
Written exam

MPRI 2-6, year 2014–2015

Antoine Miné

3 December 2014

Correction

Part I: Problem

Question 1.

1. The Galois connection is:

αU (R)
def
= { (ρ, a(i)) | (ρ, a) ∈ R, i ∈ [0, ρ(N)− 1] }

γU (R])
def
= { (ρ, a) | ∀i ∈ [0, ρ(N)− 1] : (ρ, a(i)) ∈ R] }

This is indeed a Galois connection:

αU (R) ⊆ R]

⇐⇒ { (ρ, a(i)) | (ρ, a) ∈ R, i ∈ [0, ρ(N)− 1] } ⊆ R]

⇐⇒ ∀(ρ, a) ∈ R : ∀i ∈ [0, ρ(N)− 1] : (ρ, a(i)) ∈ R]

⇐⇒ (ρ, a) ∈ R =⇒ ∀i ∈ [0, ρ(N)− 1] : (ρ, a(i)) ∈ R]

⇐⇒ R ⊆ { (ρ, a) | ∀i ∈ [0, ρ(N)− 1] : (ρ, a(i)) ∈ R] }
⇐⇒ R ⊆ γU (R])

Actually, we have a Galois embedding as αU is onto: any (ρ, x) ∈ EU is the abstraction
αU ({ (ρ, a) }) of some (ρ, a) ∈ E such that ∀i ∈ [0, ρ(N)− 1] : a(i) = x.

2. Consider X
def
= ([N 7→ 2], [0 7→ 0, 1 7→ 1]) ∈ E .

Then, αU ({X }) = { ([N 7→ 2], 0), ([N 7→ 2], 1) }.
Then, γU (αU ({X })) = { ([N 7→ 2], [0 7→ 0, 1 7→ 0]), ([N 7→ 2], [0 7→ 0, 1 7→ 1]),

([N 7→ 2], [0 7→ 1, 1 7→ 0]), ([N 7→ 2], [0 7→ 1, 1 7→ 1]) }
which is larger than {X}.

3. To find the exactness condition we compute:

γU (αU (R))

= { (ρ, a) | ∀i ∈ [0, ρ(N)− 1] : (ρ, a(i)) ∈ αU (R) }
= { (ρ, a) | ∀i ∈ [0, ρ(N)− 1] : ∃(ρ, a′) ∈ R : ∃j ∈ [0, ρ(N)− 1] : a(i) = a′(j) }

γU (αU (R)) = R if and only if γU (αU (R)) ⊆ R, i.e.:

1

γU (αU (R)) ⊆ R
⇐⇒ { (ρ, a) | ∀i ∈ [0, ρ(N)− 1] : ∃(ρ, a′) ∈ R : ∃j ∈ [0, ρ(N)− 1] : a(i) = a′(j) } ⊆ R
⇐⇒ ∀i ∈ [0, ρ(N)− 1] : ∃j ∈ [0, ρ(N)− 1] : ∃(ρ, a′) ∈ R : a(i) = a′(j) =⇒ (ρ, a) ∈ R
⇐⇒ (ρ, a′) ∈ R =⇒ ∀i, j ∈ [0, ρ(N)− 1] : ∃(ρ, a) ∈ R : a(i) = a′(j)

i.e., whenever the array A contains some value v at some index i while the scalar variables are
defined by ρ, then v can also appear at any other index j of A in another environment sharing
the same ρ. The abstraction is uniform: it collects the set of possible array element values for
each ρ but does not distinguish between elements at different positions.

Question 2.

1. We derive abstract versions F] of each operator F using the Galois connection: F] def
= αU ◦F ◦

γU , so that our abstract operators are optimal by construction.

? Abstract assignment into a scalar:

CU JV ← A[e] KR]

def
= αU (CJV ← A[e] K (γU (R])))

= αU ({ (ρ[V 7→ x], a) | (ρ, a) ∈ γU (R]), ∃i ∈ EJ e K ρ ∩ [0, ρ(N)− 1] : x = a(i) }
= αU ({ (ρ[V 7→ x], a) | (ρ, a) ∈ γU (R]), (ρ, x) ∈ R], EJ e K ρ ∩ [0, ρ(N)− 1] 6= ∅ })
= { (ρ[V 7→ x], y) | (ρ, x), (ρ, y) ∈ R], EJ e K ρ ∩ [0, ρ(N)− 1] 6= ∅ }

The expression e is only evaluated to ensure that there is no out-of-bound access.
We note that this abstraction is actually exact as:

{ (ρ[V 7→ x], a) | (ρ, x) ∈ R], (ρ, a) ∈ γU (R]) }

can be exactly represented in P(EU) as it satisfies the formula from question 1.3.
? Abstract assignment into the array:

CU JA[e]← e′ KR]

def
= αU (CJA[e]← e′ K (γU (R])))

= αU ({ (ρ, a[i 7→ v]) | (ρ, a) ∈ γU (R]), i ∈ EJ e K ρ ∩ [0, ρ(N)− 1], v ∈ EJ e′ K ρ })
= { (ρ, x), (ρ, v) | (ρ, x) ∈ R], EJ e K ρ ∩ [0, ρ(N)− 1] 6= ∅, v ∈ EJ e′ K ρ }

As before, the expression e is only evaluated to ensure that there is no out-of-bound access.
To prove that the operator is not exact, consider R] def

= { ([N 7→ 2], 0) }, which represents:

R = γU (R]) = { ([N 7→ 2], [0 7→ 0, 1 7→ 0]) } .

In the concrete, we have:

CJA[0]← 1 KR = { ([N 7→ 2], [0 7→ 1, 1 7→ 0]) } .

However, this set cannot be exactly repented in the abstract; we get instead:

CU JA[0]← 1 KR] = { ([N 7→ 2], 0), ([N 7→ 2], 1) }

whose concretization is much larger (see question 1.2). Hence, the operator is not exact.

2

2. Abstract join: we have ∪U = ∪ as:

R] ∪U S]

def
= αU (γU (R]) ∪ γU (S]))

= { (ρ, a(i)) | (ρ, a) ∈ γU (R]) ∪ γU (S]), i ∈ [0, ρ(N)− 1] }
= { (ρ, a(i)) | (ρ, a) ∈ γU (R]), i ∈ [0, ρ(N)− 1] } ∪

{ (ρ, a(i)) | (ρ, a) ∈ γU (S]), i ∈ [0, ρ(N)− 1] }
= αU (γU (R])) ∪ αU (γU (S]))

= R] ∪ S]

The last line comes from the Galois embedding property: αU ◦ γU = id.

To show that ∪U is not exact, consider R] def
= { ([N 7→ 2], 0) } and S] def

= { ([N 7→ 2], 1) }.
Then:

γU (R]) ∪ γU (S]) = { ([N 7→ 2], [0 7→ 0, 1 7→ 0]), ([N 7→ 2], [0 7→ 1, 1 7→ 1]) } .

But:

γU (R] ∪U S]) = γU ({ ([N 7→ 2], 0), ([N 7→ 2], 1) })
= { ([N 7→ 2], [0 7→ 0, 1 7→ 0]), ([N 7→ 2], [0 7→ 0, 1 7→ 1]),

([N 7→ 2], [0 7→ 1, 1 7→ 0]), ([N 7→ 2], [0 7→ 1, 1 7→ 1]) }

as in question 1.2.

Question 3.

1. At the end of the program, the array is completely initialized to 1; hence:

F def
= { ([I 7→ n,N 7→ n], a) | n ≥ 2, ∀i ∈ [0, n− 1] : a(i) = 1 } .

2. We have: IU def
= αU (I) = { ([I 7→ n,N 7→ n], 0) | n ≥ 2 }

and FU def
= αU (F) = { ([I 7→ n,N 7→ n], 1) | n ≥ 2 }.

Note that γU (IU) = I and γU (FU) = F , so that the abstractions of I and F are indeed exact
in P(EU).

3. The concrete loop invariant is: { ([I 7→ i,N 7→ n], a) | n ≥ 2, i ∈ [0, n], ∀k ∈ [0, i − 1] : a(k) =
1, ∀k ∈ [i, n− 1] : a(k) = 0 }, which cannot be represented exactly in P(EU).
The best over-approximation of the invariant in P(EU) is { ([I 7→ i,N 7→ n], v) | n ≥ 2, i ∈
[0, n], v ∈ {0, 1} }.
The computation CU JP1 K IU would then give { ([I 7→ n,N 7→ n], v) | n ≥ 2, v ∈ {0, 1} }, which
is coarser than FU and cannot prove that A is indeed initialized to 1.

Question 4.

? We use the interval Galois connection between P(EU) and DI :

3

αI(R)
def
=


λV ∈ V.[min { ρ(V) | (ρ, a) ∈ R },max { ρ(V) | (ρ, a) ∈ R }] if R 6= ∅
λA.[min { a | (ρ, a) ∈ R },max { a | (ρ, a) ∈ R }]

⊥ if R = ∅
γI(R])

def
= { (ρ, a) | ∀V ∈ V : ρ ∈ R](V), a ∈ R](a) } if R] 6= ⊥, ∅ otherwise

? Abstract assignment into a scalar:

CU,IJV ← A[e] KR]

def
= αI(CU JV ← A[e] K γI(R]))

= αI({ (ρ[V 7→ x], y) | (ρ, x), (ρ, y) ∈ γI(R]), EJ e K ρ ∩ [0, ρ(N)− 1] 6= ∅ })

=

{
R][V 7→ R](A)] if (EJ e K γI(R])) ∩ [0,maxR](N)− 1] 6= ∅
⊥ otherwise

⊆

{
R][V 7→ R](A)] if (EIJ e KR]) ∩ [0,maxR](N)− 1] 6= ∅
⊥ otherwise

? Abstract assignment into the array:

CU,IJA[e]← e′ KR]

def
= αI(CU,IJA[e]← e′ K γI(R]))

= αI({ (ρ, x), (ρ, v) | (ρ, x) ∈ γI(R]), EJ e K ρ ∩ [0, ρ(N)− 1] 6= ∅ })

=

{
R] ∪I R][A 7→ αI(EJ e′ K γ(R]))] if (EJ e K γI(R])) ∩ [0,maxR](N)− 1] 6= ∅
⊥ otherwise

⊆

{
R] ∪I R][A 7→ EIJ e′ KR]] if (EIJ e KR]) ∩ [0,maxR](N)− 1] 6= ∅
⊥ otherwise

? These operators are sound by construction, but they are not optimal. Indeed, in both cases, the
last inclusion is not an equality because EIJ e K is, in general, not an optimal abstraction of EJ e K
(e.g., EIJV − V K).

Question 5.

? CJP2 K I = { ([I 7→ n,N 7→ n], a) | n ≥ 2, ∀i ∈ [0, n− 1] : a(i) = i+ 1 }
? The best abstraction of I in P(EU) is IU def

= { ([I 7→ 0, N 7→ n], 0) | n ≥ 2 }.
The computation is similar to that of question 3.3. We find, as loop invariant:

{ ([I 7→ i,N 7→ n], a) | n ≥ 2, i ∈ [0, n], a ∈ [0, i] }

so that, a the end of the loop, we have:

CU JP2 K IU = { ([I 7→ n,N 7→ n], a) | n ≥ 2, a ∈ [0, n] } .

Note that this abstraction not only forgets the relationship between the array index i and the array
contents a(i) = i+ 1 at the index, but it also forgets that the array values are strictly positive (0 is
allowed in the abstraction).

? The best abstraction of I in DI is II def
= [I 7→ [0, 0], N 7→ [2,+∞],A 7→ [0, 0]].

Then, the interval loop invariant is:

4

[I 7→ [0,+∞], N 7→ [2,+∞],A 7→ [0,+∞]]

and so:

CU,IJP2 K II = [I 7→ [2,+∞], N 7→ [2,+∞],A 7→ [0,+∞]] .

Compared to the uniform abstraction, the interval abstraction further loses the relationship between
I, N , and A. In particular, we cannot prove that the array contents is bounded by the array size:
A ≤ N . Naturally, similarly to the uniform abstraction, the interval abstraction cannot prove that
the array is initialized to strictly positive values: A ≥ 1.

Question 6.

1. We have:

CU J expand A 7→ B;V ← B; remove B KR
= CU J remove B K (CU JV ← B K (CU J expand A 7→ B KR))

= { ρ | ∃v ∈ Z : ρ⊕ [B 7→ v] ∈ CU JV ← B K (CU J expand A 7→ B KR) }
= { ρ | ∃v ∈ Z : ∃ρ′ ∈ CU J expand A 7→ B KR : ρ⊕ [B 7→ v] = ρ′[V 7→ ρ′(B)] }
= { ρ | ∃v, v′ ∈ Z : ∃ρ′′ ∈ R : ρ′′[A 7→ v′] ∈ R

ρ′ = ρ′′ ⊕ [B 7→ v′], ρ⊕ [B 7→ v] = ρ′[V 7→ ρ′(B)] }
= { ρ | ∃v, v′ ∈ Z : ∃ρ′′ ∈ R : ρ′′[A 7→ v′] ∈ R, ρ⊕ [B 7→ v] = (ρ′′ ⊕ [B 7→ v])[V 7→ v′] }
= { ρ | ∃v′ ∈ Z : ∃ρ′′ ∈ R : ρ′′[A 7→ v′] ∈ R, ρ = ρ′′[V 7→ v′] }
= { ρ′′[V 7→ v′] | ρ′′ ∈ R, ρ′′[A 7→ v′] ∈ R }

(the first four equalities are obtained by expanding the definition of the sequence, then remove B,
then V ← B, then expand A 7→ B; we then eliminate ρ′, then v, and finally ρ).
On the other hand, when using EU ' ((V ∪ {A})→ Z), the formula found in question 2 can be
rewritten as:

CU JV ← A[e] KR = { ρ[V 7→ v] | ρ ∈ R, ρ[A 7→ v] ∈ R, EJ e K ρ ∩ [0, N − 1] 6= ∅ } .

2. The two formulas only differ for environments that necessarily cause an out-of-bound access
(EJ e K ρ∩ [0, N − 1] = ∅), in which case the first formula is less precise (returning some environ-
ments instead of ∅), so, it is sound but not optimal. When there is no out-of-bound access, the
formulas are equal, i.e., the approximation is exact.

3. ? Let X
def
= { [A 7→ a] | a ∈ {0, 1} }.

Then, CU Jadd B;B ← A K = { [A 7→ a,B 7→ a] | a ∈ {0, 1} }, which satisfies A = B.
However, CU J expand A 7→ B K = { [A 7→ a,B 7→ b] | a, b ∈ {0, 1} }, which contains some
environments that do not satisfy A = B.

? Let X
def
= { [V 7→ 0,A 7→ a] | a ∈ {0, 1} }.

Then, CU JV ← A[e] K = { [V 7→ v,A 7→ a] | a, v ∈ {0, 1} }.
However, CU JV ← A K = { [V 7→ a,A 7→ a] | a ∈ {0, 1} }. This implies V = A after the
assignment, i.e., in each environment, all the array elements are equal to the value of V , which
is obviously wrong.

5

Question 7.

We abstract CU JA[e]← e′ K as CU Jadd B;B ← e′; fold A ←↩ B K . This is sound as:

CU Jadd B;B ← e′; fold A ←↩ B KR
= CU J fold A ←↩ B K (CU JB ← e′ K (CU Jadd B KR))

= CU J fold A ←↩ B K (CU JB ← e′ K { ρ⊕ [B 7→ v] | ρ ∈ R, v ∈ Z })
= CU J fold A ←↩ B K { ρ⊕ [B 7→ v] | ρ ∈ R, v ∈ EJ e′ K ρ }
= { ρ′ | ∃v′ ∈ Z : ∃ρ ∈ R : ∃v ∈ EJ e′ K ρ : ρ′ ⊕ [B 7→ v′] = ρ⊕ [B 7→ v] } ∪
{ ρ′[A 7→ v′] | ∃ρ ∈ R : ∃v ∈ EJ e′ K ρ : ρ′ ⊕ [B 7→ v′] = ρ⊕ [B 7→ v] }

= { ρ | ρ ∈ R, EJ e′ K ρ 6= ∅ } ∪ { ρ[A 7→ v] | ρ ∈ R, v ∈ EJ e′ K ρ }
= { ρ, ρ[A 7→ v] | ρ ∈ R, v ∈ EJ e′ K ρ }

(as before the first lines are obtained by expanding the definition of the sequence, of add B, of B ← e′,
and then fold A ←↩ B).
On the other hand, when using EU ' ((V ∪ {A}) → Z), the formula found in question 2 can be
rewritten as:

CU JA[e]← e′ KR = { ρ, ρ[A 7→ v] | ρ ∈ R, EJ e K ρ ∩ [0, N − 1] 6= ∅, v ∈ EJ e′ K ρ } .

As before, the formulas are equivalent for environments that do not have an out-of-bound array access.
Otherwise, CU Jadd B;B ← e′; fold A ←↩ B K is less precise, and so, sound but not optimal.

Question 8.

We consider that each polyhedron γP (C) is represented by a set of affine constraints C. We denote
by CP J · K the regular polyhedra operators seen in the course.
? We set:

CU,P JaddW KC def
= C

i.e., we do not change the constraint presentation. That way, there is no constraint on W , which
models the fact that W can have an arbitrary value, independent from the values of other variables.
The operator is exact.

? We set:

CU,P J removeW KC def
= CP JW ← [−∞,+∞] KC

i.e., use the “forget” (or “project”) operation. The resulting constraint system is guaranteed to not
feature the variable W . On rationals, the operation is exact. Indeed, we have:

γP (CP JW ← [−∞,+∞] KC) = { ρ[W 7→ w] | ρ ∈ γP (P), w ∈ Q }
= { ρ | ∃w ∈ Q : ρ[W 7→ w] ∈ γP (P) } .

However, on integers, as is the case here, the operation is not exact, as the projection of an integer
polyhedron may not be an integer polyhedron. Consider for instance CU J remove Y K γP ({X =
2Y }) = { [X 7→ x] | x ∈ 2Z }, which is not a polyhedron, although γP ({X = 2Y }) is.

? We set

CU,P J expand V 7→W KC def
= C ∪ { c[W/V] | c ∈ C }

6

i.e., to the constraint set C we add a copy of each constraint c ∈ C where the variable W has been
substituted for the variable V .
We now prove that this operation is exact on polyhedra. Recall that CU J expand V 7→ W KR def

=
{ ρ ⊕ [W 7→ v] | ρ ∈ R, ρ[V 7→ v] ∈ R }. Given a map ρ containing variable V but not W , then

ρ′
def
= ρ ⊕ [W 7→ v] satisfies C ∪ { c[W/V] | c ∈ C } if and only if ρ′ satisfies C and ρ′ satisfies

{ c[W/V] | c ∈ C }. As W does not occur in C, ρ′ satisfies C if and only if ρ does. As V does not
occur in { c[W/V] | c ∈ C }, ρ′ satisfies { c[W/V] | c ∈ C } if and only if ρ ⊕ [W 7→ v] 	 V does
(where 	V indicates that we remove a variable from a map). By renaming back W into V in both
ρ⊕ [W 7→ v]	V and { c[W/V] | c ∈ C }, this is equivalent to having ρ[V 7→ v] satisfying C. To sum
up, we have that ρ ⊕ [W 7→ v] satisfies C ∪ { c[W/V] | c ∈ C } if and only if both ρ and ρ[V 7→ v]
satisfy C, which concludes the proof.

? Consider the polyhedron γP (C) defined by the constraint set C
def
= {V ∈ [0, 1],W ∈ [10, 11] }.

Then, in the concrete, CU J fold V ←↩ W K γP (C) = { [V 7→ v | v ∈ [0, 1] ∪ [10, 11] }, which is not
convex. Hence, there cannot exist an exact abstraction of fold V ←↩ W in the polyhedra domain.
We propose the following abstraction:

CU,P J fold V ←↩ W KC def
= CU,P J removeW K (C ∪P CP JV ←W KC)

i.e., we join the polyhedron with a copy where V is assigned to W , and then forget W .
We justify the soundness as follows, using the soundness of the abstract CU,P J removeW K , of ∪P ,
and CP JV ←W K , as well as the complete ∪−morphism property of CU J removeW K and ∪:

γP (CU,P J removeW K (C ∪P CP JV ←W KC))

⊇ CU J removeW K (γP (C ∪P CP JV ←W KC))

⊇ CU J removeW K (γP (C) ∪ γP (CP JV ←W KC))

⊇ CU J removeW K (γP (C) ∪ CU JV ←W K γP (C)))

⊇ CU J removeW K γP (C) ∪ CU J removeW K (CU JV ←W K γP (C))

= { ρ | ∃v ∈ Z : ρ⊕ [W 7→ v] ∈ γP (C) } ∪
{ ρ | ∃v ∈ Z : ρ⊕ [W 7→ v] ∈ CU JV ←W K γP (C) }

= { ρ | ∃v ∈ Z : ρ⊕ [W 7→ v] ∈ γP (C) } ∪ { ρ[V 7→ v] | ρ⊕ [W 7→ v] ∈ γP (C) }
= CU J fold V ←↩ W K γP (C)

Question 9.

We start by giving the polyhedra semantics of P2:
? The initial state is abstracted exactly in the polyhedra domain using the constraint set IP = {N ≥

2, I = 0,A = 0}.
? In the first loop iteration, after an application of A[I] ← I + 1, we get XP

1 = {N ≥ 2, I = 0, 0 ≤
A ≤ 1} and, after incrementing I, we get YP

1 = {N ≥ 2, I = 1, 0 ≤ A ≤ 1}.
The control flow join at the loop head gives IP1 = IP ∪P YP

1 = {N ≥ 2, 0 ≤ I ≤ 1, 0 ≤ A ≤ I}.
Note that the join creates a relation A ≤ I between the array contents and I, stating that all array
elements are smaller than I.

? After performing a second loop iteration from IP1 , we get similarly IP2 = {N ≥ 2, 0 ≤ I ≤ 2, 0 ≤
A ≤ I}.
Note that the assignment A[I]← I + 1 maintains the relation between A and I.

7

? We apply a widening and get WP
2 = IP1 O IP2 = {N ≥ 2, 0 ≤ I, 0 ≤ A ≤ I}.

? An extra iteration shows that WP
2 is stable; however, it is not very precise on the upper bound of

I due to the widening.
? To recover some precision, we apply (as in the course) one iteration without widening. We get
WP

3 = {N ≥ 2, 0 ≤ I ≤ N, 0 ≤ A ≤ I}, i.e., we recover the relation between I and N .
? To get the invariant when the programs ends, we apply the exit loop condition I ≥ N? and get
{N ≥ 2, I = N, 0 ≤ A ≤ N}.
We are able to prove that all array elements are smaller than the array size N . However, we cannot
prove that the array elements are greater than 1, nor that ∀i : A[i] = i+1 (although both properties
are true, and the first property is expressible in the polyhedra domain with the uniform abstraction).

The semantics of P1 could be computed the same way. It is actually simpler as there is not relationship
between A and I. We thus find: {N ≥ 2, I = N, 0 ≤ A ≤ 1}. Note that, apart from the relation
I = N , the result is exactly the same with the polyhedra domain as with the interval domain. In
particular, we cannot infer that A = 1, i.e., that the array is fully initialized to 1 when the program
stops.

Question 10.

1. ? Neither the assignment I ← I + 1 nor the test I < N? updates the array, and so, they are
identical to a semantics in Eone where L and H have no special meaning. We set:

ConeJ I ← I + 1 KR = { ρ[I 7→ ρ(I) + 1] | ρ ∈ R }
ConeJ I < N? KR = { ρ ∈ R | ρ(I) < ρ(N) } .

These are obviously sound and exact abstractions.
? The assignment A[I] ← 1 is more interesting as it is able to manipulate the predicate

one(L,H). More precisely, it can extend the range on which one(L,H) holds whenever I
is adjacent to the range [L,H] (i.e., I = L− 1 or I = H + 1). Formally:

ConeJA[I]← 1 KR def
= { f(ρ) | ρ ∈ R }

where

f(ρ)
def
=


ρ[H 7→ ρ(I)] if ρ(I) = ρ(H) + 1

ρ[L 7→ ρ(I)] else if ρ(I) = ρ(L)− 1

ρ otherwise .

The operator is obviously sound. However, it is not exact. Consider for instance X] def
=

{ [N 7→ 10, L 7→ 0, H 7→ 1] } representing the set of 10-element arrays whose two first el-

ements are ones. Then, CJA[5] ← 1 K γ(X]) is the set of environments Y
def
= { ([N 7→

10], a) | a(0) = a(1) = a(5) = 1 }, which cannot be exactly represented in P(Eone). We have
instead: ConeJA[5]← 1 KX] = X].
This example also shows that there are no best abstraction (i.e., no αone) in P(Eone): Y can
be over-approximated by both X] = {[N 7→ 10, L 7→ 0, H 7→ 1]} and by {[N 7→ 10, L 7→
5, H 7→ 5]}, neither of which is a better abstraction.

? We now prove that the regular set union ∪one def
= ∪ on P(Eone) is a sound and exact

abstraction of ∪ on P(E):

8

γone(R ∪ S)

= { (ρ, a) | ρ⊕ [L 7→ l,H 7→ h] ∈ R ∪ S, ∀i ∈ [l, h] : a(i) = 1 }
= { (ρ, a) | ρ⊕ [L 7→ l,H 7→ h] ∈ R, ∀i ∈ [l, h] : a(i) = 1 } ∪
{ (ρ, a) | ρ⊕ [L 7→ l,H 7→ h] ∈ S, ∀i ∈ [l, h] : a(i) = 1 }

= γone(R) ∪ γone(S)

In fact, we can check that γone is a ∪−morphism: γone(X) = ∪ { γone({x}) | x ∈ X }.

2. When computing the semantics of P1 in P(Eone), every application of ConeJA[I]← 1 K triggers
the first case of f , i.e., H is incremented. At the beginning of the k−th iteration of the loop, we
get the following set of abstract environments:

{ [N 7→ n, I 7→ i, L 7→ 0, H 7→ i− 1] | n ≥ 2, i ≤ min(n, k) }

whose join over k gives the loop invariant:

{ [N 7→ n, I 7→ i, L 7→ 0, H 7→ i− 1] | n ≥ 2, i ≤ n } .

Hence, when the program stops, we have the property:

{ [N 7→ n, I 7→ n,L 7→ 0, H 7→ n− 1] | n ≥ 2 }

which proves that the array is completely initialized to 1.

Question 11.

1. ? In the previous question, we have expressed ConeJ I ← I + 1 K , ConeJ I < N? K and ∪one using
regular scalar concrete semantic operators over V ∪ {L,H}, where L and H have no special
meaning. By replacing the concrete scalar semantics with a polyhedral scalar semantics, we
simply get:

CP,oneJ I ← I + 1 K def
= CP J I ← I + 1 K

CP,oneJ I < N? K def
= CP J I < N? K

∪P,one def
= ∪P

? To abstract A[I]← 1, we separate three possible cases, depending on the relative value of L,
I, and H. The predicate can be extended by increasing the upper bound H (when I = H+1),
or extended by decreasing the lower bound L (when I = L− 1), or left unchanged (when I is
neither H+1 nor L−1). Formally, this can be abstracted using regular polyhedra assignments,
tests, and joins:

CP,oneJA[I]← 1 KR def
= CP JH ← H + 1 K (CP J I = H + 1? KR) ∪P

CP JL← L− 1 K (CP J I = L− 1? KR) ∪P

CP J I 6= H + 1? K (CP J I 6= L− 1? KR)

The soundness is a consequence of the soundness of each regular polyhedra operator we use.
Note that equality and disequality tests can be decomposed into pairs of inequalities, for
instance: CP J I 6= H + 1 KR def

= CP J I > H + 1? KR ∪ CP J I < H + 1? KR.

9

2. We note that all the abstract elements computed by the predicate semantic ConeJ · K for P1 are
actually exactly expressible in the polyhedra domain.

? We start with the constraint set IP = {N ≥ 2, I = 0, L = 0, H = −1} abstracting I.
? The first application of A[I]← 1 gives: CP,oneJA[I]← 1 K IP = CP JH ← H + 1 K IP = {N ≥

2, I = 0, L = 0, H = 0}.
? After incrementing I, we get {N ≥ 2, I = 1, L = 0, H = 0}.
? The join with IP at the loop head gives: IP1 = {N ≥ 2, 0 ≤ I ≤ 1, L = 0, H = I − 1}. Note

that we discover the important relation H = I − 1.
? After a second iteration, we get: IP2 = {N ≥ 2, 0 ≤ I ≤ 2, L = 0, H = I − 1}.
? The polyhedral widening gives: IP1 O IP2 = {N ≥ 2, 0 ≤ I, L = 0, H = I − 1}.
? A decreasing iteration recovers the constraint I ≤ N .

The polyhedral invariant is thus: {N ≥ 2, 0 ≤ I ≤ N,L = 0, H = I − 1}.
? After the loop, we get: {N ≥ 2, I = N,L = 0, H = N −1}. The predicate one(0, N −1) holds,

which expresses the fact that A is completely filled with ones.

Question 12.

To analyze precisely P3, it is necessary to express exactly the loop invariant, i.e., the fact that V is
the maximum of a slice of the array (but not necessarily of the whole array). Naturally, we use a
predicate V = max A(L,H) that denotes that the value of V is the maximum of A between indices L
and H. However, this is not sufficient: we also need to keep the relationship between X, V , and A[I]
in order to abstract precisely the assignment X ← A[I] and the test X > V ?.

There are several solutions to this problem. Here, we will use a simple solution, which consists
in adding a new synthetic variable AI that represents the array element at index I in the current
environment. Hence, we set:

Emax def
= (V ∪ {L,H,AI})→ Z

with concretization γmax : P(Emax)→ P(E) defined as:

γmax(R])
def
= { (ρ, a) | ∃l, h, x ∈ Z : ρ⊕ [L 7→ l,H 7→ h,AI 7→ x] ∈ R],

ρ(I) ∈ [0, ρ(N)− 1] =⇒ x = a(ρ(I)),

l ≤ h =⇒ ρ(V) = max { a(i) | i ∈ [l, h] } } .

Note that, when L > H, we do not impose any constraint on V , which is necessary to be able to
represent the initial state where no array element equals one. Likewise, A[I] is not defined when
I /∈ [0, N − 1], and the variable AI does not enforce any constraint in that case.
? The initial state

I def
= { ([N 7→ n, V 7→ v, I 7→ i], a) | n ≥ 2, v, i ∈ Z }

is represented as the abstract set:

Imax def
= { [N 7→ n, V 7→ v, I 7→ i, L 7→ 0, H 7→ −1, AI 7→ x] | n ≥ 2, v, i, x ∈ Z }

where the values of L, H, and AI do not impose any constraint on the array contents.
? CmaxJV ← A[0] K def

= CJL← 0;H ← 0 K .
We initialize the predicate as V = max A(0, 0), indicating that V is the maximum of the A between
0 and 0 (i.e., A[0]).

10

? CmaxJ I ← e K def
= CJ I ← I + 1;AI ← [−∞,+∞] K .

In addition to updating the variable I, we also forget the value of AI to model the fact that any
information on the prior value of A[I] is lost, as I may have changed its value.

? CmaxJ I ./ e? K def
= CJ I ./ e? K .

This test is unchanged, we do not update our predicate nor AI .
? CmaxJX ← A[I] K def

= CJX ← AI K .
We update the relation between X and the synthetic variable AI to remember the relation between
X and A[I].

? CmaxJX > V ? K def
= CJX > V ? K .

This test is also unchanged. Note that, as this test is executed after the assignment X ← A[I] in
our program, we get ρ(X) = ρ(A)I and the semantics will naturally track the relation between A[I]
and V : we get that ρ(AI) > ρ(V) holds in all environments after the test.

? CmaxJX ≤ V ? KR def
= { f(ρ) | ρ ∈ R } where:

f(ρ)
def
=

{
ρ[H 7→ ρ(I)] if ρ(I) = ρ(H) + 1, ρ(AI) = ρ(X)

ρ otherwise .

This tests uses the knowledge that A[I] = X ≤ V to enlarge the interval [L,H] over which V equals
the maximum of A.

? CmaxJV ← X KR def
= { g(ρ) | ρ ∈ R } where:

g(ρ)
def
=

{
ρ[V 7→ ρ(X), H 7→ ρ(I)] if ρ(I) = ρ(H) + 1, ρ(AI) > ρ(V)

ρ[V 7→ ρ(X)] otherwise .

Similarly, this assignment uses the knowledge that A[I] > V to enlarge the interval [L,H] over
which V equals the maximum of A.

? As γmax is a ∪−morphism, similarly to P(Eone), we have that ∪max def
= ∪ is the best abstraction

of the join.

We could further abstract P(Emax) using the polyhedra abstract domain over (V∪{L,H,AI})→ Z,
similarly to what we did in question 11. The result would be a computable static analysis able to
prove the desired relation between V and A on P3.

Historical notes:
The uniform abstraction has been used for a long time in combination with non-relational abstract inter-

pretations (such as the interval analysis). It has been also used in data-flow analysis, which is inherently
non-relational (the abstraction is also called “field-insensitive”). The first use of an uniform abstraction on
a relational abstract domain is in the following article, that introduces the expand and remove operators:
“D. Gopan, F. DiMaio, N. Dor, T. Reps, M. Sagiv. Numeric domains with summarized dimensions. In Proc.
of 10th International Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS),
LNCS 2988, p. 512–529. Springer, 2004.”

The predicate abstraction parameterized by an infinite numeric abstract domain (such as polyhedra) used in
the last part of the problem originates from: “P. Cousot. Verification by abstract interpretation. In Proc. Int.
Symp. on Verification – Theory & Practice – Honoring Zohar Manna’s 64th Birthday, LNCS 2772, p. 243–268.
Springer, 2003.”

LK

11

Part II: Exercise

1. ? Assume that M is a lower Moore family. Given x ∈ X, we use the notation Mx
def
= { y ∈

M | x v y }. We know by hypothesis that Mx 6= ∅ and that Mx has a least element uMx in
M .
We have by definition M> = { y ∈ M | > v y }. The only element greater than > is > itself,
so that M> ⊆ {>}. As M> 6= ∅, we must have M> = {>}. As M> ⊆M , we have > ∈M .
Consider now S ⊆ M and MuS = { y ∈ M | u S v y }. By Moore family property,
uMuS ∈ MuS , so that uS v uMuS . Moreover, as ∀s ∈ S : uS v s, we have S ⊆ MuS , so
that uMuS v uS. Hence, uS = uMuS ∈M .

? For the other direction, assume that > ∈M and M is closed by u. Take x ∈ X and consider
Mx

def
= { y ∈M | x v y }. As > ∈M , > ∈Mx so that Mx is not empty. As X is a complete

lattice, Mx has a least element uMx in X. As Mx ⊆ M and M is closed by u, we have that
uMx ∈M .

2. ? Assume that M is a lower Moore family. We construct the following operator ρ(x)
def
= u{ y ∈

M | x v y }. We now prove that it is an upper closure operator.
Monotony: Assume x v x′, then ∀y ∈ M : x′ v y =⇒ x v y. Hence { y ∈ M | x v y } ⊇
{ y ∈M | x′ v y }. This implies u{ y ∈M | x v y } v u{ y ∈M | x′ v y }, i.e., ρ(x) v ρ(x′).
Extensivity: Assume x ∈ X, then { y ∈ M | x v y } contains only elements greater than x,
hence x v u{ y ∈M | x v y } = ρ(x).
Idempotence: By Moore family property, we known that ∀x ∈ X : ρ(x) ∈ M . Take now
x′ ∈ M . Then, x′ ∈ { y ∈ M | x′ v y }. Thus, x′ = u{ y ∈ M | x′ v y } = ρ(x′). This is true
in particular if x′ = ρ(x) for some x ∈ X. We thus deduce that ∀x ∈ X : ρ(ρ(x)) = ρ(x).
Finally, note that when proving the idempotence, we proved that ∀x ∈ X : ρ(x) ∈ M , which
means that { ρ(x) | x ∈ X } ⊆ M , and we proved that ∀x ∈ M : ρ(x) = x, which means that
M ⊆ { ρ(x) | x ∈ X }. Hence, M = { ρ(x) | x ∈ X }.

? To prove the converse, assume that ρ is an upper closure operator and defineM
def
= { ρ(x) | x ∈

X }. We prove that M is an upper closure operator by proving that it contains > and is closed
by intersection (see question 1).
By extensivity of ρ, we have > v ρ(>), which means that > = ρ(>), and so, > ∈M .
Consider S ⊆ M . As ∀s ∈ S : uS v s, by monotony, ∀s ∈ S : ρ(uS) v ρ(s) and, by
idempotence, ∀s ∈ S : ρ(s) = s so that ∀s ∈ S : ρ(uS) v s, i.e., ρ(uS) v uS. By extensivity,
however, uS v ρ(uS). We deduce that ρ(uS) = uS, i.e., uS is in the image of ρ: uS ∈M .
Hence, M is closed by intersection.

3. ? X] is not closed by intersection because {x | x ≥ 0 }, {x | x ≤ 0 } ∈ X], but {x | x ≥
0 } ∩ {x | x ≤ 0 } = {0} 6∈ X]. Hence it is not a Moore family.

? By question 2, because X] is not a Moore family of P(Z), it is not the image of P(Z) by any
upper closure operator. We saw in the course that the existence of a Galois connection between
a set P(Z) and one of its subset X] is equivalent to the existence of an upper closure operator
whose image of P(Z) is X]. Hence, we know that there cannot exist any best abstraction
function α ∈ P(Z)→ X].
In particular, the set {0} has no best abstraction in X]. Both properties {x | x ≥ 0 } and
{x | x ≤ 0 } are equally good.

4. ? A natural way to make X] a Moore family is to complete it by adding all the missing in-

12

tersections. In our case, we simply need to add {0}. We then retrieve the domain of simple
signs.

? Alternatively, we can remove either {x | x ≥ 0 } or {x | ≤ 0 }. We obtain a linear three-
element domain: either ∅ ⊆ {x | x ≥ 0 } ⊆ Z or ∅ ⊆ {x | x ≤ 0 } ⊆ Z.
We can even remove both and obtain the two-element lattice {∅,Z}, i.e., {⊥,>}.

Historical notes:

The fact that Moore families are equivalent to upper closure operators and Galois connections is mentioned,

in the context of abstract interpretation, as early as in: “P. Cousot. Méthodes itératives de construction et

d’approximation de points fixes d’opérateurs monotones sur un treillis, analyse sémantique des programmes.

Thèse ès Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.”

ILKJ

Part III: Exercise

1. ? We have [0, 1] v [0, 2].
However, [0, 1] O [0, 2] = [0,+∞] while [0, 2] O [0, 2] = [0, 2] and [0,+∞] 6v [0, 2].
Hence, O is not monotonic in its first argument.

? For the second argument, consider [c, d] v [c′, d′], i.e., c ≥ c′ and d ≤ d′.
Consider the upper bound u of [a, b] O [c, d] and the upper bound u′ of [a, b] O [c′, d′].
If b < d, then u = +∞, but we also have b < d′, so that u′ = +∞ = u.
If b ≥ d, then u = b. As u′ ∈ {+∞, b}, we have u′ ≥ b = u.
In all cases u ≤ u′. A similar reasoning on the lower bounds l and l′ gives l ≥ l′.
Hence, [a, b] O [c, d] v [a, b] O [c′, d′], i.e., O is monotonic in its second argument.

2. In the concrete, the loop invariant states that 0 ≤ X ≤ 10.

? The first iteration with widening gives [0, 0] O [0, 1] = [0,+∞], which is then stable. Hence,
the interval domain with the classic widening is only able to prove that X ≥ 0.
Note that, on this program, using a narrowing would not gain us any precision (however, using
a widening with threshold would).

? When starting the iteration from [0, 10] instead of [0, 1], we get [0, 10]O [0, 10] = [0, 10], which
is stable. Hence, we find the precise result [0, 10].

3. We now assume that O is a stable widening that is monotonic in its first argument.
Consider a strictly increasing chain y0 @ y1 @ · · · , and construct the derived iteration with
widening: x0

def
= y0 and ∀i ∈ N : xi+1

def
= xi O yi+1. We prove by recurrence on i that,

∀i : xi = yi.
The base case i = 0 holds by hypothesis.
Assume now that xi = yi. Then, xi+1 = xi O yi+1 = yi O yi+1.
As by hypothesis yi v yi+1, we have, by monotony, that yi O yi+1 v yi+1 O yi+1.
By stability, yi+1 O yi+1 = yi+1, which gives: yi O yi+1 v yi+1.
Moreover, by soundness, yi+1 v yi O yi+1.
We deduce that yi O yi+1 = yi+1, i.e., xi+1 = yi+1.
If the sequence y0, y1, . . . is infinite and strictly increasing, then so is the sequence xi. This

13

violates the convergence property of the widening. We deduce that D cannot have strictly
increasing infinite chains.

Note that one way to obtain a monotonic widening is to relax the stability condition. For
instance, the widening ∀a, b : a O b

def
= > is indeed monotonic, sound and always terminating.

It is not stable as x O x = > for x 6= >. Moreover, it is not a very interesting widening.

Historical notes:
The fact that widenings are generally non-monotonic (starting with the interval widening) is mentioned in

several abstract interpretation articles, and in particular in: “P. Cousot & R. Cousot. Comparing the Galois
connection and widening/narrowing approaches to abstract interpretation. In Proc. Programming Language
Implementation and Logic Programming (PLILP’92). LNCS 631, p. 269–295. Springer, 1992.” This article
motivates the use of iterations with widening in infinite domains versus regular iterations in finite restrictions
of such domains.

The mention that interesting widenings cannot be monotonic as well as the proof from the last question can

be found in: “P. Cousot. Abstract Interpretation Scene-Setting Talk. In Dagstuhl Seminan 14352, Aug .2014.”

JILKJI

14

