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The only documents allowed are your own printed copy of the course slides and your personal
notes. The use of electronic devices (computers, phones) is prohibited.

The questions are written in English. You can answer either in English or French.
The different parts in this exam are independent and can be solved in any order.
It will not be answered to any question during the exam. In case of ambiguity or incorrectness

in the definitions or questions, it is part of the exam to correct them and answer to the best of
your abilities.

Part I: Exercise

The goal of this exercise is to study upper closure operators, which provide an alternate way
to define sets of abstract properties. Let (X,v,t,u,⊥,>) be a complete lattice. Recall that
an operator ρ : X → X is an upper closure on X if it is monotonic x v x′ =⇒ ρ(x) v ρ(x′),

extensive x v ρ(x), and idempotent ρ◦ρ = ρ. If A ⊆ X, we write ρ(A)
def
= { ρ(a) | a ∈ A }. We

denote by uco(X) the set of upper closures on X and by mon(X) the set of monotonic operators

on X; they are ordered by the point-wise order f ≤ g def⇐⇒ ∀x : f(x) v g(x).

1. By Tarski’s Theorem, we know that the set of fixpoints of ρ ∈ uco(X) forms a complete
lattice (ρ(X),v,tρ,uρ,⊥ρ,>ρ). Prove that ⊥ρ = ρ(⊥), >ρ = ρ(>), tρA = ρ(tA), and
uρA = uA.

Application: consider X
def
= P(Z) ordered by ⊆, and prove that there does not exist any

closure ρ such that ρ(X) = { ∅, ]−∞, 0], [0,+∞[,Z }.

2. Prove that ρ(x) = u { y ∈ ρ(X) | x v y }. Deduce from this property that ρ ≤ η ⇐⇒
ρ(X) ⊇ η(X) and ρ = η ⇐⇒ ρ(X) = η(X): a closure is defined by its fixpoints.

Application: give the closure ρ such that ρ(X) = { ∅, ]−∞, 0], {0}, [0,+∞[,Z }.

3. Given f ∈ mon(X), we define clo(f)
def
= λx. lfpλy.x t f(y).1 Prove that clo(f) is an

upper closure operator, and that it is the smallest one greater than f for ≤.

Application: compute the closure clo(f) for the following function f on P(Z):

f(x)
def
=


∅ if x = ∅
[0,+∞[ if ∀v ∈ x : v ≥ 0

]−∞, 0] if ∀v ∈ x : v < 0

Z otherwise

1λx.e denotes the function that associates the value of e to x. lfp f is the least fixpoint of f .
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4. Prove that uco(X) forms a complete lattice (uco(X),≤,∨uco,∧,uco ,⊥uco,>uco). Give the
definition of ∨uco, ∧uco, ⊥uco, >uco.

Application: given two closures ρ1 and ρ2 defined by their fixpoints S1
def
= { ∅, ] −

∞, 0], {0}, [0,+∞[,Z } and S2
def
= { ∅, 2Z, 2Z+ 1,Z }, give their join and their meet upper

closure operators.

5. Show that, even when ρ1 and ρ2 are upper closures, ρ1 ◦ ρ2 is not necessary an upper
closure. Prove however that clo(ρ1 ◦ ρ2) = ρ1 ∨uco ρ2.

Part II: Exercise

The goal of this exercise is to define the template numeric abstract domain, a restriction of
polyhedra that generalizes intervals, zones, and octagons. We consider a set V def

= {V1, . . . , Vn}
of n R−valued variables. A concrete element will be seen indifferently as a subset of environments
in D def

= P(V → R) or a subset of a vector space in P(Rn). Given a fixed m×n matrix M with

an arbitrary number m of rows, the template abstract domain for M is D] def
= (R ∪ {+∞})m

ordered point-wise. Each abstract element is a vector ~β ∈ (R∪ {+∞})m and represents the set:

γ(~β)
def
= { ~x ∈ Rn |M~x ≤ ~β }

1. Show how to recover the interval and zone domains when n = 3 by suitable choices of M.

2. Prove that there is a Galois connection and give the definition of the abstraction function.

3. Show that γ is not always injective. Recall that linear programming consists in computing

LP (〈A,~c〉, ~v)
def
= max { ~x · ~v | A~x ≤ ~c }

for an arbitrary polyhedron 〈A,~c〉 and vector ~v. Show how to use LP to construct a
normal form.

4. Give the optimal abstract version of the following operators:

(a) set union ∪ and set intersection ∩;

(b) non-deterministic assignments: JV ← ? KR def
= { ρ[V 7→ v] | ρ ∈ R, v ∈ R };

(c) affine assignments: JV ← a0 +
∑

i aiVi KR
def
= { ρ[V 7→ a0 +

∑
i ai × ρ(Vi)] | ρ ∈ R };

(d) affine tests: J a0 +
∑

i aiVi ≤ 0? KR def
= { ρ ∈ R | a0 +

∑
i ai × ρ(Vi) ≤ 0 }.

Which operators are exact?

5. Propose a widening O. Prove its soundness and termination.

Part III: Problem

We consider a simple programming language whose syntax obeys the following grammar:

P ::= V ← ?
| V ← e
| e ./ 0 ?
| if e ≥ 0 then {P }
| while e ≥ 0 do {P }
| P ;P

where e ::= a0 +
∑

i aiVi, Vi ∈ V, ai ∈ Q
and ./ ∈ {≥, > }
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which contains non-deterministic assignments of a random value V ← ?, affine assignments
V ← e, affine assertions e ./ 0 ?, as well as conditionals if e ≥ 0 then {P } and loops while e ≥
0 do {P } guarded by affine tests, and instruction sequence P ;P . Variables V , Vi range in a
fixed finite set V, constants ai are rational, and assertion tests may be strict > or non-strict ≥.

Forward semantics. A program state ρ is a map associating a rational value ρ(V ) ∈ Q to

each variable V ∈ V. We denote by E the set of possible program states: E def
= V → Q. The

forward semantics in denotational form JP K of a program P is a function JP K : P(E) → P(E)
that associates to a set of states at the program entry (input states), the set of states at the
program exit (output states). It is defined by induction on the syntax of P as:2

JV ← ? KE def
= { ρ[V 7→ v] | ρ ∈ E, v ∈ Q }

JV ← a0 +
∑

i aiVi KE
def
= { ρ[V 7→ a0 +

∑
i ai × ρ(Vi)] | ρ ∈ E }

J a0 +
∑

i aiVi ./ 0 ? KE def
= { ρ ∈ E | a0 +

∑
i ai × ρ(Vi) ./ 0 }

J if e ≥ 0 then {P } KE def
= JP K(J e ≥ 0 ? KE) ∪ J e < 0 ? KE

Jwhile e ≥ 0 do {P } KE def
= J e < 0 ? K(lfpE λR.(R ∪ JP K(J e ≥ 0 ? KR)))

JP1;P2 K def
= JP2 K ◦ JP1 K

Question 1

? Prove that the fixpoint used in Jwhile e ≥ 0 do {P } K is well-defined and that, for any pro-
gram P , JP K is a complete ∪−morphism.3

Backward semantics. The goal of the problem is to infer, given a set of output states O, a
set of input states I as large as possible such that JP KI ⊆ O. Given a function f : P(E)→ P(E),

we define its backward version
←−
f : P(E)→ P(E) as follows:

←−
f (x)

def
= { y ∈ E | f({ y }) ⊆ x } .

Question 2

? Assuming that f and g are complete ∪−morphism on P(E), prove the following properties:

1.
←−
f is monotonic and a complete ∩−morphism.

2. The pair (f,
←−
f ) forms a Galois connection: P(E) −−−→←−−−

f

←−
f
P(E).

3.
←−−
f ◦ g =←−g ◦

←−
f .

4.
←−−−−−−−−−−−−
λx.(f(x) ∪ g(x)) = λx.(

←−
f (x) ∩←−g (x)).

5.
←−−−−−−−−−−−−−−−−
λx.(lfpx λz.(z ∪ f(z))) = λx.(gfpx λz.(z ∩

←−
f (z))), where gfpx g is the greatest fixpoint of

g smaller than x.

? Do these properties hold when f and g are not complete ∪−morphism?

? Is
←−
f always strict (i.e.,

←−
f (∅) = ∅)?

2lfpx f is the least (with respect to set inclusion ⊆) fixpoint greater than x of the function f .
3f is a complete ∪−morphism if, for any family (Ai)i∈I of sets, f(∪i∈IAi) = ∪i∈If(Ai). It is a complete

∩−morphism if f(∩i∈IAi) = ∩i∈If(Ai).
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Question 3

? Deduce from the preceding question and the definition of JP K a definition of
←−−
JP K by induction

on the syntax of P .

? Prove that
←−−
JP KO is the maximal set I such that JP KI ⊆ O.

Approximation. We now consider the approximate computation of
←−−
JP K in the abstract do-

main D] of closed, convex polyhedra. We note by γ : D] → P(E) the polyhedral concretization

function. The polyhedral abstraction of
←−−
JP K we construct will be denoted by

←−−
JP K

]
.

Question 4

? Prove that, if E ∈ P(E) is a convex and closed set, then
←−−−−−−
JV ← ? KE is either ∅ or E.

? Deduce an (exact) polyhedral abstraction
←−−−−−−
JV ← ? K

]
.

Question 5

? Show that assertions
←−−−−−−
J e ≥ 0 ? K cannot be abstracted exactly on polyhera in general.

? Justify that, in order to obtain a meaningful result, an abstraction
←−−
JP K

]
of a concrete se-

mantic function
←−−
JP K must satisfy the following soundness relation: ∀X] ∈ D] : γ(

←−−
JP K

]
X]) ⊆

←−−
JP K(γ(X])).

? Given a polyhedron P described by a set of constraints, show how to construct sound ab-

stractions
←−−−−−−
J e ≥ 0 ? K

]
and
←−−−−−−
J e > 0 ? K

]
by removing the constraint e ≥ 0 in P as well as all the

constraints that are redundant with it in P .4 Prove the soundness of your abstract operators.

Question 6

Propose a polyhedral abstraction of assignments
←−−−−−−−−−−−−−−−
JV ← a0 +

∑
i aiVi K

]
.

Question 7

A lower widening is a binary operator O on D] such that:

1. γ(X] O Y ]) ⊆ γ(X]) ∩ γ(Y ])

2. For any sequence (X]
n)n∈N, the sequence Y ]

0
def
= X]

0, Y
]
n+1 = Y ]

n OX
]
n+1 has a stable value:

∃i ∈ N : Y ]
i = Y ]

i+1.

? Show how a lower widening operator can be used to compute
←−−−−−−−−−−−−−−−−−
Jwhile e ≥ 0 do {P } K

]
.

? Propose a lower widening operator on polyhedra.

ILKJ

4A constraint c is redundant with a constraint d ∈ P if γ(P ) = γ(P \ d ∪ { c }).
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