
Static analysis by abstract interpretation
of concurrent programs

Antoine Miné

Habilitation
École normale supérieure

Paris, France

28 May 2013

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 1 / 50

Introduction

Ariane 5 example (1996)

Cause: software error

arithmetic overflow in unprotected data conversion
from 64-bit float to 16-bit integer

uncaught software exception =⇒ self-destruct sequence

Raised awareness about the importance of program verification:
even simple errors can have dramatic consequences
and are difficult to find a priori...

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 2 / 50

Introduction

Ariane 5 example (1996)

...despite progress in:

safer programming languages (Ada)

rigorous development processes (embedded critical software)

extensive testing (but not exhaustive)

Formal methods can help
(provide rigorous, mathematical insurance)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 2 / 50

Introduction

Reasoning about programs

Example

i ← 2
n← input [−100, 100]
while i ≤ n do

if random() then
i ← i + 2

Program proof: deductive method on a logic of programs

pioneered by [Floyd 1967], [Hoare 1969], [Turing 1949]

rely on the programmer to insert properties

prove that they are (inductive) invariant
(possibly with computer assistance)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 3 / 50

Introduction

Reasoning about programs

Example

{i=0, n=0}
i ← 2 {i=2, n=0}
n← input [−100, 100] {i=2,−100≤n≤100]}
while {i≥2, i≤max(2,n+2),−100≤n≤100]} i ≤ n do

{i≥2, i≤n, 2≤n≤100}
if random() then

i ← i + 2
{n<i≤max(2,n+2),−100≤n≤100}

Program proof: deductive method on a logic of programs

pioneered by [Floyd 1967], [Hoare 1969], [Turing 1949]

rely on the programmer to insert properties

prove that they are (inductive) invariant
(possibly with computer assistance)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 3 / 50

Introduction

Reasoning about programs

Example

{i=0, n=0}
i ← 2 {i=2, n=0}
n← input [−100, 100] {i=2,−100≤n≤100]}
while {i≥2, i≤max(2,n+2),−100≤n≤100]} i ≤ n do

{i≥2, i≤n, 2≤n≤100}
if random() then

i ← i + 2
{n<i≤max(2,n+2),−100≤n≤100}

how can we infer invariants?
(especially loop invariants)

generally undecidable
=⇒ use approximations

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 3 / 50

Introduction

Semantic-based static analysis

Static analysis:

analyses directly the source code (not a reduced model)

automatic and always terminating

sound (full control and data coverage)

incomplete (properties missed, false alarms)

traditionally used in low precision settings (e.g., optimization)

now precise enough for validation (few false alarms)

parametrized and adaptable to different classes of programs

Abstract interpretation: unifying theory of program semantics

introduced in [Cousot Cousot 1976]

theoretical tools to design and compare static analyzes

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 4 / 50

Introduction

Correctness proof and false alarms

The program is correct (blue ∩ red = ∅)

A polyhedral abstraction can prove the correctness (cyan ∩ red = ∅)
An interval abstraction cannot (green ∩ red 6= ∅, false alarm)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 5 / 50

Introduction

Correctness proof and false alarms

The program is correct (blue ∩ red = ∅)
A polyhedral abstraction can prove the correctness (cyan ∩ red = ∅)

An interval abstraction cannot (green ∩ red 6= ∅, false alarm)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 5 / 50

Introduction

Correctness proof and false alarms

The program is correct (blue ∩ red = ∅)
A polyhedral abstraction can prove the correctness (cyan ∩ red = ∅)
An interval abstraction cannot (green ∩ red 6= ∅, false alarm)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 5 / 50

Introduction

Concurrent programming

Idea:

Decompose a program into a set of (loosely) interacting processes

Why concurrent programs?

can exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over”
change in Moore’s law (×2 transistors every 2 years)

can exploit several computers
(distributed computing)

provides ease of programming
(GUI, network code, reactive programs)

=⇒ found in embedded critical applications (event-driven)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 6 / 50

Introduction

Concurrent programs verification

Concurrent programs are hard to design and hard to verify:

programs are highly non-deterministic
(many possible scheduling, execution interleavings)

=⇒ testing is costly and ineffective, with low coverage

errors appear in corner cases

new kinds of errors (data-races, deadlocks)

weakly consistent memory
(no more total order of memory operations,

causing unexpected behaviors)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 7 / 50

Introduction

Outline

Abstract interpretation primer
static analysis of sequential programs
numeric abstract domains

Analysis of concurrent programs
rely/guarantee reasoning, in abstract interpretation form
thread-modular interference-based analysis
advanced topics on interferences

soundness in weak memory consistency models
mutual exclusion and priorities
relational interferences

Implementation and experimentation
Astrée: industrial static analyzer for sequential programs
AstréeA: prototype analyzer for concurrent programs

Conclusion

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 8 / 50

Abstract interpretation

Introduction to abstract interpretation

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 9 / 50

Abstract interpretation

Principles of abstract interpretation

Key design steps:

1 Define a concrete semantics of the language

precise mathematical definition of programs
assumed correct (often w.r.t. informal specification)
uncomputable or combinatorial
constructive form (iterations up to fixpoints)

2 Extract a subset of properties of interest

goal properties & intermittent properties
generally infinite or very large classes (intervals, polyhedra)
with an algebra: sound abstract operators

3 Design abstract domains

data-structure encoding
algorithms implementing the abstract operators
extrapolation operators (approximate fixpoints)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 10 / 50

Abstract interpretation Concrete semantics

Transition systems

Formal model of programs (Σ, τ, I)

Σ: set of program states

τ ⊆ Σ× Σ: transition relation, σ → σ′ (execution step)

I ⊆ Σ: set of initial states

Example

1 i ← 2
2 n← input [−100, 100]
3 while 4 i ≤ n do

if random() then
i ← i + 2

5

Σ = { 1, 2, 3, 4, 5 } × Z2

I = { (1, 0, 0) }
...

n

i

τ

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 11 / 50

Abstract interpretation Concrete semantics

Transition systems

Formal model of programs (Σ, τ, I)

Σ: set of program states

τ ⊆ Σ× Σ: transition relation, σ → σ′ (execution step)

I ⊆ Σ: set of initial states

Example

1 i ← 2
2 n← input [−100, 100]
3 while 4 i ≤ n do

if random() then
i ← i + 2

5

Σ = { 1, 2, 3, 4, 5 } × Z2

I = { (1, 0, 0) }
...

n

i

τ
HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 11 / 50

Abstract interpretation Concrete semantics

Trace semantics

Partial execution traces T

set of execution traces, in P(Σ∗)

T
def
= lfp F where

F (T)
def
= I ∪{ 〈σ0, . . . , σn+1〉 | 〈σ0, . . . , σn〉 ∈ T ∧σn → σn+1 }

Expressiveness:

computing T is equivalent to exhaustive test
=⇒ can answer question about program safety

Cost:

T is often very large or unbounded
=⇒ well-defined mathematically but not computable

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 12 / 50

Abstract interpretation Concrete semantics

State semantics

State semantics S:

set of reachable states, in P(Σ)

S
def
= lfpG where G (S)

def
= I ∪ {σ | ∃σ′ ∈ S :σ′ → σ }

Abstraction of the trace semantics:

S = αstate(T) where

αstate(T)
def
= {σi | ∃〈σ0, . . . , σn〉 ∈ T : i ∈ [0, n] }

Expressiveness:

forget the ordering of states in traces:
αstate({ }) = { }

still sufficient to prove safety properties
(the program never reaches an error state)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 13 / 50

Abstract interpretation Concrete semantics

Instantiation on a simple language

Language syntax

stat ::= X ← expr (assignment)
| if expr ./ 0 then stat (conditional)
| while expr ./ 0 do stat (loop)
| stat; stat (sequence)

expr ::= X | [c1, c2] | expr �` expr | · · ·

X ∈ V finite set of variables

c1, c2 ∈ R, � ∈ {+,−,×, / }, ./∈ {=, >,≥, <,≤}

Idealized language:

fixed, finite set of numeric variables (with value in R)

no function

sequential (no concurrency)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 14 / 50

Abstract interpretation Concrete semantics

Semantic of expressions and commands

States: Σ
def
= L × E

control state ` ∈ L (syntactic location)

memory state σ ∈ E def
= V → R (maps variables to values)

Expression semantics: EJ expr K : E → P(R)

EJ [c1, c2] K ρ def
= { v ∈ R | c1 ≤ v ≤ c2 }

EJX K ρ def
= { ρ(X) }

EJ−e1 K ρ def
= {−v | v ∈ EJ e1 K }

EJ e1 � e2 K ρ def
= { v1 � v2 | vi ∈ EJ ei K ρ, � 6= / ∨ v2 6= 0 }

Command semantics: CJ stat K : P(E)→ P(E)

CJV ← e KR def
= { ρ[V 7→ v] | ρ ∈ R, v ∈ eJ ρ K }

CJ e ./ 0 KR def
= { ρ | ρ ∈ R, ∃v ∈ eJ ρ K : v ./ 0 }

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 15 / 50

Abstract interpretation Concrete semantics

State semantic as equation systems

1 i ← 2
2 n← input [−100, 100]
3 while 4 i ≤ n do

5 if random() then
i ← i + 2 6

7

X1 = { (0, 0) }
X2 = CJ i ← 2 KX1

X3 = CJ n← [−100, 100] KX2

X4 = X3 ∪ X6

X5 = CJ i ≤ n KX4

X6 = X5 ∪ CJ i ← i + 2 KX5

X7 = CJ i > n KX4

where:

∀` ∈ L:X` ⊆ E (states are partitioned by control location)

(recursive) equation system stems from the program syntax

program semantics is the least solution of the system
(least fixpoint =⇒ most precise invariant)

it can be solved by increasing iteration:
∀` ∈ L:X 0

` = ∅, ∀i > 0:X i+1
` = F`(X i

1, . . . ,X i
|L|)

(may require transfinite iterations! =⇒ not computable)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 16 / 50

Abstract interpretation Abstract numeric semantics

Numeric domains

We abstract P(E) ' P(R|V|) further

concrete sets, in P(E): {〈 0, 3 〉, 〈 5.5, 0 〉, 〈 12, 7 〉, . . .} (not computable)

polyhedra: 6X + 11Y ≥ 33 ∧ · · · (exponential cost)
intervals: X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
octagons: X + Y ≥ 3 ∧ Y ≥ 0 ∧ · · · (cubic cost)

Trade-off between cost and expressiveness / precision

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 17 / 50

Abstract interpretation Abstract numeric semantics

Numeric domains

We abstract P(E) ' P(R|V|) further

concrete sets, in P(E): {〈 0, 3 〉, 〈 5.5, 0 〉, 〈 12, 7 〉, . . .} (not computable)
polyhedra: 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

intervals: X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
octagons: X + Y ≥ 3 ∧ Y ≥ 0 ∧ · · · (cubic cost)

Trade-off between cost and expressiveness / precision

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 17 / 50

Abstract interpretation Abstract numeric semantics

Numeric domains

We abstract P(E) ' P(R|V|) further

concrete sets, in P(E): {〈 0, 3 〉, 〈 5.5, 0 〉, 〈 12, 7 〉, . . .} (not computable)
polyhedra: 6X + 11Y ≥ 33 ∧ · · · (exponential cost)
intervals: X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)

octagons: X + Y ≥ 3 ∧ Y ≥ 0 ∧ · · · (cubic cost)

Trade-off between cost and expressiveness / precision

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 17 / 50

Abstract interpretation Abstract numeric semantics

Numeric domains

We abstract P(E) ' P(R|V|) further

concrete sets, in P(E): {〈 0, 3 〉, 〈 5.5, 0 〉, 〈 12, 7 〉, . . .} (not computable)
polyhedra: 6X + 11Y ≥ 33 ∧ · · · (exponential cost)
intervals: X ∈ [0, 12] ∧ Y ∈ [0, 8] (linear cost)
octagons: X + Y ≥ 3 ∧ Y ≥ 0 ∧ · · · (cubic cost)

Trade-off between cost and expressiveness / precision

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 17 / 50

Abstract interpretation Abstract numeric semantics

Static analysis

1 i ← 2
2 n← input [−100, 100]
3 while 4 i ≤ n do

5 if random() then
i ← i + 2 6

7

X]
1

i+1 def
= { (0, 0) }]

X]
2

i+1 def
= C]J i ← 2 KX]

1
i

X]
3

i+1 def
= C]J n← [−100, 100] KX]

2
i

X]
4

i+1 def
= X]

4
i O (X]

3
i ∪] X]

6
i)

X]
5

i+1 def
= C]J i ≤ n KX]

4
i

X]
6

i+1 def
= X]

5
i ∪] C]J i ← i + 2 KX]

5
i

X]
7

i+1 def
= C]J i > n KX]

4
i

abstract variables X]` ∈ E] replace concrete ones X` ∈ P(E)

abstract operators are used: C]J · K : E] → E], ∪] : E] × E] → E]

the system is solved by iterations

X]` 0 def
= ∅], X]` i+1 def

= F]` (X]1 i , . . . ,X]|L|
i)

widening O is used to force convergence in finite time

(e.g.: put unstable bounds to ∞)

=⇒ effective, terminating, sound static analyzer
HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 18 / 50

Abstract interpretation Abstract numeric semantics

Contribution: floating-point polyhedra

Original polyhedra use arbitrary precision rationals and
double descriptions (constraints / generator) [Cousot Halbwachs 78]

Goal: use floats for improved scalability [Liqian Chen’s PhD]

constraints with float coefficients [Chen et al. 2008]

constraints with float interval coefficients [Chen et al. 2009]

Algorithms: sound float versions of

Fourier-Motzkin elimination (approximate projection)

guaranteed linear programming (sound enclosure)

unsound floats sound float sound float intervals

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 19 / 50

Abstract interpretation Abstract numeric semantics

Contribution: domains for realistic data-types

Adapt domains from R to data-types found in actual programs

Machine integers: [Miné 2012]

wrap-around semantics after overflow (127 + 1 = −128)

specialized domain: modular intervals (X ∈ [a, b] + cZ)

Floating-point numbers: [Miné 2004]

handle rounding-errors (non-linear)

abstract rounding as non-deterministic choice in intervals
(round(X) X + [−ε, ε]X + [−ε, ε])

Memory representation awareness: [Miné 2006]

C union types (dynamic decomposition of the memory)

ill-typed accesses through C pointer casts and arithmetic

bit-level manipulation in machine integers and floats

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 20 / 50

Abstract interpretation Abstract numeric semantics

Abstraction summary for sequential programs

abstract states
X] ∈ L → E]

(abstract invariants)

 implementable
data-structures + algorithms

states

S ∈ P(L × E)

αval

OO

(invariants)

execution traces

T ∈ P((L × E)∗)

αstate

OO

mathematical
non-computable

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 21 / 50

Static analysis of concurrent software

Static analysis of concurrent software

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 22 / 50

Static analysis of concurrent software

Concurrent language

Language extension:

finite, fixed set of threads statt , t ∈ T
all variables V are shared

Execution model: non-deterministic interleaving of thread actions
(sequential consistency with atomic assignments and tests)

Labelled transition system:

states Σ
def
= (T → L)× E

(thread-local control state in T → L, shared memory in E)

labelled transitions σ
t→ σ′, t ∈ T

〈 L[t 7→ `], ρ 〉 t→ 〈 L[t 7→ `′], ρ′ 〉 ⇐⇒ 〈 `, ρ 〉 →statt 〈 `′, ρ′ 〉
(derived from the transitions of individual threads)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 23 / 50

Static analysis of concurrent software

Trace and state semantics

Labelled trace semantics:

set of interleaved execution traces, with thread labels

T
def
= lfpF where

F (T)
def
= I ∪{σ0

t0→ · · · ti→ σi+1 |σ0
t0→ · · · ti−1→ σi ∈ T ∧σi

ti→ σi+1 }

State semantics: (as before)

S
def
= lfpG where G (S)

def
= I ∪ {σ | ∃σ′, t:σ′

t→ σ }
S = αstate(T) where

αstate(T)
def
= {σi | ∃σ0

t0→ · · · tn−1→ σn ∈ T : i ∈ [0, n] }

Idea:
forget about threads and labels
analyze as a sequential program interleaving thread statements

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 24 / 50

Static analysis of concurrent software

Equational state semantics example

Example: inferring 0 ≤ x ≤ y ≤ 10

t1 t2

while 1 true do while 4 true do
2 if x < y then 5 if y < 10 then

3 x ← x + 1 6 y ← y + 1

attach variables XL ∈ P(E) to control locations L ∈ T → L

synthesize equations XL = FL(X(1,...,1), . . . ,X(|L|,...,|L|))

from thread equations X`,t = F`,t(X1,t , . . . ,X|L|,t)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 25 / 50

Static analysis of concurrent software

Equational state semantics example

Example: inferring 0 ≤ x ≤ y ≤ 10

t1 t2

while 1 true do while 4 true do
2 if x < y then 5 if y < 10 then

3 x ← x + 1 6 y ← y + 1

(Simplified) concrete equation system:
X1,4 = I ∪ CJ x ← x + 1 KX3,4 ∪ CJ x ≥ y KX2,4

∪ CJ y ← y + 1 KX1,6 ∪ CJ y ≥ 10 KX1,5

X2,4 = X1,4 ∪ CJ y ← y + 1 KX2,6 ∪ CJ y ≥ 10 KX2,5

X3,4 = CJ x < y KX2,4 ∪ CJ y ← y + 1 KX3,6 ∪ CJ y ≥ 10 KX3,5

X1,5 = CJ x ← x + 1 KX3,5 ∪ CJ x ≥ y KX2,5 ∪ X1,4

X2,5 = X1,5 ∪ X2,4

X3,5 = CJ x < y KX2,5 ∪ X3,4

X1,6 = CJ x ← x + 1 KX3,6 ∪ CJ x ≥ y KX2,6 ∪ CJ y < 10 KX1,5

X2,6 = X1,6 ∪ CJ y < 10 KX2,5

X3,6 = CJ x < y KX2,6 ∪ CJ y < 10 KX3,5

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 25 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Rely/guarantee proof method

Modular proof method introduced by [Jones 1981]

checking t1

while 1 true do

x unchanged

2 if x < y then

y incremented

3 x ← x + 1

y ≤ 10

at 1, 2 : 0 ≤ x ≤ y ≤ 10
at 3 : 0 ≤ x < y ≤ 10

checking t2

y unchanged

while 4 true do
5 if y < 10 then

6 y ← y + 1

at 4, 5 : 0 ≤ x ≤ y ≤ 10
at 6 : 0 ≤ x ≤ y < 10

Annotate programs with:

local invariants (attached to L, not T → L)

guarantees on transitions by other threads

For each thread, prove that local invariants hold

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 26 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Rely/guarantee proof method

Modular proof method introduced by [Jones 1981]

checking t1

while 1 true do x unchanged
2 if x < y then y incremented

3 x ← x + 1 y ≤ 10

at 1, 2 : 0 ≤ x ≤ y ≤ 10
at 3 : 0 ≤ x < y ≤ 10

checking t2

y unchanged while 4 true do
5 if y < 10 then

6 y ← y + 1

at 4, 5 : 0 ≤ x ≤ y ≤ 10
at 6 : 0 ≤ x ≤ y < 10

Annotate programs with:

local invariants (attached to L, not T → L)

guarantees on transitions by other threads

For each thread, prove that local invariants and guarantees hold
relying on guarantees from other threads

=⇒ check a thread against an abstraction of the other threads
(does not require looking at other threads)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 26 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Contribution: rely/guarantee as abstract interpretation

Formalization as abstract interpretation [Miné 2012]

constructive design (fixpoints)

infer invariants and guarantees (instead of only checking)

exploit existing abstractions (numeric domains)

Complementary abstractions: of the trace semantics T

thread-local states for t ∈ T
St

def
= πt(αstate(T)) where

πt〈 L, ρ 〉
def
= 〈 L(t), ρ[∀t ′ 6= t: pct′ 7→ L(t ′)] 〉 ∈ P(L × Et)

(keep other threads’ location in auxiliary variables)

interferences generated by t ∈ T
At

def
= { 〈σi , σi+1 〉 | ∃ · · ·σi

t→ σi+1 · · · : ∈ T }
transitions from τ actually observed in execution traces

(relational and flow-sensitive information)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 27 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Contribution: rely/guarantee as abstract interpretation

Nested fixpoint form: for the state semantics S

S = lfp G where

Gt(S)
def
= lfp Ht(λt ′. { 〈σ, σ′ 〉 |σ ∈ St′ , σ

t′→ σ′ })
Ht(A)(S)

def
= πt(I ∪ {σ′ | ∃πt(σ) ∈ S :σ

t→ σ′ ∨ ∃t ′ 6= t: (σ, σ′) ∈ At′ })

Ht(A): execute one step, in thread t or interferences A

Gt(S) ' lfpHt : analyze thread t completely
with fixed interferences (spawned from S)

lfpG : re-analyze all threads until interferences stabilize

can be computed by (transfinite) iterations

Thread-modular, constructive, complete computation of safety properties

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 28 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Further abstractions

State abstractions:

forget auxiliary variables
αaux (X)

def
= { 〈 `, ρ|E 〉 | 〈 `, ρ 〉 ∈ X } ∈ P(L × E)

(allows uniform analyses of threads with unbounded instances)

Interference abstractions:

flow-insensitive abstraction:
αflow (X)

def
= { 〈 ρ, ρ′ 〉 | ∃L, L′: 〈 〈 L, ρ 〉, 〈 L′, ρ′ 〉 〉 ∈ X }

(infer global interferences)

input-insensitive abstraction:
αout(X)

def
= { ρ′ | ∃ρ: 〈 ρ, ρ′ 〉 ∈ X } ∈ P(E)

non-relational abstraction:
αval (X)

def
= λV ∈ V. { ρ(V) | ρ ∈ X } ∈ V → P(R)

Further abstractions in numeric abstract domains

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 29 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Application: simple interference analysis

Proposed initially and implemented in AstréeA in [Miné 2010]

reformulated as abstract rely-guarantee in [Miné 2012]

Interference abstraction in I def
= T × V × R

〈 t, X , v 〉 means: t can store the value v into the variable X

Modified semantic of expressions and commands:

EtJX K 〈 ρ, I 〉 def
= { ρ(X) } ∪ { v | ∃t ′ 6= t: 〈 t ′, X , v 〉 ∈ I }

CtJX ← e K 〈R, I 〉 def
=

〈 { ρ[X 7→ v] | ρ ∈ R, v ∈ Vρ }, I ∪ { 〈 t, X , v 〉 | ρ ∈ R, v ∈ Vρ } 〉
where Vρ

def
= EtJ e K 〈 ρ, I 〉

analyze each thread as a sequential program
with interferences I ⊆ I
a thread analysis infers new interferences

iterate (with widening O) until stabilization

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 30 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Simple interference analysis: example

Example

t1 t2

while 1 true do while 4 true do
2 if x < y then 5 if y < 10 then

3 x ← x + 1 6 y ← y + 1

Interference semantics:

iteration 1
I = ∅
at 2 : x = 0, y = 0
at 5 : x = 0, y ∈ [0, 10]
new I = { 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 31 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Simple interference analysis: example

Example

t1 t2

while 1 true do while 4 true do
2 if x < y then 5 if y < 10 then

3 x ← x + 1 6 y ← y + 1

Interference semantics:

iteration 2
I = { 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }
at 2 : x ∈ [0, 10], y = 0
at 5 : x = 0, y ∈ [0, 10]
new I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 31 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Simple interference analysis: example

Example

t1 t2

while 1 true do while 4 true do
2 if x < y then 5 if y < 10 then

3 x ← x + 1 6 y ← y + 1

Interference semantics:

iteration 3
I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }
at 2 : x ∈ [0, 10], y = 0
at 5 : x = 0, y ∈ [0, 10]
new I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 31 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Simple interference analysis: example

Example

t1 t2

while 1 true do while 4 true do
2 if x < y then 5 if y < 10 then

3 x ← x + 1 6 y ← y + 1

Interference semantics:

iteration 3
I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }
at 2 : x ∈ [0, 10], y = 0
at 5 : x = 0, y ∈ [0, 10]
new I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }

Note: we cannot infer x ≤ y at 2, only x , y ∈ [0, 10]

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 31 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Abstraction summary for sequential programs

abstract states
X] ∈ L → E]

(abstract invariants)

 implementable
data-structures + algorithms

states

S ∈ P(L × E)

αval

OO

(invariants)

execution traces

T ∈ P((L × E)∗)

αstate

OO

mathematical
non-computable

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 32 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Abstraction summary for concurrent programs

abstract states
T → L → E]

abstract interferences
T → E]

static analyzer

input-insensitive interferences

T → P(E)

αval

OO

local states

T → P(L × E)

αval

OO

flow-insensitive interferences

T → P(E × E)

αout

OO

rely/guarantee
(without aux. variables)

local states

S ∈
∏

t∈T P(L × Et)

αaux

OO

interferences

A ∈ P(((T → L)× E)× ((T → L)× E))

αflow

OO

rely/guarantee
(with aux. variables)

πt ◦ αstate

OO
αintf

OO

interleaved execution traces concrete executions
T ∈ P(((T → L)× E)∗)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 33 / 50

Static analysis of concurrent software Advanced interferences

Weak memory consistency

program written

F1 ← 1; F2 ← 1;
if F2 = 0 then if F1 = 0 then
S1 S2

−→
program executed

if F2 = 0 then if F1 = 0 then
F1 ← 1; F2 ← 1;
S1 S2

(simplified Dekker mutual exclusion algorithm)

S1 and S2 cannot execute simultaneously

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 34 / 50

Static analysis of concurrent software Advanced interferences

Weak memory consistency

program written

F1 ← 1; F2 ← 1;
if F2 = 0 then if F1 = 0 then
S1 S2

−→
program executed

if F2 = 0 then if F1 = 0 then
F1 ← 1; F2 ← 1;
S1 S2

(simplified Dekker mutual exclusion algorithm)

S1 and S2 can execute simultaneously

(non sequentially consistent behavior)

Causes:

weak hardware memory model (write FIFOs, caches)

thread-unaware compiler optimizations (reordering)

now part of standards (Java, C, C++)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 34 / 50

Static analysis of concurrent software Advanced interferences

Weak memory consistency

program written

F1 ← 1; F2 ← 1;
if F2 = 0 then if F1 = 0 then
S1 S2

−→
program executed

if F2 = 0 then if F1 = 0 then
F1 ← 1; F2 ← 1;
S1 S2

(simplified Dekker mutual exclusion algorithm)

Soundness theorem: [Miné 2011] [Alglave et al. 2011]

For flow-insensitive interference abstractions
the analysis is invariant by a wide range of thread transformations

inserting FIFO buffers (TSO hardware model)

reordering of “independent” statements

common sub-expression elimination

change of granularity (non-atomic expression evaluation)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 34 / 50

Static analysis of concurrent software Advanced interferences

Handling mutual exclusion

W W

R RW

lock(m) unlock(m)

lock(m) unlock(m)

p2

p1

R

W

No interference unless:

write / read not protected by a common mutex (data-races), or

last write before unlocking affects first read after lock

Solution:

partition interferences wrt. mutexes
T × V × R T × P(mutexes)× V × R
extract / apply interferences at critical section boundaries

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 35 / 50

Static analysis of concurrent software Advanced interferences

Handling mutual exclusion

W W

R RW

lock(m) unlock(m)

lock(m) unlock(m)

p2

p1

R

W

No interference unless:

write / read not protected by a common mutex (data-races), or

last write before unlocking affects first read after lock

Solution:

partition interferences wrt. mutexes
T × V × R T × P(mutexes)× V × R
extract / apply interferences at critical section boundaries

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 35 / 50

Static analysis of concurrent software Advanced interferences

Handling mutual exclusion

W W

R RW

lock(m) unlock(m)

lock(m) unlock(m)

p2

p1

R

W

No interference unless:

write / read not protected by a common mutex (data-races), or

last write before unlocking affects first read after lock

Solution:

partition interferences wrt. mutexes
T × V × R T × P(mutexes)× V × R
extract / apply interferences at critical section boundaries

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 35 / 50

Static analysis of concurrent software Advanced interferences

Handling mutual exclusion

W W

R RW

lock(m) unlock(m)

lock(m) unlock(m)

p2

p1

R

W

No interference unless:

write / read not protected by a common mutex (data-races), or

last write before unlocking affects first read after lock

Solution:

partition interferences wrt. mutexes
T × V × R T × P(mutexes)× V × R
extract / apply interferences at critical section boundaries

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 35 / 50

Static analysis of concurrent software Advanced interferences

Priority-based scheduling

priority-based critical sections

high thread low thread
L← islocked(m); lock(m);
if L = 0 then Z ← Y ;
Y ← Y + 1; Y ← 0;
yield unlock(m)

Real-time scheduling:

the runnable thread of highest priority always runs

threads can yield for a non-deterministic time
and preempt lower priority threads when waking up

=⇒ predictable scheduling, but not fixed

Static analysis:

Partition wrt. enriched scheduling state
HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 36 / 50

Static analysis of concurrent software Advanced interferences

Relational lock invariants
Work in progress

example

while true do while true do
lock(m); lock(m);
if X > 0 then if X < 10 then

X ← X − 1; X ← X + 1;
Y ← Y − 1; Y ← Y + 1;

unlock(m) unlock(m)

Non-relational interferences find X ∈ [0, 10], but no bound on Y
Actually, Y ∈ [0, 10]

Solution: infer the relational invariant X = Y at lock boundaries

αrel (X)
def
= { ρ | ∃ρ′: 〈 ρ, ρ′ 〉 ∈ X ∨ 〈 ρ′, ρ 〉 ∈ X } ∈ P(E)

(keep only constraints that are respected by the critical section)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 37 / 50

Static analysis of concurrent software Advanced interferences

Relational lock invariants
Work in progress

example

while true do while true do
lock(m); lock(m);
if X > 0 then if X < 10 then

X ← X − 1; X ← X + 1;
Y ← Y − 1; Y ← Y + 1;

unlock(m) unlock(m)

Non-relational interferences find X ∈ [0, 10], but no bound on Y
Actually, Y ∈ [0, 10]

Solution: infer the relational invariant X = Y at lock boundaries

αrel (X)
def
= { ρ | ∃ρ′: 〈 ρ, ρ′ 〉 ∈ X ∨ 〈 ρ′, ρ 〉 ∈ X } ∈ P(E)

(keep only constraints that are respected by the critical section)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 37 / 50

Static analysis of concurrent software Advanced interferences

Lack of inter-process flow-sensitivity
Future work

a more difficult example

while true do while true do
lock(m); lock(m);
X ← X + 1; X ← X + 1;
unlock(m); unlock(m);
lock(m); lock(m);
X ← X − 1; X ← X − 1;
unlock(m) unlock(m)

Our analysis finds no bound on X
Actually X ∈ [−2, 2] at all program points

To prove this, we need to infer an
invariant on the history of interleaved executions:

at most two incrementations (resp. decrementation) can occur
without a decrementation (resp. incrementation)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 38 / 50

Static analysis of concurrent software Advanced interferences

Lack of inter-process flow-sensitivity
Future work

a more difficult example

while true do while true do
lock(m); lock(m);
X ← X + 1; X ← X + 1;
unlock(m); unlock(m);
lock(m); lock(m);
X ← X − 1; X ← X − 1;
unlock(m) unlock(m)

Our analysis finds no bound on X
Actually X ∈ [−2, 2] at all program points

To prove this, we need to infer an
invariant on the history of interleaved executions:

at most two incrementations (resp. decrementation) can occur
without a decrementation (resp. incrementation)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 38 / 50

Applications

Applications

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 39 / 50

Applications Astree

Specialized static analyzers

Design by refinement:

focus on a specific family of programs and properties

start with a fast and coarse analyzer (intervals)

while the precision is insufficient (too many false alarms)

add new abstract domains (generic or application-specific)
refine existing domains (better transfer functions)
improve communication between domains (reductions)

=⇒ analyzer specialized for a (infinite) class of programs

efficient and precise

parametric (by end-users, to analyze new programs in the family)

extensible (by developers, to analyze related families)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 40 / 50

Applications Astree

The Astrée static analyzer

Analyseur statique de programmes temps-réels embarqués
(static analyzer for real-time embedded software)

developed at ENS (since 2001)
B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, D. Monniaux, A. Miné, X. Rival

industrialized and made commercially available by AbsInt
(since 2009)

Astrée
www.astree.ens.fr

AbsInt
www.absint.com

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 41 / 50

Applications Astree

Astrée specialization

Specialized:

for the analysis of run-time errors
(arithmetic overflows, array overflows, divisions by 0, etc.)

on embedded critical C software
(no dynamic memory allocation, no recursivity)

in particular on control / command software
(reactive programs, intensive floating-point computations)

intended for validation
(does not miss any error and tries to minimise false alarms)

Approximately 40 abstract domains are used at the same time:

numeric domains (intervals, octagons, ellipsoids, etc.)

boolean domains

domains expressing properties on the history of computations

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 42 / 50

Applications Astree

Astrée specialization

Specialized:

for the analysis of run-time errors
(arithmetic overflows, array overflows, divisions by 0, etc.)

on embedded critical C software
(no dynamic memory allocation, no recursivity)

in particular on control / command software
(reactive programs, intensive floating-point computations)

intended for validation
(does not miss any error and tries to minimise false alarms)

Approximately 40 abstract domains are used at the same time:

numeric domains (intervals, octagons, ellipsoids, etc.)

boolean domains

domains expressing properties on the history of computations

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 42 / 50

Applications Astree

Astrée applications

Airbus A340-300 (2003) Airbus A380 (2004)

(case study for) ESA ATV (2008)

size: from 70 000 to 860 000 lines of C

analysis time: from 45mn to '40h

alarm(s): 0 (proof of absence of run-time error)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 43 / 50

Applications AstreeA

AstréeA project

Goal: Astrée for asynchronous programs

Target programs: large embedded avionic C software

Scope: ARINC 653 real-time operating system

several concurrent threads, one a single processor

shared memory (implicit communications)

synchronisation primitives (mutexes)

real-time scheduling (priority-based)

fixed set of threads and mutexes, fixed priorities

no dynamic memory allocation, no recursivity

Computeall run-time errors in a sound way:

classic C run-time errors (overflows, invalid pointers, etc.)

data-races (report & factor in the analysis)

but not deadlocks, livelocks, nor priority inversions
HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 44 / 50

Applications AstreeA

Abstract interpreter
Astrée

syntax iterator
l

trace partitioning domain
l

memory domain
l

pointer domain
l

(reduced product of) numerical abstract domains

l l l l l
...

intervals congruences octagons filters exponentials . . .

x

y

x

y

x

y

x

y

t

y

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 45 / 50

Applications AstreeA

Abstract interpreter
AstréeA

thread iterator
l

syntax iterator
l

trace partitioning domain
l

scheduler partitioning domain
l

memory domain
l ↑

interference domain
...

l ↓
pointer domain

l
(reduced product of) numerical abstract domains

l l l l l
...

intervals congruences octagons filters exponentials . . .

x

y

x

y

x

y

x

y

t

y
HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 45 / 50

Applications AstreeA

Target system

embedded avionic code

1.6 Mloc of C, 15 threads
+ 2.6 Kloc (hand-written) OS model (ARINC 653)

many variables, large arrays, many loops

reactive code + network code + lists, strings. pointers

initialization phase, followed by a multithreaded phase

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 46 / 50

Applications AstreeA

Analysis results

Analysis on our intel 64-bit 2.66 GHz server, 64 GB RAM

Analysis results

lines # threads # iters. time # alarms

100 K 5 4 46 mn 64

1.6 M 15 6 43 h 1 208

efficiency on par with analyses of synchronous code

few thread reanalyses (time efficiency)

few partitions (memory efficiency)

but still many alarms

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 47 / 50

Conclusion

Conclusion

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 48 / 50

Conclusion

Summary

A method to analyze concurrent programs:

sound for all interleavings

sound for weakly consistent memory semantics

taking synchronization into account

thread-modular

parametrized by abstract domains

exploits directly existing non-parallel analyzers

efficient (on par with non-parallel analyses)

abstraction of a semantics complete for safety (rely/guarantee)

(=⇒ wide range of trade-offs between cost and precision)

Encouraging experimental results
on embedded real-time concurrent programs

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 49 / 50

Conclusion

Future work

Ongoing work:

new classes of interference abstractions
(relational and history-sensitive interferences)

dynamic threads
(thread creation, dynamic priorities)

refined weakly consistent memory models (TSO)

improve AstréeA (zero false alarm goal)

extend to other synchronization mechanisms and OS kinds
(towards industrialization)

Long-term challenges:

functional, time-related, and security properties

liveness proofs under fairness conditions

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 50 / 50

	Introduction
	Abstract interpretation
	Concrete semantics
	Abstract numeric semantics

	Static analysis of concurrent software
	Rely/guarantee as abstract interpretation
	Advanced interferences

	Applications
	Astrée
	AstréeA

	Conclusion

