. 26

S]Itf J Kt abstract — §3.3.2, p. 26

S]PredJ K float predicate sem. F. 5.19, p. 57

�Itf J Kt path-based semantics (3.22), p. 31

P concrete sem. of programs (2.9), p. 11

add-cell cell addition (5.24), p. 51

combine predicate combination F. 5.19, p. 57
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2−adic representation, 44

abstract domain, 6
abstract equational semantics, 12
abstraction function, 6
addressable memory, 49
affine constraints, 14
affine equality domain, 38
affine interval constraints, 36
auxiliary variables, 23

basis vector, 6
best abstraction, 6
big-step semantics, 11
big-step static analyzer, 12
binary decision diagrams, 44
binary representation, 43
bit-field domain, 46
blocking states, 9
byte values, 50

cast operator, 43
cells, 47
codomain, 5
complementary condition, 37
complete lattice, 5
complete partial order, 5
complimentary polyhedron, 38
compute-through-overflow, 45
concrete domain, 6
concretization function, 6
conical combination, 14
conjunctive semantics, 50
control paths, 30
convex combination, 14
critical sections, 27

data-race, 28
data-race-freedom, 30
deadlock, 28
dependent type, 5
domain, 5

equational semantics, 10
exact abstraction, 6
exponent, 55
expression abstraction, 16

fairness conditions, 20
fixpoint, 5
float interval polyhedron, 36
floating-point numbers, 17
floating-point polyhedron, 33
flow-insensitive abstraction, 24

Fourier–Motzkin’s elimination, 16

Galois connection, 6
Galois injection, 6
generators, 14
greatest element, 5
greatest lower bound, 5

Hoare triples, 11

IEEE 754 floating-point standard, 17
inductive invariant, 11
integer promotion, 44
interferences, 23, 25
interval abstraction, 13
interval affine equality domain, 39
interval affine forms, 16
interval linear programming, 36
invariants, 11
iteration, 7

join, 5
join-morphism, 5

labelled transition system, 8
lambda notation, 5
lattice, 5
least element, 5
least fixpoint, 5
least upper bound, 5
linear absolute value relation domain, 38
linear programming, 16
linearization, 16
local states, 23

machine integer types, 43
mantissa, 55
maximal traces, 9
meet, 5
modular interval domain, 45
monotonic, 5
Moore family, 6
mutexes, 27

narrowing, 8
non synchronized interferences, 27
non-relational, 24

orthan, 36

partial traces, 9
partially ordered set, 5
partitioning, 28
path transformations, 31
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pointer arithmetic, 49
pointer base, 52
pointer values, 49
polyhedra domain, 14
post-fixpoint, 5
pre-fixpoint, 5
predicate domain, 55
priority, 29
purification scheme, 34

rational interval polyhedron, 37
rays, 14
reachable states, 10
real-time, 29
reduced product, 7
relational domain, 14
rely-guarantee, 22
representation function, 50
rigorous linear programming, 34
row echelon form, 39

scalar types, 47
scalar values, 50
semantic domain, 6
semantic functions, 5
sequences, 5
sequential consistency, 29
Simplex algorithm, 16
soundness condition, 6
special floats, 54
synchronized interferences, 27

thread-modular, 21
threads, 19
traces, 6
two’s complement representation, 43
type punning, 48

unbounded number of threads, 24

value synthesize function, 50

weak updates, 48
weakly-consistent memory models, 30
widening, 7
wrap-around, 44
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