
The Octagon Abstract Domain Library

Version 0.9.10

Antoine Miné

mine@di.ens.fr

http://www.di.ens.fr/∼mine/oct

Semantics and Abstract Interpretation
Computer Science Lab

École Normale Supérieure, Paris, France

April 2006

mailto:mine@di.ens.fr?subject=Octagon%20Library
http://www.di.ens.fr/~mine/oct

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Contents

Title Page 1

Table of Contents 2

License 4

1 Introduction 7
1.1 Goal . 7
1.2 Organization of the Package . 7
1.3 Building and Installing the Library . 8
1.4 Using the Library . 9
1.5 Installing Several Versions of the Library . 9
1.6 Thread-Safety . 10
1.7 Examples . 10

2 C Library API 11
2.1 Initialization . 11
2.2 Booleans . 11
2.3 Underlying Numerical Domain . 12
2.4 Octagons . 15

2.4.1 Octagon Management . 15
2.4.2 Queries . 15
2.4.3 Tests . 16
2.4.4 Operators . 16
2.4.5 Transfer Functions . 18
2.4.6 Change of Dimension . 19
2.4.7 Interval Manipulations . 21
2.4.8 Perturbation . 22
2.4.9 Utilities . 22
2.4.10 Minimized Octagons . 22
2.4.11 Low Level Functions . 23
2.4.12 Interface with the New Polka Library . 24

2.5 Utilities . 25
2.5.1 Assertions . 25
2.5.2 Memory Management . 25
2.5.3 Timing . 27

3 OCaml Binding API 29
3.1 Initialization . 29
3.2 Numerical Domain . 29
3.3 Boolean Lattice . 31
3.4 Octagons . 31

3.4.1 Octagon Creation . 31
3.4.2 Queries . 31
3.4.3 Tests . 32
3.4.4 Operators . 32
3.4.5 Transfer Functions . 33
3.4.6 Change of Dimensions . 34
3.4.7 Minimized Octagons . 35

CONTENTS 2/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

3.4.8 Interval functions . 35
3.4.9 Perturbation . 36
3.4.10 Pretty-Printers . 36

3.5 Interface with the New Polka Library . 37
3.6 Utilities . 37
3.7 Low-level Binding API . 38

4 Analyzer Example 40
4.1 How to Use the Analyzer . 40
4.2 Source Files . 40
4.3 Language Syntax . 40
4.4 Analysis Method . 41

5 Internal Structure 43
5.1 Abstract Elements Representation (oct_sem.c) . 43

5.1.1 Original Representation . 43
5.1.2 Modified Representation (oct_t) . 43

5.2 Modified Strong Closure Algorithm (oct_close) . 44
5.2.1 Emptiness Test . 45
5.2.2 Incremental Strong Closure Algorithm (oct_close_incremental) 45

5.3 Minimized Octagons (moct_t) . 45
5.3.1 Minimized Representation . 46
5.3.2 Minimization Algorithm . 46
5.3.3 Algorithms on Minimized Octagons . 46

5.4 Memory Management of Abstract Elements (oct_sem.c) 47
5.5 Conversion between Octagons and Polyhedra (oct_polka.c) 47

5.5.1 From Octagons to Polyhedra (oct_to_poly) . 47
5.5.2 From Polyhedra to Octagons (oct_from_poly) . 48

5.6 Operators and Transfer Functions (oct_sem.c) . 48

Bibliography 49

Index 50

CONTENTS 3/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

License

The Octagon Abstract Domain Library is Copyright c©2000-2006 Antoine Miné.

This license applies to all files distributed in the original package, including all source code,
libraries, binaries, and documentation, except the files that are part of the GNU autoconf,
automake, and libtool software. A copy of this license is available in the COPYING file.

By using, distributing, or modifying the Octagon Abstract Domain Library, you indicate
that you understand and accept all the terms of this license.

DISCLAIMER
This library is provided ’as is’ without warranty of any kind, either expressed or implied,
including, but not limited to, warranties of merchantability and fitness for a particular
purpose, warranties of correctness and absence of error of any kind. In no event will the
author be liable for any damage caused by the use, or inability to use, of the Octagon
Abstract Domain Library.

USING
The Octagon Abstract Domain Library is intended for academic use only. The Octagon
Abstract Domain Library may be used freely, in original or modified form, in any academic
software, provided the software notice specify explicitly that it uses the Octagon Abstract
Domain Library, what part of it are used, how it was modified, if it was modified, and
precisely what usage of the Octagon Abstract Domain Library is done in the software.
Commercial use of the library is not possible without the explicit authorization of the
authors of the original and modified parts of the library.

COPYING
The Octagon Abstract Domain Library may be freely distributed in its original, unmod-
ified package form, as long as no fee is charged for the package. Whenever the Octagon
Abstract Domain Library or portions of it are distributed, this license must be included
in unmodified form, and all files must contain their original copyright notices. If only
a portion of a file is being distributed, the appropriate copyright notice must be copied
into it from the beginning of the file, and this license must still be included in unmodified
form. If the whole library or part of it is distributed in compiled or processed form, the
present license must be included, as well as a a reference to the official library web site:
http://www.di.ens.fr/∼mine/oct/.

MODIFYING
The Octagon Abstract Domain Library files may be freely modified and these modified
files distributed under the terms of the COPYING section, provided that these files remain
under the terms of the present license, and all files carry their original copyright notice,
in addition to the list of all modifications the were made and their respective authors.
If a modified version of the library is distributed in source, compiled or processed form,
the present license applies to all unmodified and modified parts and you must provide a

LICENSE 4/53

http://www.di.ens.fr/~mine/oct

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

reference to the modified sources, as well as a reference to the official library web site:
http://www.di.ens.fr/∼mine/oct/.

EXTERNAL TOOLS
The Octagon Abstract Domain Library is designed to operate with external programs
and libraries not provided in this package, including, but not limited to, any C or C++
compiler, the OCaml programming language, the New Polka Library, the GMP library
These tools must be used according to their respective license. The present license does
not apply to them. The author is not responsible for any problem encountered with these
tools.

LICENSE 5/53

http://www.di.ens.fr/~mine/oct

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Future of the library

The octagon library is now folded within the APRON project [APR], an ongoing effort to package several
numerical abstract domains in a unified library using a common API. See http://www.cri.ensmp.fr/
apron/.

FUTURE OF THE LIBRARY 6/53

http://www.cri.ensmp.fr/apron/
http://www.cri.ensmp.fr/apron/

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Chapter 1

Introduction

1.1 Goal

This library implements the representation and manipulation of conjunctions of constraints of the form
(±x±y ≤ c), so called octagons. Operators are intended for Abstract Interpretation use; so they implement
standard semantics operators, as well convergence acceleration operators (see [CC77] for an Abstract Inter-
pretation primer). This work is based on the author’s Ph.D thesis [Min04] and the following publication:
[Min06] (this subsumes the old, original conference paper [Min01b] and adds some more algorithms). The
library is currently used in the Astrée project [BCC+03, Ast]. Also, most of its contents has been recycled
into the new Apron [APR] project.

1.2 Organization of the Package

The library source is composed of the following parts:
• clib/ C library
• test/ C library test suite
• ocamllib/ OCaml module (a wrapper around the C library)
• ocamlanal/ sample OCaml static analyzer
• doc/ this documentation

Please take a look at the following files:
• AUTHORS list of authors
• COPYING the license of the library, it is recalled in the beginning of the present

documentation; you must agree with it in order to use the library
• INSTALL detailed installation informations
• README read this before complaining

Here is a list of what gets installed, and where:
Libraries (in PREFIX/lib/)
• liboct.* C library
• libocamloct.* C wrapper for the OCaml module

C headers (in PREFIX/include/oct/)
• oct.h main header
• oct_private.h use this to access to low-level structures (not recommended)
• oct_num.h underlying numerical domain

OCaml code (in PREFIX/lib/ocaml/)
• oct.cma OCaml byte-code module
• oct.[cmx]a OCaml native code module
• oct*.cmi compiled interfaces for OCaml modules
• oct*.mli interfaces for OCaml modules in human-readable form

Binaries (in PREFIX/bin/)
• oct-config configuration utility
• octtest C test-suite
• octanal OCaml sample analyzer

The documentation (in PREFIX/share/oct/)
• doc_oct.dvi this documentation

1.2- Organization of the Package 7/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

The library can be interfaced with the following:
• the OCaml language 3.04 [La]
• the Gnu MP and MPFR libraries 4.1 [GNU, TPpL, Mon]
• the New Polka library 2.0.0 [Jea]

In order to support several versions of the library installed with different configuration options, copies of
liboct.so and oct-config that are name-mangled are installed (they are named liboct_XXX.so and
oct-config-XXX, where the suffix XXX is derived from the choice of options).

1.3 Building and Installing the Library

There is a configure script that helps to compile the library easily. First of all, if the configure file does
not exist, you can generate it using the bootstrap file. Then you simply have to type:

% ./configure --with-num=frac
% make
% make install

The script should discover automatically whether it can build the OCaml, GMP, MPFR, and New Polka
supports. The configure script accepts many arguments:

• To install the C library in another directory than /usr/local, use --prefix=DIR (e.g., --
prefix=$HOME, if you are not root).

• To install the OCaml library in another directory than /usr/local/lib/ocaml, use the --with-
ocaml=DIR option. OCaml version 3.04 at least must be present.

• If the New Polka Library, or the GMP / MPFR libraries are installed in non-standard directories,
use the --with-polka=DIR, with-gmp=DIR, and with-mpfr=DIR options. New Polka version 2.0.0 at
least (version 1.x will not work) and GMP version 4.1 at least must be installed with MPFR support
enabled.

• By default, the library is compiled with debugging informations and no optimization. You can switch
to optimized mode (much faster, but no debugging information) with the --disable-debug option.

• Internal memory and time profiling can be also enabled using the --enabled-prof option. It is disabled
by default as it makes the library a little slower.

• The Octagon Library can use several different underlying numerical representations for numbers: in-
tegers, fractions, or machine floating-point numbers. If GMP and MPFR are present, you can also use
GMP arbitrary precision integers, GMP arbitrary precision fractions, or MPFR floating-point numbers.
To choose which one is used, use the --with-num=NUM option, where NUM is either int, frac, float,
longdouble, gmpint, gmpfrac, or mpfrfloat.

Note: the option --with-num=NUM is now mandatory.

• You can also choose which integer representation will be used by the New Polka Library with the
--with-polka-num=NUM option, where NUM is long, longlong, or gmp.

The New Polka Library name to use is derived from the --with-polka-num and --enable-debug con-
figuration options. long, longlong, and gmp select respectively one of the following prefix: libpolkai,
libpolkal, or libpolkag. If debugging is enabled, the _debug suffix is added to the New Polka library
name used. You must make sure this library exists and can be found by the configuration program
(maybe using the --with-polka=DIR option).

• If you want the OCaml support in the Octagon Library to work with the OCaml support for the New
Polka library, you must make sure that the OCaml libraries polka.cma (for byte-code support) and
polka.cmxa, polka.a (for native code support) are available (you may need to use the --with-ocaml
flag). A libpolkaX_caml C library must also be available; as for the libpolka library; its exact name
depends upon the configuration flags options --with-polka-num and --enable-debug chosen: one of
the libpolkai_caml, libpolka_caml, or libpolkag_caml prefix is chosen, and the _debug suffix is
appended if debugging is enabled.

• If you want OCaml support for GMP and MPFR numbers, you must also have the Caml-GMP library
[Mon] installed.

1.3- Building and Installing the Library 8/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

To see all options, type ./configure --help. Please refer to the INSTALL file for a detailed description
of the installation process.

1.4 Using the Library

Finding the correct compile and link flags to build a program using the Octagon Library may be difficult.
Thankfully, a helper shell-script, oct-config, is installed; it guesses automatically all the -D, -I, -l, and
-L flags needed.

• In order to compile a C program toto.c, simply type:

% cc ‘oct-config --cflags‘ -c toto.c

Your C program must include the oct/oct.h header file in order to access to the functions in the
library.

• To link C object files toto.o toto2.o, type:

% cc ‘oct-config --libs‘ toto.o toto2.o -o totor

If the New Polka Library support is enabled, it will also link the correct version of the New Polka
Library.

• You can use both --cflags and --libs if you plan to compile and link at the same time.

• To compile or link a C++ program with the library, proceed as with a C program. Note however, that
you may need to disable the New Polka library whose headers do not seem to be C++-clean.

• To build a OCaml byte-code program, type:

% ocamlc ‘oct-config --mlflags‘ toto.ml toto2.ml

• To build a OCaml native code program, type:

% ocamlopt ‘oct-config --mlflags --with-ocamlopt‘ toto.ml toto2.ml

• To launch a OCaml top-level with the Octagon Library linked in, type:

% ‘oct-config --mltop‘

Your OCaml program should open the Oct module in order to access to the functions in the library.

If the OCaml New Polka Library support is enabled, the New Polka Library will also be automatically
available within the Polka module.

1.5 Installing Several Versions of the Library

You may want to experiment with different configure options at the same time; this is supported easily
with by the Octagon Library. Simply run the sequence ./configure [options]; make; make install;
make clean one time for each option set you want to be installed. Do not forget to invoke make clean
between two compilations. To choose which library is actually used, you simply recall all the desired
options in oct-config, e.g.:

% ./configure --with-num=frac
% make
% make install
% make clean
% ./configure --disable-debug --with-num=frac
% make
% make install
% cc ‘oct-config --libs --cflags --enable-debug‘ toto.c -o toto_debug
% cc ‘oct-config --libs --cflags --disable-debug‘ toto.c -o toto

All options that are not recalled when calling oct-config are defaulted to the value they had in the
last installation of the library; they can be figured out by typing oct-config without any argument.

If oct-config cannot find the library corresponding to the desired options, it will issue an error
message.

This feature is supported using name-mangling. A suffix XXX is derived from the set of options passed
to the configuration script. Then the files liboct_XXX.so and oct-config-XXX are installed. The oct-
config scripts parses the optional arguments to retrieve the name suffix XXX, then calls oct-config-XXX

1.5- Installing Several Versions of the Library 9/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

which gives the correct compilation flags and links against the correct liboct_XXX.so. The installation
process always install a liboct.so file so that you can compile easily with the last library installed using
the -loct link option, would you wish to bypass oct-config.

If you use the OCaml binding, name-mangled Oct_XXX modules are available; use oct-config --
mlmodule to guess the right module name. One name-mangled OCaml top-level is also generated for each
set of options; oct-config --mltop automatically choose the right one.

Note that you can use several versions of the library a the same time in one application. In order to
support this, all non-static functions in the library have a name-mangling prefix (however, this process is
hidden to the user). For example, you can do:

% ./configure --with-num=frac
% cc -c a.c ‘oct-config --cflags --with-num=float‘
% cc -c b.c ‘oct-config --cflags --with-num=frac‘
% cc a.o b.o -o toto ‘oct-config --libs --with-num=float‘

‘oct-config --libs --with-num=frac‘
Remark, however, that one C file can only use one library version; the multi-library feature is only

supported at the linker level! Also, do not directly use an octagon created by one library with a function
of another library.

1.6 Thread-Safety

When internal memory and time profiling is not enabled (default), the Octagon Library is thread-safe.
Internal profiling makes use of statically allocated data, resulting in a non thread-safe implementation.

The New Polka Library is not thread-safe. You must not use the New Polka Library directly, nor the
interface provided by the Octagon Library if you want to make thread-safe library calls.

1.7 Examples

The package comes with a C example and an OCaml example. The C example is a simple test-suite. The
OCaml example is a basic abstract analyzer for a toy language. This analyzer is also available on-line at
http://cgi.di.ens.fr/cgi-bin/mine/octanalhtml-ndi/octanalweb.

1.7- Examples 10/53

http://cgi.di.ens.fr/cgi-bin/mine/octanalhtml-ndi/octanalweb

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Chapter 2

C Library API

This chapter describes the C API used to access to the Octagon Abstract Domain Library. It is also safe
to call these functions from a C++ program. The API was designed to be as close as possible to the New
Polka convex polyhedra library [Jea]. If the New Polka Library is installed, some conversion functions
between octagons and polyhedra are available (Section 2.4.12).

The beginning of the chapter presents the high-level functions, available when you include the
header file oct/oct.h. The low-level functions and internal representations, available when you include
oct/oct_private.h, are presented later in Sections 2.4.11 and 5.1

2.1 Initialization

¥ int oct_init ()

Always call this function before using the library. If you use several versions of the library at
the same time, call oct_init one time for each version. When using machine floating-point
representation, oct_init tries to set the FPU rounding mode towards +∞, thus ensuring the
soundness of the library. Returns 1 when the library was successfully initialized, 0 elsewhere.

2.2 Booleans

¥ bool

The classical boolean type bool and the constants true=1, false=0 are defined, if not already
defined by the compiler (the configure scripts tests this and defines the symbol OCT_HAS_BOOL
in oct_config.h).

¥ tbool

Defines the boolean lattice:
tbool top

mmmmmmmmmmmmm

RRRRRRRRRRRRR

tbool true

RRRRRRRRRRRRR tbool false

lllllllllllll

tbool bottom

tbool_bottom is returned when the answer to a question is undefined, tbool_top when it is not
known.

2.2- Booleans 11/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

2.3 Underlying Numerical Domain

The underlying numerical domain, denoted by I, can be either Z, Q, or R. The implementation uses
machine integers (long), machine floating-points numbers (double or long double) or multi-precision
numbers (using GMP and MPFR) to represent I. Then, it is lifted to I = I ∪ {+∞}.

The choice of I and its actual implementation is done using the --with-num= option of the configure
script. It can be set to int or gmpint (integers), frac or gmpfrac (rationals), float, longdouble or
mpfrfloat (reals). Note that float uses, in fact, the 64−bit double C data-type.

Fast integers, --with-num=int, is unsafe in case of overflow, whether all other numerical domains
either saturate to +∞1, or have arbitrary precision. --with-num=float, --with-num=longdouble, and
even --with-num=mpfrfloat, can have some stability problems (leading to precision degradations, or
difficult fixpoint convergence).

Choosing integers, --with-num=int or --with-num=gmpint, causes certain tests to be only semi-
corrects (true means “really true” and false means “true or false”).

mathematical internal correct when test
name domain representation overflow correctness
int Z long no semi

gmpint Z mpz_t (GMP) yes semi
frac Q long×long yes full

gmpfrac Q mpq_t (GMP) yes full
float R double yes full

longdouble R long double yes full
mpfrfloat R mpfr_t (MPFR) yes full

All numerical types and operators are defined in the file clib/num_oct.h. Operators are implemented
as macro, when possible, or in-line functions.

¥ num_t

Abstract type of numerical variables. This type represents values in I = I ∪ {+∞}. Remark
that type num_t can be a complex structure, involving pointers to dynamic blocks of memory
(especially when using GMP and MPFR numbers); this means that variables of type num_t
must be explicitly initialized, freed, and cannot be copied with a mere = (use, respectively, the
num_init, num_clear, and num_set families of functions described bellow).

¥ void num_init (num_t* a)

void num_init_n (num_t* a, size_t n)

Initialize a single num_t, or an array of n num_t. This function must be called only once, after
the variable is created and before it is used with any operator.

¥ void num_clear (num_t* a)

void num_clear_n (num_t* a, size_t n)

Uninitialize a single num_t, or an array of n num_t. This function must be called only once,
before the variable is deleted, if it has been initialized.

¥ void num_set (num_t* a, const num_t* b)

Copy the value of the number b into a.

¥ void num_set_n (num_t* a, const num_t* b, size_t n)

Copy the n numbers from the array b into the array a.
1when --with-num=float or --with-num=longdouble is used, oct_init automatically sets your FPU in “round to +∞”

mode.

2.3- Underlying Numerical Domain 12/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ void num_set_int (num_t* a, long i)

void num_set_float (num_t* a, double d)

void num_set_frac (num_t* a, long i, long j)

void num_set_infty (num_t* a)

Set a to the integer i, the double d, the fraction i/j, or the +∞ number. If the number cannot
be exactly represented in the current num_t type, an over-approximation is put instead (possibly
+∞).

¥ void num_init_set (num_t* a, const num_t* b)

void num_init_set_n (num_t* a, const num_t* b, size_t n)

void num_init_set_int (num_t* a, long i)

void num_init_set_float (num_t* a, double d)

void num_init_set_frac (num_t* a, long i, long j)

void num_init_set_infty (num_t* a)

These operators are combinations of an initialization operator (num_init or num_init_n) and
a copy operator. You must not initialize a before using these functions, and they can be used
only once on an non initialized number (subsequent copies are done using the corresponding
num_set_ function).

¥ bool num_fits_int (const num_t* a)

bool num_fits_float (const num_t* a)

bool num_fits_frac (const num_t* a)

long num_get_int (const num_t* a)

double num_get_float (const num_t* a)

long num_get_num (const num_t* a)

long num_get_den (const num_t* a)

Converts the number a into an integer (num_get_int), a float (num_get_float), or a fraction
(num_get_num for the numerator, and num_get_den for the denominator). If the number can-
not be represented in the desired format, an over-approximation is returned. This only works
when the corresponding num_fits_ function returns true. Elsewhere, the number should be
considered as infinite (either truly infinite, or too big to be over-approximated in the desired
type).

¥ bool num_infty(const num_t* a)

Returns true if and only if a represents +∞.

¥ void num_set_mpz (num_t* a, const mpz_t b)

void num_set_mpq (num_t* a, const mpq_t b)

void num_get_mpz (mpz_t a, const num_t* b)

void num_get_mpq (mpq_t q, const num_t* b)

These functions are defined only if the GMP library is available. They can be used to convert
between multi-precision integers or fractions, and numbers. There is no num_fits_ associated
functions as an over-approximation can always be put in a multi-precision number, as long as it
is not +∞ (this can be tested with num_infty).

¥ void num_set_mpfr (num_t* a, const mpfr_t b)

void num_get_mpfr (mpfr_t a, const num_t* b)

These functions are defined only if the MPFR library is available. They can be used to convert
between multi-precision floating-point values and numbers. There is no num_fits_ associated
function, you should use num_infty instead.

2.3- Underlying Numerical Domain 13/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ int num_cmp (const num_t* a, const num_t* b)

int num_cmp_int (const num_t* a, long b)

int num_cmp_zero (const num_t* a)

Returns a strictly positive integer if a is strictly greater than b, a strictly negative integer if a is
strictly lesser than b, and zero if a and b are equal. One can compare two num_t numbers, or a
num_t number with an integer. The last form is the special case b=0: it returns the sign of a.

¥ void num_max (num_t* r, const num_t* a, const num_t* b)

void num_min (num_t* r, const num_t* a, const num_t* b)

void num_add (num_t* r, const num_t* a, const num_t* b)

void num_sub (num_t* r, const num_t* a, const num_t* b)

void num_mul (num_t* r, const num_t* a, const num_t* b)

void num_mul_by_2 (num_t* r, const num_t* a)

void num_div_by_2 (num_t* r, const num_t* a)

void num_neg (num_t* r, const num_t* a)

Put in r the result of the operation (respectively max(a, b), min(a, b), a + b, a− b, a ∗ b, a ∗ 2,
a/2, and −a). The result is always either exact, or an over-approximation (possibly +∞).
+∞ arguments are correctly handled, except for −(+∞), x − (+∞), and x ∗ (+∞) which are
undefined. One can safely have r=a=b.

¥ void num_print (const num_t* a)

void num_snprintf (char* s, size_t n, const num_t* a)

Prints the number a, either directly to stdout, or to a string (up to n characters).

¥ OCT_NUM_EXACT

This symbol is only defined when num_t always allows the exact representation of all numerical
operators (up to overflowing to +∞). Only fractional types are exact: integers are not closed
under division by 2, and floating-point numbers are subject to rounding errors.

¥ OCT_NUM_CLOSED

This symbol is only defined when num_t is closed under division by 2. That is to say, when I 6= Z.
When the underlying numerical domain is closed, the strong closure algorithm is a normal form,
all tests are complete and we have a best approximation for union (not taking into account
rounding errors that can occur).

¥ OCT_DOMAIN

This symbol recalls the current underlying numerical domain I. It is defined to be one of
OCT_DOMAIN_INT, OCT_DOMAIN_FRAC, or OCT_DOMAIN_REAL. oct_domain_string[OCT_DOMAIN]
is a human-readable string representation of I ("integers", "rationals", or "reals").

¥ OCT_IMPLEMENTATION_STRING

This string recall which internal data type is used to represent the current underlying numerical
domain I (one of "long", "double", "mpz", "mpq", or "mpfr").

When OCT_NUM_CLOSED is not defined (I = Z), the strong closure is not a full normal form; thus
emptiness, inclusion, and equality tests are only semi-decidable (true means really true, whereas false
means I do not know), and some operators and transfer functions are not the most accurate possible.
However the octagon domain remains sound.

2.3- Underlying Numerical Domain 14/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

2.4 Octagons

A set of constraints of the form (±xi±xj ≤ c), with i, j ∈ {0, . . . , N−1} and c ∈ I is represented internally
by a matrix of dimension N .

¥ oct_t*

Abstract type of octagons. The real definition lies in oct_private.h but is somewhat complex
(see Section 5.1). You only manipulate pointers to oct t structures. Use the library (see Section
2.4.1) to create, copy and destroy octagons: do not call malloc, memcpy or free on the pointers.

¥ var_t

This is the integer type representing a domain dimension, or a variable index. Presently, it is
unsigned int.

2.4.1 Octagon Management

¥ oct_t* oct_empty (var_t n)

Creates a new octagon representing the empty domain ∅ in n dimensions. No constraint is stored
in an empty octagon, so the representation has a O(1) memory cost. The returned octagon must
be freed by oct_free, or used as a destructive argument when it is no longer used.

¥ oct_t* oct_universe (var_t n)

Creates a new octagon representing the full space In in n dimensions. The representation has a
O(n2) memory cost. The returned octagon must be freed by oct_free, or used as a destructive
argument when it is no longer used.

¥ oct_t* oct_copy (oct_t* m)

Returns a copy of the octagon m. This is a lazy copy, as octagons are reference counted; so it is
very fast (O(1) memory and time cost): the library takes care of making a full copy when needed
(see Section 5.4). The returned octagon must be freed by oct_free, or used as a destructive
argument when it is no longer used.

¥ void oct_free (oct_t* m)

Decrease reference count of the octagon m, and actually discards it if it is no longer needed. Every
octagon returned by a function must be freed, except if the octagon is used as a destructive
argument in a function call.

2.4.2 Queries

¥ var_t oct_dimension (oct_t* m)

Returns the dimension N of the octagon.

¥ size_t oct_nbconstraints (oct_t* m)

Returns the number of constraints used to represent internally m. Does not take into account
constraints of the form (±xi ± xj ≤ +∞), nor (xi − xi ≤ 0); however there may be redundancy
(one constraint can be the sum of two other constraints, for example). If the octagon is empty,
it is not represented as a set of constraints, so the function returns 0. O(N2) time cost.

2.4- Octagons 15/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

2.4.3 Tests

Different matrices can represent the same octagon. Thus, there exists a normal form called the closed
form. Some test and manipulation algorithms require to compute the closed form of its argument; this
process has a O(N3) time cost, and a O(N) memory cost. Closure computation is done automatically
when needed, you do not need to bother about it.

If you choose I = Z (OCT_NUM_CLOSED not defined), these tests are only semi-decidable: true means
“really true”, whereas false means “I do not know”.

¥ bool oct_is_empty (oct_t* m)

Returns true if the octagon m has an empty domain, false elsewhere. This call computes the
closure of the matrix; the octagon m is not modified, but its closure is cached for future use.
O(1) time cost, on behalf of the cost of the closure.

¥ tbool oct_is_empty_lazy (oct_t* m)

This test does not perform the closure algorithm. So, if the closed form is not already available,
it returns tbool_top. O(1) time cost in all cases.

¥ bool oct_is_universe (oct_t* m)

Returns true if the domain of m is IN ; false elsewhere. O(N2) time cost.

¥ bool oct_is_included_in (oct_t* ma, oct_t* mb)

Returns true if the domain of ma is included in or equal to the domain of mb, and false elsewhere.
This call computes the closure of ma (but not the closure of mb) and caches. O(N2) time cost,
on behalf of the cost of the closure.

¥ tbool oct_is_included_in_lazy (oct_t* ma, oct_t* mb)

This test does not perform the closure algorithm. So, if the closed form of ma is not already
available, it may return tbool_top. O(N2) time cost in all cases.

¥ bool oct_is_equal (oct_t* ma, oct_t* mb)

Returns true if ma and mb have the same domain, and false elsewhere. This call computes the
closure of ma and mb and caches them. O(N2) time cost, on behalf of the cost of the closures.

¥ tbool oct_is_equal_lazy (oct_t* ma, oct_t* mb)

This test does not perform the closure algorithm. So, if the closed form of ma and mb are not
already available, it may return tbool_top. O(N2) time cost in all cases.

¥ bool oct_is_in (oct_t* m, const num_t* v)

Returns true if the point represented by v is in the domain of m. v is an array containing N
elements of type num_t. O(N2) time cost.

2.4.4 Operators

It is implied that the octagon arguments of a binary operator have the same dimension N .
When destructive is true, the arguments are destroyed and cannot be reused after the call (you must

not call oct_free on them); if it is set to false, the arguments are left untouched. The octagons returned
by the functions are always new octagons that must eventually be either freed with oct_free, or used as
destructive arguments. Destructive operators are more efficient: they save some internal allocations and
copies.

2.4- Octagons 16/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ oct_t* oct_intersection (oct_t* ma, oct_t* mb, bool destructive)

Returns the exact intersection of two octagons. O(N2) time cost.

¥ oct_t* oct_convex_hull (oct_t* ma, oct_t* mb, bool destructive)

Returns the smallest octagon that contains the union of two octagons. It must perform closure
on the two octagons, but it does not cache them for future use as it is seldom useful. O(N2)
time cost, on behalf of the cost of the closure.

If you choose I = Z (--with-num=int or --with-num=gmpint), the returned octagon is not the
best approximation of the union; however it still contains both octagons.

¥ oct_t* oct_widening(oct_t* ma, oct_t* mb, bool destructive,

oct_widening_type type)

Returns the widening (ma) O (mb•). One of the following three widenings is chosen according to
the value of type:

• OCT_WIDENING_FAST, this is the original widening presented in [Min01b]

[m O n]ij

{
mij if nij ≤ mij ,
+∞ elsewhere;

• OCT_WIDENING_ZERO, this widening is a little more precise but has a slower convergence

[m O n]ij

mij if nij ≤ mij ,
0 if mij < nij ≤ 0,

+∞ elsewhere;
• OCT_WIDENING_UNIT, this widening is more precise and converges more slowly

[m O n]ij

mij if nij ≤ mij ,
−1 if mij < nij ≤ −1,
0 if mij < nij ≤ 0,
1 if mij < nij ≤ 1,

+∞ elsewhere.

• OCT_PRE_WIDENING, this is not an actual widening, but a degenerate hull (precisely, a hull
without closure of the left argument). It is tantalizing to interleave widenings and hulls to
improve the precision of fix-point computations but, unfortunately, this destroys the converge
property and makes analyzes loop forever. OCT_PRE_WIDENING is a middle-ground. It does
not ensure convergence by itself, but can be safely interleaved with widenings. As long
as proper widenings occur infinitely often, the interleaved sequence will converge. Also, it
converges more slowly, and so, gives a better precision.

For all type, mb is closed for better accuracy, but ma is not as it would prevent convergence (see
[Min01a]). O(N2) time cost, on behalf of the cost of the closure.

¥ oct_t* oct_widening_steps(oct_t* ma, oct_t* mb,

bool destructive,

int nb_steps, num_t* steps)

This widening uses a set of threshold values to gradually loosen unstable constraints. steps is
an array of nb_steps numbers in increasing order. If the constraint ±x ± y ≤ c in ma is not
stable in mb, it will replace it by ±x ± y ≤ steps[i], such that steps[i] ≥ c and i is minimal,
or remove the constraint if there is no such i.

¥ oct_t* oct_narrowing (oct_t* ma, oct_t* mb, bool destructive)

Returns the narrowing (ma•) 4 (mb•).

[m 4 n]ij

{
nij if mij = +∞,
mij elsewhere.

Both octagons are closed. O(N2) time cost, on behalf of the cost of the closure.

2.4- Octagons 17/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

2.4.5 Transfer Functions

If you choose I = Z (--with-num=int or --with-num=gmpint), some transfer functions may not be as
accurate as possible.

¥ oct_t* oct_forget (oct_t* m, var_t k, bool destructive)

Returns an octagon where all informations about the variable vk has been forgotten. This
transfer function corresponds to both instructions vk ← ? and vk → ? (i.e., forward and backward
assignment). It computes the closure of its argument. O(N) time cost, on behalf of the cost of
the closure.

¥ oct_t* oct_add_bin_constraints (oct_t* m, unsigned int nb,

const oct_cons* cons,

bool destructive)

Adds some constraints of the form (±vx±vy ≤ c) or (±vx ≤ c) to the octagon m. It corresponds to
the semantics of the several instructions of the form assert(±vx±vy ≤ c) and assert(±vx ≤ c).

The array cons contains the nb constraints to add. The structure oct_cons has the following
fields:

• enum type is the type of the constraint, it can be

· px, constraint of the form (vx ≤ c),
· mx, constraint of the form (−vx ≤ c),
· pxpy, constraint of the form (vx + vy ≤ c),
· pxmy, constraint of the form (vx − vy ≤ c),
· mxpy, constraint of the form (−vx + vy ≤ c),
· mxmy, constraint of the form (−vx − vy ≤ c);

• var_t x is the index of the first variable;

• var_t y is the index of the second variable; it is not used if the constraint is a unary constraint
(type is px or mx);

• num_t c is the numerical constant appearing in the right member of the constraint. Do not
forget to initialize c with a function from the num_init family!

O(nb) time cost.

¥ oct_t* oct_assign_variable (oct_t* m,

var_t x, const num_t* tab,

bool destructive)

Returns a new octagon representing the domain of m after the linear variable assignment
vx ←

(∑N−1
i=0 vi · tab[i]

)
+ tab[N].

When the the result of the assignment is not representable by an octagon, or would be too
costly to compute, a sound over-approximation is returned. The transfer function is exact for
assignments of the form x ← c, x ← ±x + c, and x ← ±y + c. Sound approximations include
the use of interval arithmetic.

¥ oct_t* oct_interv_assign_variable (oct_t* m, var_t x,

const num_t* tab,

bool destructive)

Same as oct_assign_variable, but allowing interval coefficients instead of constant ones:
vx ←

(∑N−1
i=0 vi · [−tab[2i + 1], tab[2i]]

)
+[−tab[2N +1], tab[2N]]. For each variable vy, upper

bounds for ±vx±vx are derived by evaluating the right member using interval arithmetics. Thus,
it can infer new relational constraints, but does not use the relational information within the
argument octagon. It is reasonably precise yet quite fast.

2.4- Octagons 18/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ oct_t* oct_substitute_variable (oct_t* m,

var_t x, const num_t* tab,

bool destructive)

Returns a new octagon representing the domain of m after the linear variable substitution
vx →

(∑N−1
i=0 vi · tab[i]

)
+tab[N]. It is the backward semantics of the corresponding assignment.

When the the result of the substitution is not representable by an octagon, or would be too
costly to compute, a sound over-approximation is returned. The transfer function is exact for
substitution of the form x → c, x → ±x + c, and x → ±y + c. For the moment, the general
case is not very precise and could be improved by using interval arithmetic, as it is the case for
oct_assign_variable.

¥ oct_t* oct_interv_substitute_variable (oct_t* m, var_t x,

const num_t* tab,

bool destructive)

Same as oct_substitute_variable, but allowing interval coefficients instead of constant ones:
vx →

(∑N−1
i=0 vi · [−tab[2i + 1], tab[2i]]

)
+ [−tab[2N + 1], tab[2N]]. For the moment, only the

cases vx → ±vy + [a, b] are treated precisely, while the general case falls back to forgetting the
value of vx. It could be improved using techniques similar to oct_interv_assign_variable.

¥ oct_t* oct_add_constraint (oct_t* m, const num_t* tab,

bool destructive)

Returns a new octagon representing the domain of m with the linear constraint added(∑N−1
i=0 vi · tab[i]

)
+ tab[N] ≥ 0.

When the the result of the constraint is not representable by an octagon, or would be too
costly to compute, a sound over-approximation is returned. The transfer function is exact for
constraints of the form c ≥ 0, ±x + c ≥ 0, and ±x± y + c ≥ 0. The general case simply returns
its argument unchanged.

¥ oct_t* oct_interv_add_constraint (oct_t* m, const num_t* tab,

bool destructive)

Same as oct_add_constraint, but allowing interval coefficients instead of constant ones:(∑N−1
i=0 vi · [−tab[2i + 1], tab[2i]]

)
+ [−tab[2N + 1], tab[2N]] ≥ 0.

As oct_interv_assign_variable, it is able to infer new relational constraints but does not
take into account relational information in the octagon argument. It is reasonably precise and
fast.

¥ oct_t* oct_time_flow (oct_t* m,

const num_t* nmin, const num_t* nmax,

const num_t *tab, bool destructive)

Let time flow for an amount t ∈ [nmin, nmax], where 0 ≤ nmin ≤ nmax: ∀i, vi ← vi + [−tab[2i +
1], tab[2i]] × t. For each variable vi, the range of evolution rates is given by the non-empty
interval [−tab[2i + 1], tab[2i]].

2.4.6 Change of Dimension

The following functions change the dimension N of an octagon by adding or subtracting variables at the
end of V. It is most useful to model creation and destruction of local variables when entering and exiting
from nested instruction blocks.

2.4- Octagons 19/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ oct_t* oct_add_dimensions_and_embed(oct_t* m, var_t dimsup,

bool destructive)

Adds dimsup variables at the end of V without adding any constraint. If the original domain is
denoted by D+(m), the new domain is D+(m)× Idimsup. O(dimsup2) time cost; however the call
to realloc may induce an extra O(N2) time for copy.

¥ oct_t* oct_add_dimensions_and_project(oct_t* m, var_t dimsup,

bool destructive)

Adds dimsup variables at the end of V. The new variables are initialized to 0. If the original
domain is denoted by D+(m), the new domain is D+(m) × { 0 }dimsup. O(dimsup2) time cost;
however the call to realloc may induce an extra O(N2) time for copy.

¥ oct_t* oct_remove_dimensions(oct_t* m, var_t dimmin,

bool destructive)

Removes the dimmin last variables from V. It computes the closure of its argument. No time
cost, on behalf of the cost of the closure; however the call to realloc may induce an extra
O((N − dimmin)2) time for copy.

The following functions are used to add and remove dimensions not necessarily at the end of V. They all
use arrays of dimsup_t objects to define where dimensions are added or removed. Note that these functions
are a little less efficient (by a constant factor) than the functions that add and remove dimensions at the
end of V.

¥ struct dimsup_t { var_t pos;

var_t nbdims; }

Specifies that nbdims variables must be added or removed just before the variable at position
pos. All positions are counted from 0, and always with respect to the variable set of the argument
octagon.

¥ oct_t* oct_add_dimensions_and_embed_multi(oct_t* m,

const dimsup_t* t,

size_t size_t,

bool destructive)

Adds variables in V without adding any constraint. The positions and numbers of variables to
add are specified in the array t containing size_t structure of type dimsup_t. Note that the
pos fields of t elements must be sorted in strictly increasing order.

O(n2) time cost, in the size of the variable set V after insertion.

¥ oct_t* oct_add_dimensions_and_project_multi(oct_t* m,

const dimsup_t* t,

size_t size_t,

bool destructive)

Adds zero-initialized variables in V.

O(n2) time cost, in the size of the variable set V after insertion.

¥ oct_t* oct_remove_dimensions_multi(oct_t* m,

const dimsup_t* t,

size_t size_t,

bool destructive)

Removes variables from V.

2.4- Octagons 20/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

O(n2) time cost, in the size of the variable set V before deletion, plus an optional extra cubic
time to compute the closure.

The following functions add and remove dimensions but also apply a permutation of the variables. Each
permutation is given by an array t of var_t values. It has the following semantics: in each constraint,
each variable Vi is replaced with the variable Vt[i]. These functions are less efficient than the functions
that add and remove dimensions at arbitrary positions, and much less efficient (although by a constant
factor) than the functions that add and remove dimensions at the end of V.

¥ oct_t* oct_add_permute_dimensions_and_embed(oct_t* m,

const var_t d,

const var_t* t,

bool destructive)

Adds d uninitialized variables at the end of V. Then, applies a permutation. The array t must
thus contain a permutation of integers from 0 to d + oct dimension(m)− 1.

O(n2) time cost, in the size of the variable set V after insertion.

¥ oct_t* oct_add_permute_dimensions_and_project(oct_t* m,

const var_t d,

const var_t* t,

bool destructive)

Adds zero-initialized variables in V.

O(n2) time cost, in the size of the variable set V after insertion.

¥ oct_t* oct_permute_remove_dimensions(oct_t* m,

const var_t d,

const var_t* t,

bool destructive

First applies the permutation, then removes some variables from V. Thus, the array t is a
permutation of integers from 0 to oct dimension(m) − 1. When t[i] ≥ oct dimension(m) − d,
all information on the original variable Vi is lost.

O(n2) time cost, in the size of the variable set V before deletion, plus an optional extra cubic
time to compute the closure.

2.4.7 Interval Manipulations

¥ void oct_get_bounds (oct_t* m, var_t k,

num_t* up, num_t* down)

Returns the interval where the variable vk lies: vk ∈ [−∗down, ∗up]. If the octagon is empty, *up
and *down are not updated and should be ignored. This call computes the closed form of its
argument, and caches it for future use.

¥ oct_t* oct_set_bounds (oct_t* m, var_t k,

const num_t* up,const num_t* down,

bool destructive)

Returns a new octagon with the same domain as m except for vk which is now in the interval
[−∗down, ∗up]. All prior informations about vk are lost. This is strictly equivalent to a call
to oct_forget followed by two calls to oct_add_bin_constraints. Used in combination with
oct_get_box or oct_get_bounds, it provides a way to the user to model complex arithmetic
using its own interval arithmetic.

2.4- Octagons 21/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ num_t* oct_get_box (oct_t* m)

Returns the box enclosing the octagon as an array r of 2n numbers: vi ∈ [−r[2i + 1], r[2i]]. If
the octagon is empty, r is NULL. This call computes the closed form of its argument, and caches
it for future use. r must be freed with oct_mm_free.

¥ oct_t* oct_get_box (var_t n, const num_t* b)

Creates a new octagon of dimension n the domain of which is defined by the box b containing
2n numbers: vi ∈ [−r[2i + 1], r[2i]].

2.4.8 Perturbation

¥ oct_t* oct_add_epsilon (oct_t* m, const num_t* epsilon,

bool destructive)

Returns an enlarged octagon, where all constraints ±x ± y ≤ a are replaced by ±x ± y ≤
a + epsilon|a|. epsilon must be positive.

O(N2) time cost. The normal form is lost.

¥ oct_t* oct_add_epsilon_max (oct_t* m, const num_t* epsilon,

bool destructive)

As oct_add_epsilon, but all constraints are replaced by ±x ± y ≤ a + epsilon ×M . where
M = max{ |m| | ± x± y ≤ m, m 6= +∞ }. epsilon must be positive.

O(N2) time cost. The normal form is lost.

¥ oct_t* oct_add_epsilon_bin (oct_t* ma, oct_t* mb,

const num_t* epsilon,

bool destructive)

Binary version of oct_add_epsilon_max, where only the non-stable constraints in mb are en-
larged by epsilon×M . This is a form of widening. epsilon must be positive.

O(N2) time cost. The normal form is lost.

2.4.9 Utilities

¥ void oct_print (const oct_t* m)

Prints on the standard output the domain of the octagon m as a constraint set, or empty if the
octagon is empty. Also prints (closed) if m is in closed form. Does not print constraints of the
form (±xi ± xj ≤ +∞), nor (xi − xi ≤ 0); however there may be redundancy (one constraint
can be the sum of two other constraints, for example). See oct_m_print to print the domain of
an octagon without redundancy.

2.4.10 Minimized Octagons

If the O(N2) memory cost of octagons become prohibitive, you can use the moct_t minimized represen-
tation. In the minimized form, only a minimal set of non-redundant constraints is kept and stored in a
hollow matrix. This is space-efficient, but not suitable for manipulation: only few operators are available
for minimized octagons. Minimized octagons are intended mostly for storage. A notable exception is the
equality test oct_m_is_equal, which has a O(N2) time cost in the worst case, as minimization is also a
normal form.

2.4- Octagons 22/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ moct_t*

Abstract type of minimized octagons. Use oct_m_from_oct to construct one, oct_m_free to free
one. Unlike regular octagons, minimized octagons are not in-place modifiable; so there is no
memory-friendly destructive operations on them.

¥ moct_t* oct_m_from_oct (oct_t* m)

The only way of constructing a minimized octagon is conversion from a regular octagon. The
closure algorithm is first applied, then a O(N3) time cost minimization algorithm that removes
redundant constraints (see Section 5.3.2). m is not modified. O(N3) time and O(N) memory
cost.

¥ void oct_m_free (moct_t* m)

Call this to discard a minimized octagon that is no longer used.

¥ oct_t* oct_m_to_oct (moct_t* m)

Converts the minimized octagon into a regular octagon. Does not modify m.

¥ bool oct_m_is_equal(moct_t* ma, moct_t* mb)

Return true is the two minimized octagons represent the same domain, and false elsewhere.
O(N2) worst-case time cost, and no memory cost.

¥ bool oct_m_is_empty (moct_t* m)

Returns true if m represents an empty octagon, false elsewhere. Emptiness of a minimized
octagon is determined at creation-time, so this test is constant-time.

¥ int oct_m_dimension (moct_t* a)

Returns the dimension N of the minimized octagon.

¥ void oct_m_print (moct_t* a)

Prints on the standard output the domain of the minimized octagon as a constraint list. Because
the octagon is in minimal form, printed constraints are not redundant.

2.4.11 Low Level Functions

Because they are not of common use, these low-level functions are only available if you include the file
oct/oct_private.h. You need to understand the internal representation of octagons before using these
functions (Section 5.1).

Low-Level Access

¥ num_t* oct_elem (oct_t* m, var_t i, var_t j)

Returns a pointer to the element at line i, column j in the internal matrix representation of m:
0 ≤ i < 2N and 0 ≤ j < 2N . This element is denoted by m+

ij , and corresponds to the constraint
(αjvj/2 − αivi/2 ≤m+

ij), where αi = +1 if i is odd, and αi = −1 if i is even.

If you modify the content of the pointer, you are responsible for updating m->close and m-
>state.

O(1) time cost.

2.4- Octagons 23/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Octagon Management

¥ oct_t* oct_alloc (var_t n)

Allocates space for a non-empty octagon. The internal matrix is allocated (unlike a call to
oct_empty) but its content is not initialized (unlike oct_universe); thus m+

ii 6= 0 and the
representation is initially invalid (making this call a bit faster than oct_universe). You are
responsible for filling the internal matrix representation and setting m->state accordingly.

¥ oct_t* oct_full_copy (oct_t* m)

Allocates a new octagon which is an exact copy of m, except its reference count is 1. The internal
matrix representation is also copied. This procedure is used internally whenever the library needs
to modify an octagon in-place but the original octagon must be kept. O(N2) time cost.

Closure

¥ oct_t* oct_close (oct_t* m, bool destructive, bool cache)

Returns a new octagon which has the same domain as m but is in closed form. Also checks for
emptiness and, if m has an empty domain, returns an empty octagon. If cache is true and the
argument m is not destroyed by the call, makes m remember that the closed form is available; this
prevents re-computation of m’s closure, but also prevents the returned octagon to be actually
freed before m is. O(N3) time cost, O(N) memory cost (no temporary matrix is created during
this call). See Section 5.2.

¥ void oct_close_incremental (oct_t* m, var_t v)

Performs one step of incremental closure on the octagon m. The argument m is supposed to be
equal to a closed octagon, except for the informations regarding the variable v. It is modified
in-place to recover the closure. O(N2) time cost and O(N) memory cost. See Section 5.2.

¥ bool oct_is_closed (oct_t* m)

Returns true if m is in closed form, or is an empty octagon. Returns false if a call to oct_close
is necessary to discover whether m has an empty domain, and to get its closed form. Constant
cost.

¥ oct_t* oct_close_lazy (oct_t* m, bool destructive)

As oct_close, but returns an octagon in closed form only if it is available without computation
(either m is already in closed form, or empty, or the closed form of a has already been computed
and cached). Elsewhere, simply returns m. Constant cost.

¥ bool oct_check_closed (oct_t* m, bool quiet)

This procedure checks that m is in a valid closed form (see Section 5.2). It should always return
true for octagons created by oct_close and is intended only for debugging purpose. O(N3)
time cost.

2.4.12 Interface with the New Polka Library

When the configure script discovers the New Polka Library, it defines the symbol OCT_HAS_NEW_POLKA,
and the following two functions are available to convert between octagons and polyhedra. By setting the
--with-polka-num= option to long, longlong, or gmp when calling configure, you can change the integer
representation used in the New Polk Library. This will set the symbol POLKA_NUM to the appropriate value
(1, 2, or 3), and choose the correct New Polka Library to link with (see the New Polka Library Manual
[Jea] for more informations). Remark that if the Octagon Library is compiled with debugging enabled

2.4- Octagons 24/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

(--enable-debug configuration option), then the New Polka Library with debugging informations will be
chosen.

You need to call polka_initialize before calling the following functions, as well as functions in the
New Polka Library.

Beware the New Polka Library and the Octagon Abstract Domain Library may not use the same under-
lying numerical domain; conversion may result in over-approximations, but are always sound. To have the
best precision, you should use --with-polka-num=gmp and --with-num=frac (or --with-num=gmpfrac).

¥ poly_t* oct_to_poly (oct_t* m)

Creates a polyhedron with the same domain as the octagon m. The polyhedron can then be
manipulated with the New Polka Library, and you must free it with poly_free. This function
calls poly_add_constraints to add at most O(N2) constraints to the universal polyhedron.
The returned polyhedron may have a slightly larger domain than the original octagon due to
sound number conversions.

¥ oct_t* oct_from_poly (poly_t* p)

Returns an octagon with the smallest domain containing the polyhedron p: it is guaranteed to
be the best approximation. You can then manipulate the octagon with the Octagon Abstract
Domain Library, and you must free it with oct_free. This function uses the frame representation
of the polyhedron and has a O(N2 ×M) time and O(N) memory cost, M being the size of the
frame representation.

2.5 Utilities

The functions described in this section are not tied to octagons and can be used to instrument and monitor
any C function. They were successfully used to debug and optimize the Octagon Abstract Domain Library.

2.5.1 Assertions

The library uses assertions to perform basic sanity checks:

¥ OCT_ASSERT(c,text)

When the library is configured with the --enable-assert option (the ENABLE_ASSERT symbol
is defined), the library checks the condition c. If the condition c is false, then it aborts after
displaying the message text as well as the source file and line where the error occurred. Aborting
the program is done by sending a SIGABRT signal; this allows easy access to the program state
in a debugger, or via the core file.

If the --disable-assert configuration option is used (ENABLE_ASSERT is not defined), this
function does nothing.

In the Octagon Library, the assertion mechanism is mostly used to check arguments supplied by the
user; thus we strongly recommend to always use the --enable-assert option. Disabling assertions will
not result in significant speed increase.

2.5.2 Memory Management

The following useful functions and macros are defined:

¥ void* oct_mm_malloc(size_t t)

Works as malloc, but may be monitored (see oct_mm_alloc_t below). All library functions
use oct_mm_malloc instead of malloc. Do not mix blocks allocated with oct_mm_malloc and
blocks allocated with malloc.

2.5- Utilities 25/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ void* oct_mm_realloc(void* p, size_t t)

Works as realloc. The block p must have been allocated with oct_mm_malloc. If the block
was allocated with malloc, then use realloc instead of oct_mm_realloc.

¥ void oct_mm_free(void* p)

Works as free. The block p must have been allocated with oct_mm_malloc. If the block was
allocated with malloc, then use free instead of oct_mm_free.

¥ t* new_t (t)

Allocates a new object of type t in the heap with oct_mm_malloc. It must be freed with
oct_mm_free.

¥ t* new_n (t, size_t n)

Allocates an array of n objects of type t in the heap with oct_mm_malloc. It must be freed with
oct_mm_free.

¥ t* renew_n (t* c, t, size_t n)

Resizes the block pointed by c so that it contains n objects of type t with oct_mm_realloc. The
block c must have been allocated using one of the preceding functions, not malloc nor realloc.
The returned block must be freed with oct_mm_free.

When the --enable-prof configuration option is used, the symbol ENABLE_MALLOC_MONITORING is de-
fined and all calls to the memory functions oct_mm_malloc, oct_mm_realloc, oct_mm_free, new_t, new_n,
and renew_n are redirected through a memory monitoring routine that monitors memory consumption.
You can then use the following interface.

¥ mmalloc_t*

Abstract type of memory monitors. They are allocated by oct_mmalloc_new, and never deallo-
cated. There is always a current monitor to which oct_mm_malloc-ed blocks are attached. When
these blocks are oct_mm_realloc-ed, or oct_mm_free-ed, they affect the monitor they are at-
tached to, not the current monitor. A monitor stores the number of calls to oct_mm_malloc,
oct_mm_realloc, oct_mm_free, as well as the total sum of memory allocated, and the maximum
this sum has reached.

¥ mmalloc_t* oct_mmalloc_new ()

Creates a new monitor. Monitors are never deallocated because there may still be memory
blocks attached to them. You must not call oct_mm_free, nor free on them.

¥ void oct_mmalloc_print (mmalloc_t* mm)

Prints on the standard output the statistics for the monitor mm.

¥ void oct_mmalloc_use (mmalloc_t* mm)

Makes mm the current monitor. It will stay the current monitor until the next call to
oct_mmalloc_use.

¥ mmalloc_t* oct_mmalloc_get_current ()

Returns the current monitor. Before any call to oct_mmalloc_use, there exists a default current
monitor; you can retreive it using this function.

2.5- Utilities 26/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ void oct_mmalloc_reset (mmalloc_t* mm)

Forgets about all the blocks attached to the monitor mm and resets all counters.

When the --disable-prof configuration option is used, the symbol ENABLE_MALLOC_MONITORING is
not defined and oct_mm_malloc, oct_mm_realloc, and oct_mm_free are synonymous to malloc, realloc,
and free.

IMPORTANT WARNING: when memory monitoring is enabled, you must call oct_mm_free only on
blocks allocated with oct_mm_malloc, and free on blocks allocated with malloc. All the memory used
by the Octagon Library is allocated through oct_mm_malloc to enable you to monitor the library memory
usage. Blocks allocated by other libraries (like the C library) are allocated using implicitly malloc, so
they must be freed with free.

One simple usage of monitors is to call oct_mmalloc_print (mmalloc_get_current()) at the end
of your program to get the total number of mallocs, and the maximum amount of memory used by the
program. It can also be used to detect memory leaks (it is sometime customary to allocate some static
structures at the beginning of the program and never deallocate them; they must not be taken into account
when looking for memory leaks; mmalloc_t objects are one such example).

Beware that enabling memory profiling makes all calls to the Octagon Library thread-unsafe.

2.5.3 Timing

The library defines clocks to help you measure precisely elapsed time.

¥ chrono_t

Type of clocks. This is a public structure, so you can safely allocate a new clock using simply
chrono_t a; oct_chrono_reset(&a); .

¥ void oct_chrono_reset (chrono_t* c)

Initializes or resets the clock. Elapsed time is reset to 0 and the clock is set in the stopped state.

¥ void oct_chrono_start (chrono_t* c)

Starts the clock. You must not call oct_chrono_start on a clock that is already started.

¥ void oct_chrono_stop (chrono_t* c)

Stops the clock. You must not call oct_chrono_stop on a clock that is already stopped. If you
call oct_chrono_start and oct_chrono_stop several times, elapsed times are accumulated.
You must call oct_chrono_reset to reset the elapsed time to 0.

¥ void oct_chrono_get (chrono_t* c,

long* hour, long* min,

long* sec, long* usec)

Get the elapsed time of the clock in canonical form. You are guaranteed than 0 ≤ min ≤ 59,
0 ≤ sec ≤ 59, and 0 ≤ usec ≤ 999.

¥ void oct_chrono_print (chrono_t* c)

Prints the elapsed time on the standard output.

If the --enable-prof configuration option is used; the symbol ENABLE_TIMING is also defined and
clocks are used to count the time elapsed in each library call, as well as the number of time each library
function is called. It uses the following interface:

2.5- Utilities 27/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ void oct_timing_enter (const char* name, unsigned key)

Called when entering a section named name. Also, a unique key must be given for each name,
and this key must not exceed the size of the timing_data array defined in oct_util.c. Sections
must be properly nested, and entering twice a section with the same key (recursive sections) is
forbidden. Use with care.

¥ void oct_timing_exit (const char* name, unsigned key)

Called when exiting a section named name, with unique key key. Use with care.

¥ void oct_timing_print (const char* name)

Prints the number of time the section named name has been enterer, and the total elapsed time
in it. You do not need to know the key associated.

Two elapsed times are available for each section: cumulative time is the sum of time between all
pairs oct_timing_enter, oct_timing_exit for the section; self time does not include the time
elapsed in other sections entered within this section.

¥ void oct_timing_print_all ()

Prints the number of time each section has been enterer, and the total elapsed time in each
section.

¥ void oct_timing_reset (const char* name)

Resets to 0 the number of time the section named name has been enterer, and the total elapsed
time in it. You do not need to know the key associated.

¥ void oct_timing_reset_all ()

Resets to 0 the number of time all the sections have been enterer, and the total elapsed time in
them.

¥ void oct_timing_clear ()

Call this function to free all the memory used to store the timing informations. There must not
be any section currently opened.

When the --enable-prof configuration option is used, each library function corresponds to exactly
one section named by the function’s name. Thus, if you call oct_timing_print_all() at the end of your
program, it will print how many time each library function was called, as well as the the elapsed time in
them.

Beware that enabling time profiling makes all calls to the Octagon Library thread-unsafe.

2.5- Utilities 28/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Chapter 3

OCaml Binding API

This chapter describes the OCaml API used to access to the Octagon Abstract Domain Library. It is
a simple binding layer that directly calls the C API. oct.mli and oct.ml contain the definition of the
module Oct: abstract types, and external functions. The C implementation of external functions are
defined in oct_ocaml.c; most are simply wrappers that call the C library, with proper treatment of
OCaml value type. Thus, the OCaml API inherits all configuration-time choices made for the C API
(profiling, debugging, New Polka support, underlying numerical domain). Some pretty-printers are also
defined specially for the OCaml top-level.

Some functions are available only if some required OCaml library is also available. This is the case for
providing octagons / polyhedra conversion (requires the New Polka Poly OCaml module). This is also
the case for access to GMP and MPFR numbers (requires the Caml-GMP Gmp module [Mon]). In order
to support this, oct.ml and oct.mli are generated automatically by cat-ing several .ml and .mli files in
the ocamllib directory.

Unlike C, OCaml has automatic memory management, so there is no need for free or copy functions.
Variables are not in-place modifiable and functions are non-destructive as it is usually the case for functional
languages.

3.1 Initialization

¥ init: unit -> bool

Always call this function before using the library (and once for each version of the library you
use). Returns true if the library correctly initialized itself. When using machine floating-point
internal representation, this tries to set the FPU rounding mode toward +∞ in order to ensure
soundness.

3.2 Numerical Domain

The choice of I and its underlying implementation are totally defined by the way the C library was
configured; it cannot be changed by the OCaml library. All results regarding soundness and precision are
exactly the same as for the C library.

Types num and vnum are used to specify numbers appearing in the constraint sets. num is the type of
a single number, whereas vnum is the type of a number arrays (handled more efficiently than num array
could possibly). Both are abstract types. You can construct them from integer, fraction, or floating-point
values independently from the underlying numerical domain chosen to represent internally the constraints.
Once constructed, you cannot manipulate them, but only pass them to octagons functions. Construct once
and use many times to improve efficiency. You can use the regular OCaml comparison operators =, <>, <,
>, compare, etc. to directly to compare num (but not vnum). Moreover, you can serialize and deserialize
num and vnum (but beware that this is not yet implemented for all underlying numerical domains, in which
case you will get an exception; also, deserialisation of objects serialised using a library version based on a
different numerical underlying domain is not possible).

3.2- Numerical Domain 29/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ num_of_int: int -> num

num_of_frac: int*int -> num

num_of_float: float -> num

Construct a number from an integer, a fraction (numerator and denominator), or a floating-point
number.

¥ num_infty: unit -> num

Constructs the +∞ number.

¥ vnum_of_int: int array -> vnum

vnum_of_frac: int*int array -> vnum

vnum_of_float: float array -> vnum

Construct a number vector from an integer, a fraction (numerator and denominator), or a
floating-point number array.

¥ vnum_of_int_opt: int option array -> vnum

vnum_of_frac_opt: int*int option array -> vnum

Construct a number vector with infinite elements. None is converted into the +∞ element, and
Some s is converted into a number. There is no need for None when dealing with floating-points
numbers as +∞ already has a floating-point representation.

¥ int_of_num: num -> int option

frac_of_num: num -> int*int option

float_of_num: num -> float

Return an over-approximation of a number as an integer, fraction, or floating-point number,
or None if there is no such over-approximation (this means the number should be considered
+∞). There is no need for None when dealing with floating-points numbers as +∞ already has
a floating-point representation.

¥ int_of_vnum: vnum -> int option array

frac_of_vnum: vnum -> int*int option array

float_of_vnum: vnum -> float array

The same as above, but for number vectors instead of single numbers.

¥ num_of_mpz: Gmp.Z.t -> num

num_of_mpq: Gmp.Q.t -> num

num_of_mpfr: Gmp.FR.t -> num

vnum_of_mpz: Gmp.Z.t array -> vnum

vnum_of_mpq: Gmp.Q.t array -> vnum

vnum_of_mpfr: Gmp.FR.t array -> vnum

vnum_of_mpz_opt: Gmp.Z.t option array -> vnum

vnum_of_mpq_opt: Gmp.Q.t option array -> vnum

vnum_of_mpfr_opt: Gmp.FR.t option array -> vnum

mpz_of_num: num -> Gmp.Z.t option

mpq_of_num: num -> Gmp.Q.t option

mpfr_of_num: num -> Gmp.FR.t option

mpz_of_vnum: vnum -> Gmp.Z.t option array

mpq_of_vnum: vnum -> Gmp.Q.t option array

mpfr_of_vnum: vnum -> Gmp.FR.t option array

These functions are only defined when the Gmp module is available [Mon].

3.2- Numerical Domain 30/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

3.3 Boolean Lattice

¥ type tbool

Defines the boolean lattice:
Top

ttttttttt

KKKKKKKKKK

True

JJJJJJJJJ False

ssssssssss

Bottom

Bottom is returned when the answer to a question is undefined, Top when it is not known.

3.4 Octagons

Most octagons functions are direct OCaml equivalent of the corresponding C library call. They have the
same memory and time cost. Thus, most functions are simply sketched here; please refer to Section 2.4
for more detailed informations.

You can serialize and deserialize octagons (oct and moct) (but beware that this is not yet implemented
for all underlying numerical domains, in which case you will get an exception; also, deserialisation of
octagons serialised using a library version based on a different numerical underlying domain is not possible).

¥ type oct

This is the abstract type of octagons. Octagons are static (not in-place modifiable), and allocated
in the C heap by the C library. They can be safely copied with let a = b in. They can NOT
be compared with the generic OCaml operators (which would suppose a total ordering, while
the octagon ordering is only partial).

3.4.1 Octagon Creation

There is no need to free explicitly the octagons; this is done automatically by the OCaml garbage collector.

¥ empty: N:int -> oct

Returns a new octagon of dimension N with an empty domain: ∅.

¥ universe: N:int -> oct

Returns a new octagon of dimension N with an full domain: IN .

3.4.2 Queries

¥ dim: oct -> int

Returns the dimension N of the octagon.

¥ nbconstraints: oct -> int

Returns the number of constraints in the octagon. If the octagon is known to have an empty
domain, returns 0. The count may include redundant constraints; but constraints of the form
(vi − vi ≤ 0) and (vi − vj ≤ +∞) are not counted.

3.4- Octagons 31/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

3.4.3 Tests

¥ is_empty: oct -> bool

Returns true if and only if the octagon has an empty domain.

¥ is_empty_lazy: oct -> tbool

This lazy version of emptiness checking does not perform any computation. It returns True if
it knows the octagon has an empty domain, False if it knows it has a non-empty domain, and
Top if checking for emptiness would require some computation.

¥ is_universe: oct -> bool

Returns true if and only if the octagon has a full domain IN .

¥ is_included_in: oct -> oct -> bool

Returns true if and only if the first octagon is included in or equal to the second octagon.

¥ is_included_in_lazy: oct -> oct -> tbool

This lazy version of inclusion checking does not perform any computation. It may return True
(the first argument is included in or equal to the second one), False (the first argument is
not included in nor equal to the second one), or Top (the accurate test would require some
computation).

¥ is_equal: oct -> oct -> bool

Returns true if and only if the two octagons have exactly the same domain.

¥ is_equal_lazy: oct -> oct -> tbool

This lazy version of equality checking does not perform any computation. It may return True
(the two octagons have the same domain), False (the two octagons do not have equal domains),
or Top (the accurate test would require some computation).

¥ is_in: oct -> vnum -> bool

Returns true if and only if the second argument is the coordinate of a point that is within the
domain of the specified octagon. The second argument must contain exactly N elements, where
N is the dimension of the specified octagon.

3.4.4 Operators

¥ inter: oct -> oct -> oct

Returns a new octagon the domain of which is the intersection of the two octagons specified.

¥ union: oct -> oct -> oct

Returns a new octagon the domain of which is the smallest domain containing both octagons.

¥ widening: m:oct -> n:oct -> w:wident -> oct

Returns a new octagon representing mO(n•), where the widening operator O is chosen by w:
• WidenFast, fast widening, as presented in[Min01b], unstable coefficients are replaced by +∞;

3.4- Octagons 32/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

• WidenZero, slower but more accurate widening, unstable coefficients are replaced by 0, and
then +∞;

• WidenUnit, even slower and even more accurate widening, unstable coefficients are replaced
by −1, 0, 1, and then +∞;

• WidenSteps of vnum, uses the given set of numbers (in increasing order) to gradually loosen
coefficients before replacing them by +∞.

• PreWiden, not a proper widening, but a degenerate hull that can be safely inserted into
a widening sequence (as long as proper widenings are called infinitely often) to improve
somewhat the precision of an analysis.

¥ narrowing: m:oct -> n:oct -> oct

Returns a new octagon representing (m•)4(n•).

3.4.5 Transfer Functions

¥ forget: oct -> k:int -> oct

Returns a new octagon where the variable vk has forgotten its value. Corresponds to both
instructions vk ← ? and vk → ?.

¥ add_bin_constraints: oct -> c:constr array -> oct

Returns a new octagon where the binary constraints c have been added. Each element of c can
be of the following form:

• PX of int*num represents (x ≤ c);

• MX of int*num represents (−x ≤ c);

• PXPY of int*int*num represents (x + y ≤ c);

• PXMY of int*int*num represents (x− y ≤ c);

• MXPY of int*int*num represents (−x + y ≤ c);

• MXMY of int*int*num represents (−x− y ≤ c).

¥ assign_var: m:oct -> x:int -> tab:vnum -> oct

Returns a new octagon representing the domain of m after the linear variable assignment
vx ←

(∑N−1
i=0 vi · tab[i]

)
+ tab[N].

¥ interv_assign_var: m:oct -> x:int -> tab:vnum -> oct

Same as assign_var, but allowing interval coefficients instead of constant ones:
vx ←

(∑N−1
i=0 vi · [−tab[2i + 1], tab[2i]]

)
+ [−tab[2N + 1], tab[2N]].

¥ substitute_var m:oct -> x:int -> tab:vnum -> oct

Returns a new octagon representing the domain of m after the linear variable substitution
vx →

(∑N−1
i=0 vi · tab[i]

)
+tab[N]. It is the backward semantics of the corresponding assignment.

¥ interv_substitute_var: m:oct -> x:int -> tab:vnum -> oct

Same as substitute_var, but allowing interval coefficients instead of constant ones:
vx →

(∑N−1
i=0 vi · [−tab[2i + 1], tab[2i]]

)
+ [−tab[2N + 1], tab[2N]].

3.4- Octagons 33/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ add_constraint: m:oct -> tab:vnum -> oct

Returns a new octagon representing the domain of m with the linear constraint added(∑N−1
i=0 vi · tab[i]

)
+ tab[N] ≥ 0.

¥ interv_add_constraint: m:oct -> tab:vnum -> oct

Same as add_constraint, but allowing interval coefficients instead of constant ones:(∑N−1
i=0 vi · [−tab[2i + 1], tab[2i]]

)
+ [−tab[2N + 1], tab[2N]] ≥ 0.

¥ time_flow: m:oct -> nmin:num -> nmax:num -> tab:vnum -> oct

Let time flow for an amount t ∈ [nmin, nmax], where 0 ≤ nmin ≤ nmax: ∀i, vi ← vi + [−tab[2i +
1], tab[2i]] × t. For each variable vi, the range of evolution rates is given by the non-empty
interval [−tab[2i + 1], tab[2i]].

3.4.6 Change of Dimensions

Add and remove dimensions at the end of V.

¥ add_dims_and_embed: o:oct -> n:int -> oct

Returns a new octagon with n more dimensions, and with domain D+(o)× In.

¥ add_dims_and_project: oct -> int -> oct

Returns a new octagon with n more dimensions, and with domain D+(o)× { 0 }n.

¥ del_dims: oct -> int -> oct

Returns a new octagon with n dimensions removed.

Add and remove dimensions at arbitrary positions in V.

¥ type dimsup = { pos: int;

nbdims: int; }

Specifies that nbdims variables must be added or removed just before the variable at position
pos. All positions are counted from 0, and always with respect to the variable set of the argument
octagon.

¥ add_dims_and_embed_multi: oct -> dimsup array -> oct

Returns a new octagons where uninitialized dimensions at positions specified by dimsup have
been inserted. (The pos fields in the dimsup array must be sorted in strictly increasing order.)

¥ oct_add_dims_and_project_multi: oct -> dimsup array -> oct

Adds zero-initialized variables in V.

¥ del_dims_multi: oct -> dimsup array -> oct

Removes variables from V.

3.4- Octagons 34/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Add and remove dimensions with a permutation of variables. The permutation is given as an array t:
int array of variables indices: each variable i (starting from 0) appearing in a constraint is replaced with
the variable t.(i).

¥ add_permute_dims_and_embed: oct -> n:int -> t:int array -> oct

Adds n uninitalized variables at the end of V, then applies the permutation t. t must be a
permutation of 0 to 0 to n + dim m− 1.

¥ oct_add_permute_dims_and_project: oct -> int -> int array -> oct

Adds zero-initialized variables at the end of V, then applies a permutation.

¥ permute_del_dims: oct -> n:int -> t:int array -> oct

Applies the permutation t before removing the last n variables. t must be a permutation of 0
to dim m− 1.

3.4.7 Minimized Octagons

¥ type moct

This is the abstract type of minimized octagons. As oct objects, they are static and allocated in
the C heap by the C library. They can be safely copied with let a = b in.

¥ m_to_oct: oct -> moct

Constructs an octagon from a minimized octagon.

¥ m_from_oct: moct -> oct

Constructs a minimized octagon from a regular octagon. This implies performing the O(N3)
time cost minimization algorithm.

¥ m_dim: moct -> int

Returns the dimension N of the minimized octagon.

¥ m_is_empty: moct -> bool

Returns true if and only if the minimized octagon represents an empty domain.

¥ m_is_equal: moct -> moct -> bool

Returns true if and only if the two minimized octagons have the same domain.

3.4.8 Interval functions

These functions are used to get or set the interval bound of one or all variables in an octagon.

¥ get_box: oct -> vnum

Get the bounds for all the variables in the octagon. After conversion to an array a, using a
xxx_of_vnum function, the interval of the variable i is in [−a.(2i + 1),−a.(2i)].

3.4- Octagons 35/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ from_box: vnum -> oct

Construct an octagon from a box. If n is the number of dimension of the desired octagon, the
array t that was used to construct the vnum must be of length 2n, and such that the interval
[−a.(2i + 1),−a.(2i)] is the interval of the variable i.

¥ get_bounds: oct -> int -> num*num

Get the upper and lower bounds of a variable in an octagon. The pair of num (a, b) represents
the interval [−b, a].

¥ set_bounds: oct -> int -> num*num -> oct

Return a new octagon identical to the first argument, with the the upper and lower bounds of
one variable set (and all other informations about this variable lost). The pair of num (a, b)
represents the interval [−b, a].

3.4.9 Perturbation

¥ add_epsilon: oct -> num -> oct

add_epsilon o epsilon returns o, where all constraints ±x± y ≤ a are replaced by ±x± y ≤
a + epsilon|a|. Thus, the returned octagon is slightly larger. epsilon must be positive. The
normal form is lost.

¥ add_epsilon_max: oct -> num -> oct

As add_epsilon, but all constraints are replaced by ±x ± y ≤ a + epsilon × M . where
M = max{ |m| | ± x± y ≤ m, m 6= +∞ }. epsilon must be positive.

O(N2) time cost. The normal form is lost.

¥ add_epsilon_bin: oct -> oct -> num -> oct

Binary version of add_epsilon_max, where only the non-stable constraints in the second argu-
ment are enlarged by epsilon×M . This is a form of widening. epsilon must be positive.

O(N2) time cost. The normal form is lost.

3.4.10 Pretty-Printers

Note that pretty-printers are most useful when using the OCaml top-level ‘oct-config --mltop‘.

¥ numprinter: num -> unit

Pretty-printer for objects of type num. Use #install_printer Oct.numprinter;; to install it
in the top-level.

¥ fnumprinter: Format.formatter -> num -> unit

Same as numprinter, but uses any formatter instead of Format.std_formatter.

¥ vnumprinter: vnum -> unit

Pretty-printer for objects of type vnum. Use #install_printer Oct.vnumprinter;; to install
it in the top-level.

¥ fvnumprinter: Format.formatter -> vnum -> unit

Same as vnumprinter, but uses any formatter instead of Format.std_formatter.

3.4- Octagons 36/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ octprinter: (int -> string) -> oct -> unit

Pretty-printer for objects of type oct. The first argument is a callback telling to octprinter the
name of each variable, from 0 to (dim o)-1. You can use let print2 = Oct.octprinter (fun
i -> "v"^(string_of_int i));; and #install_printer print2;;, for example, to install it
in the top-level.

¥ foctprinter: (int -> string) -> Format.formatter -> oct -> unit

Same as octprinter, but uses any formatter instead of Format.std_formatter.

¥ foctnewprinter: (int -> string) -> Format.formatter -> oct -> oct

-> unit

This pretty-printer takes two octagons (with the same size) as argument and compares the upper
bound of each constraint in one octagon with the upper bound of the corresponding constraint
in the second one. This function only prints the second version of constraints that are not the
same.

¥ foctdiffprinter: (int -> string) -> Format.formatter -> oct -> oct

-> unit

Same as foctdiffprinter, but prints both the old (first octagon) and new version (second
octagon) of constraints that are not the same, instead of only the new version.

¥ moctprinter: (int -> string) -> moct -> unit

Pretty-printer for objects of type moct. You can use let mprint2 = Oct.moctprinter (fun
i -> "v"^(string_of_int i));; and #install_printer mprint2;;, for example, to install
it in the top-level.

¥ fmoctprinter: (int -> string) -> Format.formatter -> moct -> unit

Same as moctprinter, but uses any formatter instead of Format.std_formatter.

3.5 Interface with the New Polka Library

If you have the New Polka Library [Jea] installed, together with its OCaml binding, it enables some
conversion functions between objects of type Oct.oct and Poly.t.

Do not forget to call Polka.initialize before using these two functions, as well as all functions in
the Polka module.

¥ to_poly: oct -> Poly.t

Returns a new polyhedron that has the same domain (or a slightly larger one because of ap-
proximate, but sound, numerical type conversion).

¥ from_poly: Poly.t -> oct

Returns the octagon with the smallest domain that contains the specified polyhedron.

3.6 Utilities

Most utility functions of Section 2.5 do not have a corresponding OCaml version. We only kept here two
functions that are useful to monitor the time and memory consumption of the library.

3.6- Utilities 37/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ memprint: unit -> unit

Prints on the standard output the memory usage for the C heap containing the octagon inter-
nal structures. The C library must have been configured with the --with-prof option (EN-
ABLE_MALLOC_MONITORING symbol defined). It is equivalent to the C call oct_mmalloc_print
(mmalloc_get_current()).

¥ timeprint: unit -> unit

Prints on the standard output the elapsed time in the C functions of the library. The C li-
brary must have been configured with the --with-prof (ENABLE_TIMING symbol defined). It is
equivalent to the C call oct_timing_print_all ().

3.7 Low-level Binding API

There is no way for the OCaml code to access directly to the internal structure of an octagon. How-
ever, you may wish to write some C functions that manipulate octagons at low-level (by including the
oct_private.h header), and then pass the octagon to some OCaml code. This facility is provided by the
file oct_ocaml.h, which must be included by your C source files.

In order to do this properly, you must be familiar with the C and OCaml APIs to the Octagon Library,
the internal representation of octagons, and the standard OCaml/C interface described in the OCaml
Reference Manual [La].

¥ value Val_int (int a)

int Int_val (value v)

These functions are defined in caml/mlvalues.h to convert between C integers (long) and
OCaml integers (integer).

You can use them, to convert between C tbool_t and OCaml Oct.tbool types.

¥ num_t* Num_val (value v)

This gives a pointer to the num_t number an OCaml value of type Oct.num contains.

¥ vnum_t

vnum_t* Vnum_val (value v)

vnum_t is a structure that holds a number vector. Vnum_val gives back the structure an OCaml
value of type Oct.vnum contains. The nb field gives the vector length, and the n field is a pointer
to a C array of nb numbers num_t.

¥ value Val_oct (oct_t* o)

Returns a newly constructed OCaml value of type Oct.oct that contains the octagon o. This
value is a custom block that simply contains a pointer equal to o; it points in the C heap, not
in the OCaml heap, as the internal representation of the octagon has been allocated by the C
library. You must not call oct_free(o) after the call Val_oct(o): it will be called automatically
when the OCaml garbage collector discovers that the returned OCaml object is no longer used.
Each custom block in the OCaml heap with a pointer to o counts as one reference count.

¥ oct_t* Oct_val(value v)

Returns the octagon represented by the OCaml value v of type Oct.oct.

¥ value Val_moct (moct_t* o)

Returns a newly constructed OCaml value of type Oct.moct that contains the minimized octagon
o. It works exactly as Val_oct.

3.7- Low-level Binding API 38/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

¥ moct_t* Moct_val(value v)

Returns the minimized octagon represented by the OCaml value v of type Oct.moct.

3.7- Low-level Binding API 39/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Chapter 4

Analyzer Example

This chapter describes the analyzer example. It is written in OCaml and uses the Octagon Abstract
Domain Library to perform a basic analysis on a toy programming language.

4.1 How to Use the Analyzer

The analyzer example is compiled automatically with the library if the OCaml support is enabled. The
executables are named octanal (for the byte-code version) and octanalopt (for the native version). The
analyzer is run by simple invocation on the command-line. It takes its input program on the standard
input (see Sect. 4.3) and does not accept any form of command-line option.

The analyzer produces several outputs, in a varity of formats:

• result.txt: text output of the original text program, with program point number added in bold,
followed by the list of invariants octagons discovers at each control point;

• result.html: an HTML version of the previous output, with some coloring and links to jump between
the program text and the printed invariants;

• result.gdl: a GDL file that describes the control-flow graph annotated with the invariants; this
control-flow graph can be viewed with AbsInt’s AiSee software (http://www.absint.com/aisee/);

• result.debug: (if debugging is enabled) a text file describing the computation trace together with the
partial invariants discovered along the iterations.

There also exists a web-based version of the analyzer (using CGI scripts written in OCaml thanks to
the OCamlHTML library) that can be queried interactively at http://cgi.di.ens.fr/cgi-bin/mine/
octanalhtml-ndi/octanalweb.

4.2 Source Files

The analyzer comprises the following files:
• oct_anal_lex.mll lexer (using ocamllex)
• oct_anal_yacc.mly parser (using ocamlyacc)
• oct_anal_syn.ml abstract syntax tree and other global variables and types
• oct_anal_core.ml core analyzer functions
• oct_anal.ml main program that calls functions in oct_anal_core.ml

• oct_anal_examples a few examples program to be analyzed

4.3 Language Syntax

The analyzer uses a toy programming language that is a simply a while-language, with no procedure, no
array, no pointer, and only finitely many numerical variables.

4.3- Language Syntax 40/53

http://www.absint.com/aisee/
http://cgi.di.ens.fr/cgi-bin/mine/octanalhtml-ndi/octanalweb
http://cgi.di.ens.fr/cgi-bin/mine/octanalhtml-ndi/octanalweb

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

• The entry of the analyzer is a list of programs, each program having a name id:
program id
beginprogram

stats
endprogram

• A statement is:
stat == id = iexpr assignment

| assert bexpr assertion
| if bexpr then block some tests
| if bexpr then block else block

Variables are all local to the program and need not to be declared.

• Statement lists are semicolon-separated (do not put a semicolon after the last statement):
stats == stat

| stat; stats

• Blocks are either a single statement, or a statement list enclosed in begin/end keywords:
block == stat

| begin stats end

• A numerical expression is (with standard precedence):
iexpr == id variable

| num floating-point constant
| random random integer
| iexpr + iexpr unary and binary arithmetic operators
| iexpr − iexpr
| iexpr ∗ iexpr
| − iexpr

• A boolean expression is (with standard precedence):
bexpr == true

| false
| brandom random boolean value
| iexpr > iexpr some tests
| iexpr < iexpr
| iexpr = iexpr
| iexpr ! = iexpr
| iexpr >= iexpr
| iexpr <= iexpr
| bexpr and bexpr unary and binary boolean operators
| bexpr or bexpr
| not bexpr

WARNING: >, <, and ! = have an integer semantics, that is to say a > b ⇐⇒ a >= b + 1, etc. To
compare floats, use only =, >= and <=!

4.4 Analysis Method

The program is first cut into several program point: a program point at the beginning and at the end of
each statement block, a program point between two statements, and a program point at the end of each
if-then or if-then-else instructions (control-flow join point).

An octagon is associated to each program point. It is initially empty, except for the first program
point which has a universe octagon.

The analyzer then uses a simple forward analysis method to propagate informations from program
points to program point, applying transfer functions until a fix-point is reached.

It uses a simple work-list algorithm that maintains the set of control points whose state need to be
recomputed. The first control point of the list is picked, it is updated by recomputing the transfer function,
and all its successor control points are marked dirty and added at the end of the work-list. In fact, when
a control point that has several predecessors is at the head of the work-list, it not chosen directly, but

4.4- Analysis Method 41/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

postponed so that there is more chance that all its predecessors have been updated; intuitively, it saves
some computation.

In order to reach the fix-point in finite time, a widening application is performed at the beginning of
each while statement.

Finally, if the New Polka library and its OCaml binding are present, the analyzer can use polyhedra
instead of octagons (see the file oct_anal_core.ml).

4.4- Analysis Method 42/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Chapter 5

Internal Structure

This chapter describes in details the internal structure and implementation choices. It may be skipped at
first lecture.

5.1 Abstract Elements Representation (oct_sem.c)

In order to understand the representation of abstract elements, one have to be familiar with the Octagon
Abstract Domain algorithms, as described in [Min06]. However, the internal representation of abstract
elements differs slightly compared to what is described in theses papers.

5.1.1 Original Representation

Let V = {v0, . . . , vN−1} be the set of N numerical variables we wish to manipulate.
In the original work [Min01b], we introduced an auxiliary set of 2N variables X ′ = {x0, . . . x2N−1}

with the semantics x2i = vi, x2i+1 = −vi. It allows to represent constraints of the form (±vi ± vj ≤ c)
by potential constraints1 in X . Even interval constraints (vi ≤ c), (−vj ≤ c) can be represented in X by
(x2i − x2i+1 ≤ 2c) and (x2j+1 − x2j ≤ 2c). This is most useful because there exists a well-known theory,
called Separation Theory, developed by Pratt [Pra77] dealing with satisfiability of potential constraint
sets. This theory was enhanced in [Min01a] in order to build a full numerical abstract domain. Thus,
[Min01b] chose to perform the transformation from V to X to reuse and adapt the results of [Min01a]
to build the Octagon Abstract Domain. This choice also resulted in compact mathematical presentation
and easy proofs of theorems, especially for normal form and lattice operators. See the journal version
[Min06] of the [Min01b] paper for the latest presentation of all algorithms toghether with their proof of
correctness.

However, this representation has a drawback when it comes to implementing: it has redundancy. For
example, the constraint (vi − vj ≤ c) can be represented as (x2i − x2j ≤ c) or (x2j+1 − x2i+1 ≤ c). This
results in almost twice memory consumption as necessary. It also make some transfer functions less easy
to understand (as we must take care to change the two equivalent representations of a constraint at the
same time).

We now recall the matrix and index notation of the original representation. We denote by m+ a
2N × 2N matrix that represent the constraint set { xj − xi ≤ m+

ij }. We denote by ı̄ the number
i ⊕ 1—where ⊕ is the bitwise exclusive or. Thus, if xi corresponds to vj , then x ı̄ corresponds to −vj ,
and if xi corresponds to −vj , then x ı̄ corresponds to vj . A matrix m+ is said to be coherent if and only
if ∀i, j, m+

ij = m+
̄ ı̄. Coherence means that any two redundant constraints in m+ (ε1vi − ε2vj ≤ c) and

((−ε2)vj − (−ε1)vi ≤ d) are such that c = d. All matrices are supposed to be coherent in [Min01b].

5.1.2 Modified Representation (oct_t)

In our implementation, we chose to store only elements m+
ij such that i = ̄ or i ≥ j. The memory layout

is the almost the lower triangle of a matrix, and can be stored with roughly half memory consumption.
1A potential constraint is a constraint of the form (x− y ≤ c). The term potential comes from the remark that solutions

of such constraint sets are defined to a constant.

5.1- Abstract Elements Representation (oct_sem.c) 43/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

0 1 2 3 4 5
0 m+

0,0 m+
0,1

1 m+
1,0 m+

1,1

2 m+
2,0 m+

2,1 m+
2,2 m+

2,3

3 m+
3,0 m+

3,1 m+
3,2 m+

3,3

4 m+
4,0 m+

4,1 m+
4,2 m+

4,3 m+
4,4 m+

4,5

5 m+
5,0 m+

5,1 m+
5,2 m+

5,3 m+
5,4 m+

5,5

Because i < j =⇒ ̄ ≥ ı̄ or i = ̄, we have the property that when m+
ij does not appear in our modified

representation, then m+
̄ ı̄ does: thus, the upper triangle of the matrix can be recovered by coherence. Our

algorithm have been slightly modified to work on this halved representation, but proofs of their correctness
remain valid. With this representation, the strong closure algorithm is a bit harder to understand, but
most transfer functions are easier to read.

The half-matrix is not stored as a full matrix, but as a flat array of size matsize(N); m+
ij is stored in

c[matpos2(i,j)], where:

#define matsize(n) (2*(size_t)(n)*((size_t)(n)+1))
#define matpos(i,j) ((size_t)(j)+(((size_t)(i)+1)*((size_t)(i)+1))/2)
#define matpos2(i,j) ((i)<(j)?matpos((j^1),(i^1)):matpos(i,j))

Remark that elements of the form m+
ii correspond to constraints of the form 0 ≤ c which do not carry

much information. However we keep them in our representation for two reasons: it is simpler to handle
a connected structure, and these elements will prove useful to check for emptiness in the modified strong
closure algorithm.

An octagon can be in one of three different states, as specified by the state field: OCT_EMPTY,
OCT_CLOSED, OCT_NORMAL. OCT_EMPTY states that the octagon has an empty domain. OCT_CLOSED means
that the matrix is already in closed form. In all other cases (we do not now if the matrix is empty or in
normal form) the state is OCT_NORMAL.

Here is the detailed structure, as one can see in the oct_private.h file:
struct oct_tt {
var_t n; /* number of variables, aka dimension */
int ref; /* reference counting */
oct_state state; /* is it empty, closed, etc. ? */
struct oct_tt* closed; /* pointer to the closed version, or NULL */
num_t* c; /* the matrix, contains matsize(n) elements */

}
See Section 5.4 for an explanation of the fields ref and closed. c contains the half-matrix array; it is

only allocated if state is not OCT_EMPTY.

5.2 Modified Strong Closure Algorithm (oct_close)

The strong closure algorithm is the core algorithm of the library. It is also the more complex and most
costly one.

The strong closure algorithm—which we will sometime simply call closure algorithm because there is
no ambiguity—presented in [Min01b] has been modified in two ways:

• it has been adapted to the new representation of octagons;

• it does no longer need to be called with a matrix the domain of which is not empty, it performs the
emptiness check itself.

5.2- Modified Strong Closure Algorithm (oct_close) 44/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Here, we recall the original strong closure algorithm m+ → (m+)•:

m+
0 = m+,

m+
k+1 = S+(C+

2k(m+
k)) ∀k, 0 ≤ k < N,

(m+)• = m+
N ,

where C+
k is defined, ∀k, by:

[
C+

k (n+)
]
ii

= 0,[
C+

k (n+)
]
ij

= min(n+
ij , (n+

ik + n+
kj), (n+

ik̄
+ n+

k̄j
),

(n+
ik + n+

kk̄
+ n+

k̄j
), (n+

ik̄
+ n+

k̄k
+ n+

kj))

and S+ is defined by:

[S+(n+)]ij = min(n+
ij , (n+

i ı̄ + n+
̄j)/2) .

We say that m is strongly closed if and only if:

• m+ is coherent: ∀i, j, m+
ij = m+

̄ ı̄;

• m+ is closed: ∀i, m+
ii = 0 and ∀i, j, k, m+

ij ≤m+
ik + m+

kj ;

• ∀i, j, m+
ij ≤ (m+

i ı̄ + m+
̄j)/2.

An important theorem of [Min01b] is that the strong closure algorithm applied to a satisfiable constraint
set gives a strongly closed matrix if I = Q or R. Another important theorem is that this strongly closed
form is a normal form.

If I = Z, the strong closure algorithm does not lead to a normal form.

5.2.1 Emptiness Test

Thanks to the following theorem, emptiness testing can be done with the strong closure algorithm:

Theorem 1. Let m+ be a matrix the domain of which can be empty or non empty; we have:

• either D+(m+) 6= ∅ and (m+)• is strongly closed,

• or D+(m+) = ∅ and ∃i, (m+)•ii 6= 0 .
¥

Thus, (m+)• is computed using the closure algorithm. Then, (m+)• is checked for indices i such that
(m+)•ii 6= 0 and the algorithm answer both questions: “is the domain empty ?” and “what is the normal
form ?”.

The stand-alone emptiness checking has been removed, as it was generally followed by a strong closure
computation, and was not much more efficient than the strong closure algorithm itself.

If I = Z, this emptiness checking can return false for a matrix with an empty domain; however, if it
returns true, the domain is empty.

5.2.2 Incremental Strong Closure Algorithm (oct_close_incremental)

This is an incremental version of the preceding strong closure algorithm. It allows to recover in O(n2) time
a closed form from an octagon that is closed except for lines and columns corresponding to one variable.

This is useful, for example, to quickly compute a closed form after an assignment or guard,
if the original argument where closed. Indeed, the incremental closure is presently used inter-
nally by the transfer functions oct_add_bin_constraints, oct_add_constraint oct_assign_variable,
oct_substitute_variable, and oct_interv_assign_variable whenever possible.

5.3 Minimized Octagons (moct_t)

Minimized octagons are an alternative to the matrix representation of octagons. Minimized octagons
are very space-efficient; however they can not be manipulated very easily. They are indented manly for
storage.

5.3- Minimized Octagons (moct_t) 45/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

5.3.1 Minimized Representation

Instead of representing all matsize(N) constraints, the minimized representation only stores constraints
(xi − xj ≤ c) for c 6= +∞. As the matrix storing the constraints is now hollow, we lose random-access to
elements.

Hollow matrices are stored in a moct_t structure. Here is the detailed structure (from the
oct_private.h file):

struct moct_tt {
var_t n; /* number of variables */
size_t* bol; /* begin-of-line indices, array of n*2+1 indices */
var_t* col; /* column indices, array of bol[n*2+1] elements */
num_t* data; /* constraint array of bol[n*2+1] elements */

}
Constraints elements are stored in the data field. The bol (begin-of-line) and col (column) fields

are used to recover the line and column an element had in the original full matrix representation. Data
corresponding to line i are contained in data[bol[i]] to data[bol[i+1]-1]. The column of element
data[k] is col[k]. Thus, if the dimension is n, bol contains 2n + 1 elements, data and col contain
bol[2n+1] elements.

5.3.2 Minimization Algorithm

In order to be even more efficient, redundant constraints are removed before a matrix is put in hollow
matrix form.

For example, if m+
ij = m+

ik + m+
ki, then m+

ij is replaced by +∞. The same holds when m+
ij =

(m+
i ı̄ +m+

̄j)/2. However, we have to take care of not removing all m+
ij , m+

jk, m+
ki when m+

ij +m+
jk +m+

ki =
m+

ik + m+
kj + m+

ji = 0.
Our minimization algorithm is inspired from the one proposed for DBMs in [LLPY97], but adapted to

octagons. It has three passes. First, it calls oct_close to get the matrix in closed form. It is mandatory
as it reduces the test ∃〈i = i0, . . . , iN = j〉, m+

ij =
∑N−1

k=0 m+
ikik+1

to ∃k, (m+)•ij = (m+)•ik + (m+)•kj .
Then, it slices X into equivalent classes for the relation xi ≡ xj ⇐⇒ (m+)•ij + (m+)•ji = 0. The last
phase changes the value of (m+)•ij into +∞ if we have xi 6≡ xj , and:

• either ∃k, xk 6≡ xi, xj , (m+)•ij = (m+)•ik + (m+)•kj ,

• or xi 6≡ x ı̄, xj 6≡ x̄, and (m+)•ij = ((m+)•i ı̄ + (m+)•̄)/2.

Let n+ be the resulting matrix; we have the following theorem

Theorem 2. (n+)• = (m+)•. ¥

Because the minimization algorithm is deterministic and works on the closed form, it is a normal form.
Thus, equality can be tested easily.

5.3.3 Algorithms on Minimized Octagons

It is difficult to work on minimized octagons for two reasons:

• the representation is hardly modifiable in-place because it is hollow; making it modifiable in-place
would require complex dynamic memory management and hash tables;

• most algorithms need the octagon in closed form in order to perform with maximal accuracy; closure
and minimization are not compatible: they are at the opposite ends of the representation spectrum of
an octagon.

When analyzing a program in several forward and backward passes, it is handy to store a minimized
octagon for each program point. The current analysis pass will need intersect the current result at each
program point with the corresponding stored result, and store back this intersection.

5.3- Minimized Octagons (moct_t) 46/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

5.4 Memory Management of Abstract Elements (oct_sem.c)

The library was designed be memory efficient while hiding memory management details to the user.

In order to avoid unnecessary copies and reduce memory consumption, abstract elements are reference
counted:
• oct_alloc, oct_universe, oct_empty return new octagons with ref=1;

• oct_copy(m) returns m with its ref incremented: it is a lazy copy;

• oct_full_copy(m) returns a new copy of m with ref=1: it is a full copy;

• oct_free(m) decreases ref and actually frees the octagon only if ref=0.

Semantics functions come in two forms: a destructive form and a non-destructive form. The non-
destructive form preserves its arguments. The destructive form destroys its arguments but is less memory
consuming (you do not have to free the arguments after a destructive call). One can think of a destructive
call as a non-destructive call followed by oct_free on the arguments. In reality, it is a little more efficient
as the space allocated for the arguments may be directly used for the result (whereas the non-destructive
call often have to perform copies of its arguments, or to allocate fresh octagons). In either case, the
returned octagon is a new octagon that must be freed with oct_free when no longer used, or used as a
destructive argument.

Because of reference counting, things are a little more complex: even within a destructive call, argu-
ments are preserved if they are used by someone else (ref > 1): a copy of the argument is made, as in
a non-destructive call, and its ref is decreased as if the argument where freed. When an operator needs
to return exactly one of its argument m, it returns oct_copy(m) for a non-destructive call, and m for a
destructive call.

There is one last feature that needs to be discussed here: remembering of the closed form. A program
seldom calls oct_close directly, but most operators it calls need to compute the strong closure of its
arguments (oct_is_equal, oct_is_empty, oct_forget, etc.). In order to avoid duplicate closure com-
putation, the closed form of a matrix m is stored in m->closed the first time oct_close is called, and
then returned without re-computation the next time oct_close is called on m. Remark that we cannot
simply replace a matrix by its closed form (unlike minimization in the polyhedra domain) as changing
between different matrix representations of the same octagon disrupts fix-point computation using widen-
ings. A closed matrix has its ref increased by 1 for each matrix that has a m->closed pointer to it.
Thus, oct_close returns newly created closed matrix with ref=2 when called in non-destructive mode
(or when the argument has a ref > 1); oct_full_copy(m) increments m->closed->ref; oct_free(m)
calls oct_free(m->closed) whenever m->ref reaches 0; and oct_copy(m) does not touch to m->closed-
>ref. It is important to remark that a closed matrix cannot be actually freed as long as there exists a
matrix the closed field of which points to this matrix. Also remark that this caching mechanism can be
disabled by calling oct_close with the proper argument. By default, caching is only enabled within tests
functions (oct_is_empty, oct_is_equal, oct_is_included_in), not in operators and transfer functions.

Most of the time, you do not have to take care of reference counting and closure. In practice you
simply have to:

• use oct_copy and not pointer assignment oct_t* a = b;

• call oct_free on octagons returned by oct_alloc, oct_empty, oct_universe, oct_copy, and the
semantics operators when you no longer need them;

• know when to use destructive and non-destructive mode.

5.5 Conversion between Octagons and Polyhedra (oct_polka.c)

5.5.1 From Octagons to Polyhedra (oct_to_poly)

Converting an octagon into a polyhedron (oct_to_poly) is easy: one simply has to convert constraints ap-
pearing in the octagon into linear constraints. If there is no over-approximation due to different underlying
numerical domains, the conversion is exact.

5.5- Conversion between Octagons and Polyhedra (oct_polka.c) 47/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

5.5.2 From Polyhedra to Octagons (oct_from_poly)

To find the smallest octagon that contains a given polyhedron, we use the frame description of the poly-
hedron, denoted by P. The frame is composed of elements of the following type:
• vertices PV : { (v0, . . . , vN−1) };
• rays PR: { (λv0, . . . , λvN−1) | λ ≥ 0};
• lines PL: { (λv0, . . . , λvN−1) | λ ∈ R}.

In the first pass, we construct m+ taking only vertices into account:

m+
ij = max{ xj − xi | x2k = vk, x2k+1 = −vk, (v0, . . . , vN−1) ∈ PV }.

Then m+
ij is replaced by +∞ if:

• either xj − xi > 0, for x2k = vk, x2k+1 = −vk, (v0, . . . , vN−1) ∈ PR;

• either xj − xi 6= 0, for x2k = vk, x2k+1 = −vk, (v0, . . . , vN−1) ∈ PL.

Remark that this conversion is also sound even when strict constraints are allowed in the polyhedron:
(α0v0 + · · ·+ αN−1vN−1 < c) is simply relaxed to (α0v0 + · · ·+ αN−1vN−1 ≤ c).

5.6 Operators and Transfer Functions (oct_sem.c)

Most operators and transfer functions are direct implementations of those described in [Min06], but
adapted to our more compact representation.

5.6- Operators and Transfer Functions (oct_sem.c) 48/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Bibliography

[APR] APRON. Analyse de PROgrammes Numériques (Numerical Program Analysis). http://www.
cri.ensmp.fr/apron/.

[Ast] Astrée. Analyse Statique de logiciels Temps-Réel embarqués (static analysis of critical real-
time embedded software) RNTL project page. http://www.di.ens.fr/~cousot/projets/
ASTREE/.

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. A static analyzer for large safety-critical software. In ACM SIGPLAN PLDI’03,
volume 548030, pages 196–207. ACM Press, June 2003. http://www.di.ens.fr/~mine/publi/
pldi045-blanchet.pdf.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In ACM POPL’77, pages 238–252.
ACM Press, 1977. http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml.

[GNU] GNU. Gnu multiple precision library (version 4.1 at least). http://www.swox.com/gmp/.

[Jea] B. Jeannet. New polka: A library to handle convex polyhedra in any dimension (version 2.0.0
at least). http://www.irisa.fr/prive/bjeannet/newpolka.html.

[La] X. Leroy and al. The objective caml system (version 3.0 at least). http://pauillac.inria.
fr/ocaml/.

[LLPY97] K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-time systems:
Compact data structure and state-space reduction. In IEEE RTSS’97, pages 14–24. IEEE CS
Press, December 1997. http://www.docs.uu.se/docs/rtmv/papers/llpw-rtss97.ps.gz.

[Min01a] A. Miné. A new numerical abstract domain based on difference-bound matrices. In PADO II,
volume 2053 of LNCS, pages 155–172. Springer-Verlag, May 2001. http://www.di.ens.fr/
~mine/publi/article-mine-padoII.pdf.

[Min01b] A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE,
pages 310–319. IEEE CS Press, October 2001. http://www.di.ens.fr/~mine/publi/
article-mine-padoII.pdf.

[Min04] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École Polytechnique,
Palaiseau, France, dec 2004. http://www.di.ens.fr/~mine/these/.

[Min06] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 2006. (to
appear) http://www.di.ens.fr/~mine/publi/article-mine-HOSC06.pdf.

[Mon] D. Monniaux. Caml-gmp, an extended precision computation library. http://caml.inria.
fr/hump.html.

[Pra77] V. Pratt. Two easy theories whose combination is hard. Technical report, Massachusetts
Institute of Technology. Cambridge., September 1977.

[TPpL] Inria Lorraine ”The PolKA project and LORIA”. The multiple precision floating-point reliable
library. http://www.loria.fr/projets/mpfr/.

BIBLIOGRAPHY 49/53

http://www.cri.ensmp.fr/apron/
http://www.cri.ensmp.fr/apron/
http://www.di.ens.fr/~cousot/projets/ASTREE/
http://www.di.ens.fr/~cousot/projets/ASTREE/
http://www.di.ens.fr/~mine/publi/pldi045-blanchet.pdf
http://www.di.ens.fr/~mine/publi/pldi045-blanchet.pdf
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml
http://www.swox.com/gmp/
http://www.irisa.fr/prive/bjeannet/newpolka.html
http://pauillac.inria.fr/ocaml/
http://pauillac.inria.fr/ocaml/
http://www.docs.uu.se/docs/rtmv/papers/llpw-rtss97.ps.gz
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf
http://www.di.ens.fr/~mine/these/
http://www.di.ens.fr/~mine/publi/article-mine-HOSC06.pdf
http://caml.inria.fr/hump.html
http://caml.inria.fr/hump.html
http://www.loria.fr/projets/mpfr/

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Index

•, 44
I, 11
I, 11
N , 14, 42
PL, 47
PR, 47
PV , 47
V, 42
X , 42
ı̄, 42
m+, 42
vi, 42
xi, 42

bool, 10

chrono_t, 26
closure, 15, 23, 43
closure remembering, 15, 46

destructive, 15, 46
dimsup_t, 19

ENABLE_ASSERT, 24
ENABLE_MALLOC_MONITORING, 25, 36
ENABLE_TIMING, 26, 37

false, 10

incremental,closure, 44
Int_val, 37

minimization, 22, 34, 45
mmalloc_t, 25
moct_t, 21, 45
moct_tt, 45
Moct_val, 37

new_n, 25
new_t, 25
num_add, 13
num_clear, 11
num_clear_n, 11
num_cmp, 12
num_cmp_int, 12
num_cmp_zero, 12
num_div_by_2, 13
num_fits_float, 12
num_fits_frac, 12
num_fits_int, 12
num_get_den, 12
num_get_float, 12

num_get_int, 12
num_get_mpfr, 12
num_get_mpq, 12
num_get_mpz, 12
num_get_num, 12
num_infty, 12
num_init, 11
num_init_n, 11
num_init_set, 12
num_init_set_float, 12
num_init_set_frac, 12
num_init_set_infty, 12
num_init_set_int, 12
num_init_set_n, 12
num_max, 13
num_min, 13
num_mul, 13
num_mul_by_2, 13
num_neg, 13
num_print, 13
num_set, 11
num_set_float, 11
num_set_frac, 11
num_set_infty, 11
num_set_int, 11
num_set_mpfr, 12
num_set_mpq, 12
num_set_mpz, 12
num_set_n, 11
num_snprintf, 13
num_sub, 13
num_t, 11
Num_val, 37

Oct, 28
Oct.add_bin_constraints, 32
Oct.add_constraint, 32
Oct.add_dims_and_embed, 33
Oct.add_dims_and_embed_multi, 33
Oct.add_dims_and_project, 33
Oct.add_dims_and_project_multi, 33
Oct.add_epsilon, 35
Oct.add_epsilon_bin, 35
Oct.add_epsilon_max, 35
Oct.add_permute_dims_and_embed, 34
Oct.add_permute_dims_and_project, 34
Oct.assign_var, 32
Oct.Bottom, 30
Oct.del_dims, 33
Oct.del_dims_multi, 33
Oct.dim, 30

INDEX 50/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

Oct.dimsup, 33
Oct.empty, 30
Oct.False, 30
Oct.float_of_num, 29
Oct.float_of_vnum, 29
Oct.fmoctprinter, 36
Oct.fnumprinter, 35
Oct.foctdiffprinter, 36
Oct.foctnewprinter, 36
Oct.foctprinter, 36
Oct.forget, 32
Oct.frac_of_num, 29
Oct.frac_of_vnum, 29
Oct.from_box, 34
Oct.from_poly, 36
Oct.fvnumprinter, 35
Oct.get_bounds, 35
Oct.get_box, 34
Oct.init, 28
Oct.int_of_num, 29
Oct.int_of_vnum, 29
Oct.inter, 31
Oct.interv_add_constraint, 33
Oct.interv_assign_var, 32
Oct.interv_substitute_var, 32
Oct.is_empty, 31
Oct.is_empty_lazy, 31
Oct.is_equal, 31
Oct.is_equal_lazy, 31
Oct.is_in, 31
Oct.is_included_in, 31
Oct.is_included_in_lazy, 31
Oct.is_universe, 31
Oct.m_dim, 34
Oct.m_from_oct, 34
Oct.m_is_empty, 34
Oct.m_is_equal, 34
Oct.m_to_oct, 34
Oct.memprint, 36
Oct.moct, 34
Oct.moctprinter, 36
Oct.mpfr_of_num, 29
Oct.mpfr_of_vnum, 29
Oct.mpq_of_num, 29
Oct.mpq_of_vnum, 29
Oct.mpz_of_num, 29
Oct.mpz_of_vnum, 29
Oct.narrowing, 32
Oct.nbconstraints, 30
Oct.num, 28
Oct.num_infty, 29
Oct.num_of_float, 28
Oct.num_of_frac, 28
Oct.num_of_int, 28
Oct.num_of_mpfr, 29
Oct.num_of_mpq, 29
Oct.num_of_mpz, 29
Oct.numprinter, 35
Oct.oct, 30
Oct.octprinter, 35

Oct.permute_del_dims, 34
Oct.PreWiden, 31
Oct.set_bounds, 35
Oct.substitute_var, 32
Oct.tbool, 30
Oct.time_flow, 33
Oct.timeprint, 37
Oct.to_poly, 36
Oct.Top, 30
Oct.True, 30
Oct.union, 31
Oct.universe, 30
Oct.vnum, 28
Oct.vnum_of_float, 29
Oct.vnum_of_float_opt, 29
Oct.vnum_of_frac, 29
Oct.vnum_of_frac_opt, 29
Oct.vnum_of_int, 29
Oct.vnum_of_int_opt, 29
Oct.vnum_of_mpfr, 29
Oct.vnum_of_mpfr_opt, 29
Oct.vnum_of_mpq, 29
Oct.vnum_of_mpq_opt, 29
Oct.vnum_of_mpz, 29
Oct.vnum_of_mpz_opt, 29
Oct.vnumprinter, 35
Oct.WidenFast, 31
Oct.widening, 31
Oct.WidenSteps, 31
Oct.wident, 31
Oct.WidenUnit, 31
Oct.WidenZero, 31
oct_add_bin_constraints, 17
oct_add_constraint, 18
oct_add_dimensions_and_embed, 18
oct_add_dimensions_and_embed_multi, 19
oct_add_dimensions_and_project, 19
oct_add_dimensions_and_project_multi, 19
oct_add_epsilon, 21
oct_add_epsilon_bin, 21
oct_add_epsilon_max, 21
oct_add_permute_dimensions_and_embed, 20
oct_add_permute_dimensions_and_project, 20
oct_alloc, 23, 46
oct_assign_variable, 17
oct_check_closed, 23
oct_chrono_get, 26
oct_chrono_print, 26
oct_chrono_reset, 26
oct_chrono_start, 26
oct_chrono_stop, 26
oct_close, 23, 46
oct_close_incremental, 23
oct_close_lazy, 23, 46
oct_cons, 17
oct_convex_convex_hull, 16
oct_copy, 14, 46
oct_dimension, 14
OCT_DOMAIN, 13
oct_domain_string, 13

INDEX 51/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

oct_elem, 22
oct_empty, 14, 46
oct_forget, 17
oct_free, 14, 46
oct_from_box, 21
oct_from_poly, 24, 47
oct_full_copy, 23, 46
oct_get_bounds, 20
oct_get_box, 20
OCT_HAS_BOOL, 10
OCT_HAS_NEW_POLKA, 23
OCT_IMPLEMENTATION_STRING, 13
oct_init, 10
oct_intersection, 15
oct_interv_add_constraint, 18
oct_interv_assign_variable, 17
oct_interv_substitute_variable, 18
oct_is_closed, 23
oct_is_empty, 15
oct_is_empty_lazy, 15
oct_is_equal, 15
oct_is_equal_lazy, 15
oct_is_in, 15
oct_is_included_in, 15
oct_is_included_in_lazy, 15
oct_is_universe, 15
oct_m_dimension, 22
oct_m_free, 22
oct_m_from_oct, 22, 45
oct_m_is_empty, 22
oct_m_is_equal, 22
oct_m_print, 22
oct_m_to_oct, 22
oct_mm_free, 25
oct_mm_malloc, 24
oct_mm_realloc, 24
oct_mmalloc_get_current, 25
oct_mmalloc_new, 25
oct_mmalloc_print, 25, 37
oct_mmalloc_reset, 25
oct_mmalloc_use, 25
oct_narrowing, 16
oct_nbconstraints, 14
OCT_NUM_CLOSED, 13
OCT_NUM_EXACT, 13
oct_permute_remove_dimensions, 20
OCT_PRE_WIDENING, 16
oct_print, 21
oct_remove_dimensions, 19
oct_remove_dimensions_multi, 19
oct_set_bounds, 20
oct_substitute_variable, 17
oct_t, 14, 42
oct_time_flow, 18
oct_timing_clear, 27
oct_timing_enter, 26
oct_timing_exit, 27
oct_timing_print, 27
oct_timing_print_all, 27, 37
oct_timing_reset, 27

oct_timing_reset_all, 27
oct_to_poly, 24, 46
oct_tt, 43
oct_universe, 14, 46
Oct_val, 37
oct_widening, 16
OCT_WIDENING_FAST, 16
oct_widening_steps, 16
oct_widening_type, 16
OCT_WIDENING_UNIT, 16
OCT_WIDENING_ZERO, 16

precision, 13, 15–17, 24
pretty-printers, 35

reference counting, 14, 37, 46
renew_n, 25

soundness, 11, 24

tbool, 10
tbool_bottom, 10
tbool_false, 10
tbool_top, 10
tbool_true, 10
true, 10

Val_int, 37
Val_moct, 37
Val_oct, 37
var_t, 14
vnum_t, 37
Vnum_val, 37

INDEX 52/53

The Octagon Abstract Domain Library v. 0.9.10, Manual Reference Antoine Miné

INDEX 53/53

	 Title Page
	 Table of Contents
	 License
	1 Introduction
	1.1 Goal
	1.2 Organization of the Package
	1.3 Building and Installing the Library
	1.4 Using the Library
	1.5 Installing Several Versions of the Library
	1.6 Thread-Safety
	1.7 Examples

	2 C Library API
	2.1 Initialization
	2.2 Booleans
	2.3 Underlying Numerical Domain
	2.4 Octagons
	2.4.1 Octagon Management
	2.4.2 Queries
	2.4.3 Tests
	2.4.4 Operators
	2.4.5 Transfer Functions
	2.4.6 Change of Dimension
	2.4.7 Interval Manipulations
	2.4.8 Perturbation
	2.4.9 Utilities
	2.4.10 Minimized Octagons
	2.4.11 Low Level Functions
	2.4.12 Interface with the New Polka Library

	2.5 Utilities
	2.5.1 Assertions
	2.5.2 Memory Management
	2.5.3 Timing

	3 OCaml Binding API
	3.1 Initialization
	3.2 Numerical Domain
	3.3 Boolean Lattice
	3.4 Octagons
	3.4.1 Octagon Creation
	3.4.2 Queries
	3.4.3 Tests
	3.4.4 Operators
	3.4.5 Transfer Functions
	3.4.6 Change of Dimensions
	3.4.7 Minimized Octagons
	3.4.8 Interval functions
	3.4.9 Perturbation
	3.4.10 Pretty-Printers

	3.5 Interface with the New Polka Library
	3.6 Utilities
	3.7 Low-level Binding API

	4 Analyzer Example
	4.1 How to Use the Analyzer
	4.2 Source Files
	4.3 Language Syntax
	4.4 Analysis Method

	5 Internal Structure
	5.1 Abstract Elements Representation (oct_sem.c)
	5.1.1 Original Representation
	5.1.2 Modified Representation (oct_t)

	5.2 Modified Strong Closure Algorithm (oct_close)
	5.2.1 Emptiness Test
	5.2.2 Incremental Strong Closure Algorithm (oct_close_incremental)

	5.3 Minimized Octagons (moct_t)
	5.3.1 Minimized Representation
	5.3.2 Minimization Algorithm
	5.3.3 Algorithms on Minimized Octagons

	5.4 Memory Management of Abstract Elements (oct_sem.c)
	5.5 Conversion between Octagons and Polyhedra (oct_polka.c)
	5.5.1 From Octagons to Polyhedra (oct_to_poly)
	5.5.2 From Polyhedra to Octagons (oct_from_poly)

	5.6 Operators and Transfer Functions (oct_sem.c)

	 Bibliography
	 Index

