
Written exam

MPRI 2-6, year 2014–2015

Antoine Miné

3 December 2014

Duration: 3 hours (8:45–11:45)

The only documents allowed are your own printed copy of the course slides and your personal
notes.
The use of electronic devices (computers, phones) is prohibited.
The questions are written in English. You can answer either in English or in French.
The different parts of this exam are independent and can be solved in any order.
It will not be answered to any question during the exam. In case of an ambiguity or an error in
the definitions or questions, it is part of the exam to correct them and answer to the best of your
abilities.

Part I: Problem

This problem studies several ways to extent the numeric static analyses seen in the course to
programs with arrays.

Syntax. Consider the programming language extending the language used in the course:

P ::= V ← e
| A[e]← e′

| V ← A[e]
| if e ./ 0 then P fi
| while e ./ 0 do P od
| P ;P ′

e ::= [c, d] c ∈ Z ∪ {−∞}, d ∈ Z ∪ {+∞}, c ≤ d
| V V ∈ V
| −e
| e � e′ � ∈ {+,−,×}

./ ∈ {<,>,≤,≥,=, 6=}

Variables V range in a finite set V of (scalar) variables and there is a single array A. The scalar
variables and the array hold integer values. We assume that the size of A is denoted by a special
variable N ∈ V, and that N ≥ 2. Note the special assignments from the array V ← A[e] and
into the array A[e] ← e′. The other statements are standard: scalar assignments V ← e, tests
if e ./ 0 then P fi, loops while e ./ 0 do P od, sequence P ;P ′. Note that expressions e used
in tests, in right-hand parts of assignments and as array indices can only feature variables in V,
not the array A; hence, assignments feature at most one array access (either a read or a write),
and other statements have no array access.

Concrete semantics. A concrete environment (ρ, a) ∈ E maps each scalar variable V ∈ V to
an integer ρ(V), and each integer index in i ∈ [0, ρ(N)− 1] to an integer array element a(i):

E def
= { (ρ, a) | ρ ∈ V→ Z, ρ(N) ≥ 2, a ∈ [0, ρ(N)− 1]→ Z } .

The concrete semantics EJ e K : E → P(Z) and CJP K : P(E) → P(E) is defined as usual for
expressions e and for non-array statements P :

EJV K ρ def
= { ρ(V) } EJ [c, d] K ρ def

= { v ∈ Z | c ≤ v ≤ d }
EJ−e K ρ def

= {−v | v ∈ EJ e K } EJ e � e′ K ρ def
= { v � v′ | v ∈ EJ e K ρ, v′ ∈ EJ e′ K ρ }

1

CJV ← e KR def
= { (ρ[V 7→ v], a) | (ρ, a) ∈ R, v ∈ EJ e K ρ }

CJ e ./ 0? KR def
= { (ρ, a) ∈ R | ∃v ∈ EJ e K ρ : v ./ 0 }

CJ if e ./ 0 then P fi KR def
= CJP K (CJ e ./ 0? KR) ∪ CJ e 6./ 0? KR

CJ while e ./ 0 do P od KR def
= CJ e 6./ 0? K (lfpλX.R ∪ CJP K (CJ e ./ 0? KX))

CJP ;P ′ KR def
= CJP ′ K (CJP KR)

For array assignments, we define:

CJV ← A[e] KR def
= { (ρ[V 7→ a(i)], a) | (ρ, a) ∈ R, i ∈ EJ e K ρ, i ∈ [0, ρ(N)− 1] }

CJA[e]← e′ KR def
= { (ρ, a[i 7→ v]) | (ρ, a) ∈ R, i ∈ EJ e K ρ, v ∈ EJ e′ K ρ, i ∈ [0, ρ(N)− 1] }

Note that fetching an array index out of the array bounds stops the program.

Uniform abstraction. A first abstraction consists in replacing the array value map [0, ρ(N)−
1]→ Z with a single scalar integer representing all the possible array values; hence, we use:

EU def
= (V→ Z)× Z .

The uniform abstraction function αU : P(E)→ P(EU) is:

αU (R)
def
= { (ρ, a(i)) | (ρ, a) ∈ R, i ∈ [0, ρ(N)− 1] } .

Question 1.

1. Give a concretization γU such that P(E) −−−−→←−−−−
αU

γU

P(EU) is a Galois connection (prove the

Galois connection property).

2. Show by an example that αU can indeed result in a loss of precision.

3. Give a condition on R under which αU (R) does not lose any precision.

Question 2.

1. Give the best uniform abstraction CU JP K : P(EU) → P(EU) for the array access assign-
ments A[e] ← e′ and V ← A[e] (prove the optimality). You have to be careful about the

case where an out-of-bound array access occurs. For instance, given R]
def
= { ([V 7→

0, N 7→ 2], 0) } ⊆ EU denoting a 0-filled array of size 2, we have CU JV ← A[2] KR] = ∅.

2. Give the best abstraction ∪U of the join ∪ (prove the optimality).

3. Are all these operators exact or not (give either a proof of exactness or a counter-example)?

Question 3. Consider the following program that fills an array with ones:

P1
def
= while I < N do A[I]← 1; I ← I + 1 od (1)

starting in a concrete environment where the array and I are 0-initialized:

I def
= { ([I 7→ 0, N 7→ n], a) | n ≥ 2, ∀i ∈ [0, n− 1] : a(i) = 0 } ⊆ E . (2)

1. Give the concrete environment F def
= CJP1 K I ⊆ E at the end of program.

2. Show that the abstractions IU def
= αU (I) and FU def

= αU (F) of I and F in P(EU) do
not lose any precision.

3. Give the uniform abstract semantics CU JP1 K IU computed by induction in P(EU).
Why is it coarser than FU?

2

Non-relational abstractions. We now abstract P(EU) further using the interval domain.

Given the set of intervals I def
= { [a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b }, our abstract

environments live in DI def
= ((V∪ {A})→ I)∪ {⊥}, i.e., we map each program variable as well

as the extra variable A (denoting the contents of the array A) to an interval. The concretization
γU,I from DI to P(EU) is:

γU,I(R])
def
= { (ρ, a) ∈ EU | ∀V ∈ V : ρ(V) ∈ R](V), a ∈ R](A) } if R] 6= ⊥, ∅ otherwise .

Question 4. Assuming that we already know (as seen in the course) interval abstractions
EIJ e K , CIJP K , and ∪I for non-array programs, propose interval abstractions of the uniform
semantics for the array operations: CU,IJA[e]← e′ K and CU,IJV ← A[e] K . Justify the soundness
and possibly the optimality of your operators. Be careful in particular to handle precisely the
case where an out-of-bound array access occurs.

Question 5. Consider the following program that stores the sequence 1, . . . , N into the array:

P2
def
= while I < N do A[I]← I + 1; I ← I + 1 od (3)

with the same initial state I as in (2): both A and I are 0-initialized.
Give the concrete semantics CJP2 K as well as the uniform semantics CU JP2 K and its interval
abstraction CU,IJP2 K .
Why are the abstract semantics imprecise?

Relational abstractions. In order to solve the precision issues in P1, we now propose a new
abstraction of P(EU) using relational domains (namely, polyhedra). In this part, we assimilate
EU = (V → Z) × Z to (V ∪ {A}) → Z. We will need to temporarily add more variables to
V ∪ {A}, and we define the following functions:

CU J add W KR def
= { ρ⊕ [W 7→ v] | ρ ∈ R, v ∈ Z }

CU J remove W KR def
= { ρ | ∃v ∈ Z : ρ⊕ [W 7→ v] ∈ R }

CU J expand V 7→W KR def
= { ρ⊕ [W 7→ v] | ρ ∈ R, ρ[V 7→ v] ∈ R }

CU J fold V ←↩ W KR def
= { ρ | ∃v ∈ Z : ρ⊕ [W 7→ v] ∈ R } ∪

{ ρ[V 7→ v] | ρ⊕ [W 7→ v] ∈ R }

where ρ ⊕ [W 7→ v] extends a map ρ where W is not defined to a map defined also on W .
In add W , the new variable W is not initialized while, in expand V 7→ W , it is initialized
using the value of V in another environment that coincides on all other variables V ′ 6= V . In
remove W , the value of W is forgotten while, in fold V ←↩ W , it is stored as an alternate value
for V .

Question 6.

1. Prove that CU JV ← A[e] K can be soundly replaced with:

CU J expand A 7→ B;V ← B; remove B K

where B /∈ V ∪ {A} is a fresh temporary variable.

2. Is this approximation exact?

3. Show on a counter-example that CU J expand A 7→ B K = CU J add B;B ← A K does not
always hold, and moreover that CU JV ← A K is not a sound abstraction of CU JV ← A[e] K .

3

Question 7. Similarly, propose a sound expression of CU JA[e]← e′ K using only the operators
add W , fold V ←↩ W , as well as regular assignments (prove the soundness and discuss the
exactness).

Question 8. We now consider abstracting the uniform semantics in the polyhedra abstract
domain. Based on the polyhedra operations seen in the course, propose polyhedral abstractions
CU,P J add W K , CU,P J remove W K , CU,P J expand V 7→W K , CU,P J fold V ←↩ W K (justify the
soundness and discuss the optimality of your abstract operations).

Question 9. Give the polyhedra semantics CU,P JP1 K and CU,P JP2 K of the programs P1 from
(1) and P2 from (3).

Parametric predicate abstractions. In this last part, instead of representing the array
contents with a single variable A, we use a logic predicate that states some properties about
the array contents. To handle P1 from (1), we use the predicate one(L,H) denoting the partial
initialization of A to 1: ∀i ∈ [L,H] : a(i) = 1. Now, environments live in

Eone def
= (V ∪ {L,H})→ Z

and assign values to program variables in V and predicate variables in {L,H}. We have the
following concretization γone : P(Eone)→ P(E):

γone(R])
def
= { (ρ, a) ∈ E | ∃l, h ∈ Z : ρ⊕ [L 7→ l,H 7→ h] ∈ R], ∀i ∈ [l, h] : a(i) = 1 } .

Question 10.

1. Give abstractions in P(Eone) of the following operators used in the semantics of P1:
ConeJA[I] ← 1 K , ConeJ I ← I + 1 K , ConeJ I < N? K , and the join ∪one (prove their
soundness and discuss their optimality).

2. Give the abstract semantics ConeJP1 K Ione of P1 (1) in P(Eone), with initial set Ione def
=

{ [I 7→ 0, N 7→ n,L 7→ 0, H 7→ −1] | n ≥ 2 } (setting L > H models the fact that A does
not contain any 1 when the program starts).

Question 11. We now abstract P(Eone) further using the polyhedra domain over V∪{L,H}.

1. Give polyhedral abstractions CP,oneJA[I]← I K , CP,oneJ I ← I+1 K , CP,oneJ I < N? K , and
∪P,one of the operators defined in the previous question.

2. Give the polyhedra semantics CP,oneJP1 K of the program P1 from (1).

Question 12. Consider now the following program that computes the maximum of the array:

P3
def
= V ← A[0]; I ← 1;

while I < N do X ← A[I]; if X > V then V ← X fi; I ← I + 1 od

Propose a predicate domain in the spirit of P(Eone), but able to prove that, at the end of P3, V
equals the maximum of the array.
Give the elements of the domain, their concretization, and sound abstract transfer functions
sufficiently precise to prove the property on P3.

4

Part II: Exercise

Let (X,v,t,u,⊥,>) be a complete lattice. We say that the subset M ⊆ X is a lower Moore
family if and only if ∀x ∈ X : { y ∈M | x v y } is not empty and has a least element in M .

1. Prove that: M is a lower Moore family if and only if it contains X’s greatest element >
and it is closed by the meet u of X (i.e., ∀S ⊆M : uS ∈M).

2. Recall that ρ ∈ X → X is an upper closure operator if and only if it is monotonic
∀x v y : ρ(X) v ρ(Y), extensive ∀x : x v ρ(x), and idempotent ∀x : ρ(ρ(x)) = ρ(x).
Prove that: a set M ⊆ X is a lower Moore family if and only if there exists an upper
closure operator ρ such that M = { ρ(x) | x ∈ X }.

3. Consider the powerset concrete lattice P(Z) partially ordered by set inclusion ⊆ and the

abstract set X] def
= { ∅,Z, {x | x ≥ 0 }, {x | x ≤ 0 } }, also ordered by ⊆.

Show that X] is not a Moore family.
What does it tell us about the existence of best approximations of the concrete elements
from P(Z) in the abstract domain X]?

4. Show that this can be corrected by adding some elements to X] (give an example).
Show that this can be also corrected by removing some elements fromX] (give an example).

Part III: Exercise

Consider the classic interval widening:

[a, b] O [c, d]
def
=

[{
a if a ≤ c
−∞ if a > c

,

{
b if b ≥ d
+∞ if b < d

]
Note that O is stable, i.e., y v x =⇒ x O y = x. The widening will stop iterating as soon as a
post-fixpoint is reached.

1. Is O monotonic in its first argument ([a, b] v [a′, b′] =⇒ [a, b] O [c, d] v [a′, b′] O [c, d])?
In its second argument? (give a proof or a counter-example)

2. Consider the loop:

P
def
= while X ≥ 0 do if X < 10 then X ← X + 1 else X ← X − 1 fi od

starting in the environment where X = 0, analyzed in the interval domain with widening.
Show the abstract iteration when iterating from the interval [0, 0].
Show that starting the iteration with a larger interval can lead to a more precise result
(give an example).

3. Consider a domain (D,v) equipped with a widening O which is sound: ∀x, y : x v
x O y, y v x O y, stable ∀x, y : y v x =⇒ x O y = x, and monotonic in its first
argument ∀x, x′, y : x v x′ =⇒ x O y v x′ O y.
Prove that iterations with widening stabilize in finite time only if D has no strictly infinite
chain, i.e., a monotonic widening is not helpful to enforce termination.

ILKJ

5

