
Written exam

MPRI 2-6, year 2013–2014

Antoine Miné

6 December 2013

Correction

Part I

1. ? By idempotence, ρ(X) is exactly the set of fixpoints of ρ. As ρ is monotonic in a complete
lattice, we can apply Tarski’s theorem to get that ρ(X) forms a complete lattice. In
particular, ρ(⊥), ρ(>), ρ(tA), and ρ(uA) are all fixpoints.
By monotony, ∀x : ⊥ v x implies ρ(⊥) v ρ(x), and so, ρ(⊥) is the least fixpoint. Like-
wise, ∀x : ρ(x) v ρ(>), and so, ρ(>) is the greatest fixpoint. Note that, by extensivity,
we also have > v ρ(>), which means that, in fact, ρ(>) = >.
Assume that A ⊆ ρ(X). We know that tA v ρ(tA) by extensivity. Assume that
y ∈ ρ(X) is another fixpoint greater than tA. By monotony, ρ(tA) v ρ(y) = y. Hence
ρ(tA) is the least fixpoint greater than tA, i.e., tρA. Likewise uρA = ρ(uA).
Finally, to prove that uρ = u, we prove that ρ(uA) = uA. By extensivity, uA v ρ(uA).
By monotony, ∀a ∈ A : uA v a implies ρ(uA) v ρ(a) = a, hence ρ(uA) v uA, and so,
ρ(uA) = uA.

? Application: As uρ = u, the set of fixpoints ρ(X) of an upper closure operator ρ is

closed under meet. However, the set S
def
= { ∅,]−∞, 0], [0,+∞[,Z } is not closed under

meet as]−∞, 0] ∩ [0,+∞[= {0} /∈ S, hence, no ρ satisfies ρ(X) = S.

2. ? We note that, by definition, ρ(x) = u{ y ∈ ρ(X) | ρ(x) v y }. Assume that y ∈ ρ(X).
Then x v y implies by monotony ρ(x) v ρ(y) = y. Likewise, ρ(x) v y implies x v y as,
by extensivity, x v ρ(x). We deduce that { y ∈ ρ(X) | x v y } = { y ∈ ρ(X) | ρ(x) v y },
hence, ρ(x) = u{ y ∈ ρ(X) | x v y }.

? Assume that ρ ≤ η and x ∈ η(X), i.e., x = η(x). As ρ(x) v η(x), we have x w ρ(x).
By extensivity, we have x v ρ(x), so, x = ρ(x) and x ∈ ρ(X). We thus deduce that
η(X) ⊆ ρ(X).
To prove the converse, assume that ρ(X) ⊇ η(X). Then ∀x : { y ∈ ρ(X) | x v y } ⊇
{ y ∈ η(X) | x v y }, and so, u{ y ∈ ρ(X) | x v y } v u{ y ∈ η(X) | x v y }. Using the
first property proved in 2, we get that ρ(x) v η(x), and so, ρ ≤ η.

? Application: Given S
def
= { ∅,] −∞, 0], {0}, [0,+∞[,Z }, we get the following closure

operator:

ρ(x)
def
=

∅ if x = ∅
{0} if x = {0}
]−∞, 0] if ∀v ∈ x : v ≤ 0 and ∃v ∈ x : v < 0

[0,+∞[if ∀v ∈ x : v ≥ 0 and ∃v ∈ x : v > 0

Z if ∃v ∈ x : v < 0 and ∃v ∈ x : v > 0

1

3. ? Let g
def
= clo(f)

def
= λx. lfpλy.xt f(y). We prove that it is an upper closure operator.

By definition, ∀x : g(x) = x t f(g(x)). Hence x v g(x) and g is extensive. If x v x′,
we have λy.x t f(y) ≤ λy.x′ t f(y). Using Tarski’s characterization of least fixpoints,
lfp f = u{x | f(x) v x } we deduce that lfpλy.x t f(y) v lfpλy.x′ t f(y), hence g is
monotonic. Finally, g(g(x)) = lfpλy.g(x)tf(y). On the one hand, as g(x) = xtf(g(x)),
we have g(x) = g(x)tf(g(x)), so g(x) is a fixpoint of λy.g(x)tf(y); on the other hand,
its least fixpoint is greater than g(x), hence, it is g(x) and we have g(g(x)) = g(x), i.e.,
g is idempotent.
Assume that h is an upper closure operator greater than f . Then ∀x : x v h(x);
moreover, ∀x : f(x) v h(x) and so f(h(x)) v h(h(x)) = h(x), hence xt f(h(x)) v h(x).
Thus, h(x) is a post-fixpoint of the function λy.x t f(y), and so it is greater than its
least fixpoint g(x), i.e., g ≤ h.

? Application: f is monotonic, extensive, but not idempotent as f({−1 }) =]−∞, 0] and
f(] −∞, 0]) = Z, so, it is not an upper closure operator. clo(f) is the following upper
closure:

ρ(x) =

∅ if x = ∅
[0,+∞[if ∀v ∈ x : v ≥ 0

Z if ∃v ∈ x : v < 0

whose fixpoints are ρ(X) = { ∅, [0,+∞[,Z }.

4. ? mon(X) ordered by ≤ forms a complete lattice: (mon(X),≤,∨,∧, λx.⊥, λx.>), where

the join and meet are point-wise: ∨F def
= λx. t { f(x) | f ∈ F } and ∧F def

=
λx. u { f(x) | f ∈ F }. By 3, clo is an upper closure operator on mon(X), whose
fixpoints are exactly the upper closure operators on X. We can thus apply 1 to get
the desired property. By 1, ⊥uco = clo(λx.⊥) = λx.x, >uco = clo(λx.>) = λx.>,
∨uco F = clo(∨F), ∧uco F = ∧.

? Application:

(ρ1 ∨uco ρ2)(X) = { ∅,Z }
(ρ1 ∧uco ρ2)(X) = { ∅, {0},]−∞, 0] ∩ (2Z),]−∞, 0] ∩ (2Z + 1),]−∞, 0],

[0,+∞[∩(2Z), [0,+∞[∩(2Z + 1), [0,+∞[, 2Z, 2Z + 1, Z }

5. ? We simply use the closures from question 4. Note that (ρ2 ◦ ρ1)({0}) = ρ2({0}) = 2Z,
but (ρ2 ◦ ρ1)(2Z) = ρ2(Z) = Z 6= 2Z, hence ρ2 ◦ ρ1 is not idempotent and it is not an
upper closure operator.

? Recall that ρ1 ∨uco ρ2 = clo(ρ1 ∨ ρ2). As ρ1 ≤ ρ1 ∨ ρ2, we have ρ1 ≤ ρ1 ∨uco ρ2 and,
likewise, ρ2 ≤ ρ1 ∨uco ρ2. Hence, by composition ρ1 ◦ ρ2 ≤ (ρ1 ∨uco ρ2) ◦ (ρ1 ∨uco ρ2) and,
by indempotence, ρ1 ◦ρ2 ≤ ρ1∨uco ρ2. Finally, clo(ρ1 ◦ρ2) ≤ clo(ρ1∨uco ρ2) = ρ1∨uco ρ2.
To prove the converse inequality, we first note that ρ1 ≤ ρ1 ◦ ρ2 by extensivity of ρ2 and
monotony of ρ1. Moreover, ρ2 ≤ ρ1 ◦ ρ2 by extensivity of ρ1. Hence, ρ1 ∨ ρ2 ≤ ρ1 ◦ ρ2,
and so, ρ1 ∨uco ρ2 ≤ clo(ρ1 ◦ ρ2).

Historical notes: Upper closures operators provide an alternative to Galois connections to define
and study abstractions. We saw in the course that, for any Galois connection (α, γ), γ ◦ α is
an upper closure operator. Conversely, every upper closure operator ρ : X → X provides a Ga-
lois insersion (ρ, λx.x) between X and ρ(X). With upper closure operators, we see the abstract
domain as a subset of the concrete domain: the subset of properties that can be exactly repre-
sented. This view is particularly useful when studying the semantic aspect of abstract domains,

2

their expressiveness, without considering their possible implementations as data-structures in
computers. The use of upper closure operators in static analysis has been introduced as early
as 1978, in P. Cousot’s thesis, alongside Galois connections. The lattice of upper closure op-
erators as well as various closure transformers (such as completion, complementation, shell),
have been subsequently studied by R. Giacobazzi et al. (see for instance: A. Cortesi, G. Filé,
R. Giacobazzi, C. Palamidessi, and F Ranzato. Complementation in Abstract Interpretation.
In Proc. SAS’95, pp. 100–117, LNCS 983, Springer, 1995).

LK

Part II

1. ? For intervals and zones when n = 3 we choose, respectively:

Mintervals =

1 0 0
−1 0 0

0 1 0
0 −1 0
0 0 1
0 0 −1

 Mzones =

1 0 0
−1 0 0

0 1 0
0 −1 0
0 0 1
0 0 −1
1 −1 0
−1 1 0

1 0 −1
−1 0 1

0 1 −1
0 −1 1

2. We write the matrix M as a (transposed) row of m column vectors M = [~M1 · · · ~Mm]T .

Given a set X ⊆ Rn, its best abstraction is a vector α(X) = [β1 · · · βn]T such that
βi = max { ~Mi · ~x | ~x ∈ X }.
We now prove that (α, γ) forms a Galois connection:

α(X) ≤ ~β

⇐⇒ ∀i : max { ~Mi · ~x | ~x ∈ X } ≤ βi
⇐⇒ ∀i, ~x ∈ X : ~Mi · ~x ≤ βi
⇐⇒ ∀~x ∈ X : ~x ∈ γ(~β)

⇐⇒ X ⊆ γ(~β)

3. ? Consider, in two dimensions, n = 2, m = 3, M
def
=

 1 0
0 1
1 1

 and the set of points

X
def
= { (x, y) | x, y ≤ 0 }. Then, γ([0 0 1]T) = γ([0 0 0]T) = X.

? By property of Galois connections, we know that α ◦ γ gives a normal form: α(γ(~β)) is
the smallest element in D] with the same concretization as ~β. We apply the definition
of α from 2, and note that β′i

def
= max { ~Mi · ~x | ~x ∈ γ(~β) } can be computed with

3

linear programming: β′i = LP (〈M, ~β〉, ~Mi). On the preceding example, α(γ([0 0 1]T)) =
[0 0 0]T .

4. ? (~β ∪] ~β′)i = max (βi, β
′
i) is optimal (but not exact) when ~β and ~β′ are in normal form.

To prove the optimality, we use the Galois connection to express the optimal abstraction
of ∪ as: ~β ∪] ~β′ = α(γ(~β) ∪ γ(~β′)). Using the result of question 3, we get (~β ∪] ~β′)i =
max { ~Mi · ~x | ~x ∈ γ(~β) ∪ γ(~β′) } = max(max { ~Mi · ~x | ~x ∈ γ(~β) },max { ~Mi · ~x | ~x ∈
γ(~β′) }) = max (βi, β

′
i), where the last equality holds only if ~β and ~β′ are in normal form.

To show that it does not hold when they are not in normal form, consider the example
matrix from 3:

X1
def
= γ([0 1 2]T) = { (x, y) | x ≤ 0, y ≤ 1 }

X2
def
= γ([1 0 2]T) = { (x, y) | x ≤ 1, y ≤ 0 }

Then, γ([0 1 2]T ∪] [1 0 2]T) = γ([1 1 2]T) = { (x, y) | x ≤ 1, y ≤ 1 }, while the optimal
join is γ(α(X1 ∪X2)) = { (x, y) | x ≤ 1, y ≤ 1, x+ y ≤ 1 } = γ([1 1 1]T).
Finally, the fact that ∪] is not exact is a simple consequence of the fact that the abstract
domain can only represent convex sets, but the result of ∪ is not always convex.

? (~β ∩] ~β′)i = min (βi, β
′
i) is an exact abstraction of ∩. Indeed, we have:

γ(~β ∩] ~β′) = { ~x ∈ Rn |M~x ≤ min(~β, ~β′) }
= { ~x ∈ Rn |M~x ≤ ~β ∧M~x ≤ ~β′ }
= { ~x ∈ Rn |M~x ≤ ~β } ∩ { ~x ∈ Rn |M~x ≤ ~β′ }
= γ(~β) ∩ γ(~β′)

? For non-deterministic assignments ~Vk, let us note [β′1 · · · β′m]T = JVk ← ? K][β1 · · · βm]T .

We set ∀i : β′i
def
= βi if Mik = 0, and +∞ otherwise. The operator is optimal if ~β is in

normal form.
The proof of optimality is similar to that of the join ∪]: by Galois connection, the
optimal operator would give β′i

def
= max { ~Mi · ~y | ~x ∈ γ(~β), ~y = ~x[Vk 7→ v], v ∈ R },

which equals +∞ if Mik 6= 0, and max { ~Mi · ~x | ~x ∈ γ(~β) } = βi when in normal form
otherwise.
To see that it is not always exact, consider the following template: 1 0

−1 −1
−1 1

which can represent exactly the point (0, 0), but not the line { (x, 0) | x ∈ R } which is
the image of the point by x← ?.

? To handle affine tests and assignments, the simplest way is to reuse the operators from
the polyhedra domain. A template element ~β can be seen as a polyhedron 〈M, ~β〉 in
constraint form. We saw, in the course, exact abstract operators to perform affine tests
and assignments in the constraint representation. Let us denote the result polyhedron
〈N, ~δ〉; note that N and M may differ, so that the polyhedron is not necessarily in
the template domain. However, we can abstract it back in the template domain using
α. Computing α({ ~x | N~x ≤ ~δ }) consists in solving m linear programs: we state

∀i : β′i
def
= LP (〈N, ~δ〉, ~Mi)

Computing the best abstraction of an exact polyhedral operation results in an optimal
abstract operator in the template domain. Moreover, the operator is exact when the

4

affine expression tested or assigned has the form a0+
∑

i aiVi where [a1 . . . an]T matches

some template vector ~Mk.

5. We can extend any widening defined for the interval, zone, or octagon domain to a widen-
ing on template polyhedra. For instance, we extend the standard widening as follows:
(~β O ~β′)i

def
= βi if βi ≥ β′i, and +∞ otherwise. As (~β O ~β′)i ≥ max (βi, β

′
i), O overapprox-

imates the join and is thus sound. The termination stems form the fact that any growing
component is set to +∞, where it can grow no further.

Historical notes: The template abstract domain has been introduced in the last decade by Sankara-
narayanan et al. in order to extend the octagon domain to arbitrary linear relations while being
more efficient than polyhedra (see: S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable
analysis of linear systems using mathematical programming. In Proc. VMCAI’05, LNCS 3385,
Springer, 2005).

ILKJ

Part III

Question 1

The proof that Jwhile e ≥ 0 do {P } K is well-defined depends on the fact that JP K is a complete
∪−morphism. Hence, we prove simultaneously both properties by induction on the syntax of P .
? When P is V ← ?, V ← e, or e ./ 0 ?, it stems directly from the definition that:

JP KE = ∪ { JP K({ ρ }) | ρ ∈ E }

which proves that JP K is a complete ∪−morphism.
? If f and g are complete ∪−morphisms, then so are their composition f ◦g and their pointwise

union λx.(f(x)∪ g(x)). Assume by induction hypothesis that JP K, JP1 K, and JP2 K are com-
plete ∪−morphisms. We deduce that JP1;P2 K and J if e ≥ 0 then {P } K are also complete
∪−morphisms.

? Let f(R)
def
= R ∪ JP K(J e ≥ 0 ? KR). Assuming as above by induction hypothesis that JP K

is a complete ∪−morphism, then so is f . Moreover, E ⊆ f(E) and (P(E),⊆) is a complete
partial order. Hence, we can apply Kleene’s fixpoint theorem, which proves that lfpE f is
well-defined. By Kleene’s theorem, we also have lfpE f = ∪n∈N fn(E). As f is a complete
∪−morphism, so is every fn. This implies that λE.(lfpE f) is also a complete ∪−morphism,
and so is Jwhile e ≥ 0 do {P } K.

Question 2

1. If A ⊆ B, then f({a}) ⊆ A implies f({a}) ⊆ B, and so,
←−
f (A) ⊆

←−
f (B), which proves the

monotony. Moreover:

←−
f (∩i∈IBi) = { a | f({a}) ⊆ ∩i∈IBi }

= { a | ∧i∈I f({a}) ⊆ Bi }
= ∩i∈I { a | f({a}) ⊆ Bi }
= ∩i∈I

←−
f (Bi)

5

and so,
←−
f is a complete ∩−morphism. These two properties are true for any f , even if it

is neither strict, nor a ∪−morphism, nor even monotonic.

2. f and
←−
f are monotonic. It remains to prove that A ⊆

←−
f (B) ⇐⇒ f(A) ⊆ B.

A ⊆
←−
f (B)

⇐⇒ ∀a ∈ A : f({a}) ⊆ B { def. of ←−· }
⇐⇒ ∪a∈A f({a}) ⊆ B
⇐⇒ f(A) ⊆ B { complete ∪−morphism }

To prove that this does not necessarily hold when f is not a ∪−morphism, consider f

such that f({ a }) = f({ b }) = ∅, f({ a, b }) = { a, b }. Then { a, b } =
←−
f ({ a }), but

f({ a, b }) = { a, b } 6⊆ { a }.

3. If f is monotonic, then we have
←−−
f ◦ g ⊆ ←−g ◦

←−
f as:

a ∈
←−−
f ◦ g(B)

⇐⇒ (f ◦ g)({a}) ⊆ B { def. of ←−· }
=⇒ ∀b ∈ g({a}) : f({b}) ⊆ B {monotony of f }
⇐⇒ ∀b ∈ g({a}) : b ∈

←−
f (B) { def. of ←−· }

⇐⇒ g({a}) ⊆
←−
f (B)

⇐⇒ a ∈ (←−g ◦
←−
f)(B) { def. of ←−· }

If, moreover, f is a complete ∪−morphism, then (∀b ∈ g({a}) : f({b}) ⊆ B) =⇒ (f ◦
g)({a}) = ∪{ f({b}) | b ∈ g({a}) } ⊆ B, which proves the equality

←−−
f ◦ g = ←−g ◦

←−
f . These

properties are true even if g is not a complete ∪−morphism.

4. The property
←−−−−−−−−−−−−
λx.(f(x) ∪ g(x)) = λx.(

←−
f (x)∩←−g (x)) is always true, even if neither f nor g

is a complete ∪−morphism.

a ∈ (
←−−−
f ∪ g)(B)

⇐⇒ f({a}) ∪ g({a}) ⊆ B { def. of ←−· }
⇐⇒ f({a}) ⊆ B ∧ g({a}) ⊆ B
⇐⇒ a ∈

←−
f (B) ∧ a ∈ ←−g (B) { def. of ←−· }

⇐⇒ a ∈ (
←−
f ∩←−g)(B)

5. Let us note h(z)
def
= z∪f(z). As it is a complete ∪−morphism and any x is a pre-fixpoint

of h, we can apply Kleene’s fixpoint theorem. We note that each hi is also a complete
∪−morphism. Then:

6

lfpx h ⊆ y
⇐⇒ ∪i∈N hi(x) ⊆ y {Kleene’s theorem }
⇐⇒ ∀i ∈ N : hi(x) ⊆ y
⇐⇒ ∀i ∈ N : x ⊆

←−
hi(y) { property 2 }

⇐⇒ ∀i ∈ N : x ⊆
←−
h
i
(y) { property 3 }

⇐⇒ x ⊆ ∩i∈N
←−
h
i
(y)

⇐⇒ x ⊆ gfpy
←−
h {Kleene’s theorem }

i.e.,
←−−−−−−−
λx.(lfpx h) = λy.(gfpy

←−
h). We conclude using property 4 and the obvious fact that

←−−
λx.x = λx.x to get

←−
h =

←−−−−−−−−−
λx.(x ∪ f(x)) = λx.(

←−−−−
λy.(y)(x) ∩

←−
f (x)) = λx.(x ∩

←−
f (x)).

To show that
←−
f is not always strict, even if f is strict or a complete ∪−morphism, consider

the function f such that f(∅) = f({ a }) = ∅. Then,
←−
f (∅) = { a } 6= ∅.

Question 3

? The base cases
←−−−−−−
JV ← ? K,

←−−−−−−
JV ← e K, and

←−−−
J e ? K are solved by applying directly the definition of

←−· to the definition of J · K. The cases of loops, tests, and sequences are handled by structural
induction and by applying the results of the previous question.

1.
←−−−−−−
JV ← ? KE = { ρ | ∀v ∈ Q : ρ[V 7→ v] ∈ E }

2.
←−−−−−−−−−−−−−−−
JV ← a0 +

∑
i aiVi KE = { ρ | ρ[V 7→ a0 +

∑
i ai × ρ(Vi)] ∈ E }

3.
←−−−−−−−−−−−−−−−
J a0 +

∑
i aiVi ≥ 0 ? KE = E ∪ { ρ ∈ E | a0 +

∑
i ai × ρ(Vi) < 0 }

and←−−−−−−−−−−−−−−−
J a0 +

∑
i aiVi > 0 ? KE = E ∪ { ρ ∈ E | a0 +

∑
i ai × ρ(Vi) ≤ 0 }

4.
←−−−−−−−−−−−−−−−−
J if e ≥ 0 then {P } KE =

←−−−−−−
J e ≥ 0 ? K(

←−−
JP KE) ∩

←−−−−−−
J e < 0 ? KE

5.
←−−−−−−−−−−−−−−−−−
Jwhile e ≥ 0 do {P } KE = gfp←−−−−−

J e<0 ? KE
λR.(R ∩

←−−−−−−
J e ≥ 0 ? K(

←−−
JP KR)

? The fact that JP K(
←−−
JP KO) ⊆ O (correctness of

←−−
JP KO), and that if JP KI ⊆ O then I ⊆

←−−
JP KO

(maximality of
←−−
JP KO) is a direct consequence of the Galois connection P(E) −−−−→←−−−−

JP K

←−−
JP K

P(E)

proved in the previous question.

Question 4

? Let us note E′
def
=
←−−−−−−
JV ← ? KE = { ρ ∈ E | ∀v ∈ Q : ρ[V 7→ v] ∈ E }. We note that E′ ⊆ E:

by choosing v = ρ(V), ρ[V 7→ v] ∈ E reduces to ρ ∈ E.
We now prove that, if E is convex and closed, and E′ 6= ∅, then E′ = E. Assume that E′ 6= ∅
and, ad absurdum, that E′ (E, i.e., there exist ρ, ρ′ ∈ E such that ρ ∈ E′ but ρ′ /∈ E′.
Thus, ∃v′ ∈ E : ρ′[V 7→ v′] /∈ E. For any ε ∈ (0, 1], we now construct a point ρ′ε in E that
is at distance less than ε from ρ′[V 7→ v′]. We take ρ′ε on the segment between ρ′ ∈ E and

ρ[V 7→ Mε] ∈ E: ρ′ε
def
= (1 − αε)ρ′ + αερ[V 7→ Mε], for some well-chosen Mε and αε. More

precisely, we choose:

αε = ε/max { 1, |ρ(W)− ρ′(W)| |W 6= V }
Mε = ρ′(V) + (v′ − ρ′(V))/αε .

7

This implies ∀W 6= V :

|ρ′ε(W)− ρ′[V 7→ v′](W)| = |((1− αε)ρ′(W) + αερ(W))− ρ′(W)|
= αε|ρ(W)− ρ′(W)|
≤ ε .

Moreover:

|ρ′ε(V)− ρ′[V 7→ v′](V)| = |((1− αε)ρ′(V) + αεMε)− v′|
= |ρ′(V)− αερ′(V) + αερ

′(V) + v′ − ρ′(V)− v′|
= 0 .

So, we indeed have |ρ′ε − ρ′[V 7→ v′]|∞ ≤ ε. Finally, by convexity of E, we have ρ′ε ∈ E. We
can thus construct a sequence of points in E that converges to ρ′[V 7→ v′]. As E is closed,
this implies ρ′[V 7→ v′] ∈ E, and so, our hypothesis ρ′ /∈ E′ is false.

? We now prove the additional property: JV ← ? KE = E ⇐⇒ E =
←−−−−−−
JV ← ? KE, so that the

case
←−−−−−−
JV ← ? KE = E can be tested using a forward random assignment operator. Indeed, we

have by Galois connection E ⊆
←−−−−−−
JV ← ? KE ⇐⇒ JV ← ? KE ⊆ E. The proof is completed

by using the fact that E ⊆ JV ← ? KE, and
←−−−−−−
JV ← ? KE ⊆ E, which we just proved.

? As the forward random assignment is an exact operator on polyhedra, we can design the
following exact backward random assignment on the polyhedra domain:

←−−−−−−
JV ← ? K

]
P]

def
=

{
P] if JV ← ? K] P] =] P]

⊥] otherwise

Question 5

? Recall from question 3 that
←−−−−−−−−−−−−−−−
J a0 +

∑
i aiVi ≥ 0 ? KE = E ∪ { ρ ∈ E | a0 +

∑
i ai × ρ(Vi) < 0 },

hence, it is not convex in general and cannot be exactly represented as a convex polyhedra.

Consider, for instance
←−−−−−−
Jx ≥ 0 ? K{x | x = 1 } = {x | x < 0∨x = 1 }, which is not a polyhedron

while {x | x = 1 } is.

? We look for I such that JP KI ⊆ O. Recall from question 3 that
←−−
JP KO is the maximal such

I. By monotony of JP K, any I ′ ⊆
←−−
JP KO also satisfies JP KI ′ ⊆ O and so is acceptable.

In the abstract, given O] that under-approximates O: γ(O]) ⊆ O, and
←−−
JP K

]
that under-

approxiamtes
←−−
JP K: ∀X] : γ(

←−−
JP K

]
X]) ⊆

←−−
JP K(γ(X])), we deduce that γ(

←−−
JP K

]
O]) under-

approximates
←−−
JP K(γ(O])), and so JP K(γ(

←−−
JP K

]
O])) ⊆ JP K(

←−−
JP K(γ(O]))) ⊆ γ(O]) ⊆ O.

Hence, soundness here requires under-approximating operators.
? Given a set C of affine constraints representing a polyhedron γ(C) = { ρ | ∀c ∈ C :

ρ satisfies c }, and a constraint d
def
= a0 +

∑
i aiVi ≥ 0, we show that C \ {d} is a sound

abstraction of
←−−−
J d ? Kγ(C). Indeed, we have, by question 3, that

←−−−
J d ? Kγ(C) = γ(C) ∪ { ρ | ρ does not satisfy d } .

Consider ρ ∈ γ(C \ {d}). Then, either ρ satisfies d in addition to C \ {d} and then ρ ∈ γ(C),

or ρ does not satisfy d. In both cases, ρ ∈
←−−−
J d ? Kγ(C), so that γ(C \ {d}) ⊆

←−−−
J d ? Kγ(C), which

proves the soundness.

8

? We note that
←−−−−−−−−−−−−−−−
J a0 +

∑
i aiVi ≥ 0 ? Kγ(C) ⊆

←−−−−−−−−−−−−−−−
J a0 +

∑
i aiVi > 0 ? Kγ(C), hence γ(C \ {a0 +∑

i aiVi ≥ 0}) is also a sound approximation of
←−−−−−−−−−−−−−−−
J a0 +

∑
i aiVi > 0 ? Kγ(C).

? Assume now that the constraint e ∈ C is redundant with d, i.e., e 6= d but γ(C \ {e} ∪ {d}) =

γ(C). Then, in the concrete,
←−−−
J d ? Kγ(C) =

←−−−
J d ? Kγ(C\{e}∪{d}), so, we can abstract the former

as we would abstract the later. As the later is abstracted as (C \ {e} ∪ {d}) \ {d} = C \ {e},
this shows that we can remove any constraint redundant with d when computing

←−−−
J d ? K

]
C.

Question 6

Consider the assignment Vj ← a0
∑

i aiVi. As for the forward polyhedra assignment, we distin-
guish two cases: invertibles assignments and non-invertible assignments.
? Invertible case: aj 6= 0. We have, in the forward, JVj ← a0 +

∑
i aiVi KX = { ρ[Vj 7→ a0 +∑

i aiρ(Vi)] | ρ ∈ X }. By definition of the ←−· operator, we get:

←−−−−−−−−−−−−−
JVj ← a0

∑
i aiVi KX = { ρ | JVj ← a0 +

∑
i aiVi K {ρ} ∈ X }

= { ρ | ρ[Vj 7→ a0 +
∑

i aiρ(Vi)] ∈ X }
= { ρ[Vj 7→ (ρ(Vj)− a0 −

∑
i 6=j aiρ(Vi))/aj] | ρ ∈ X }

= JVj ← (Vj − a0 −
∑

i 6=j aiVi)/aj KX .

We note that the backward version an invertible assignment equals the forward version of the
inverse assignment. As the polyhedra abstract affine assignment is exact, we can use it to
implement an exact (hence sound) abstract backward assignment:

←−−−−−−−−−−−−−−−
JVj ← a0 +

∑
i aiVi K

]
P] = JVj ← (Vj − a0 −

∑
i 6=j aiVi)/aj K]P] .

? Non-invertible case: aj = 0. Recall from the course that:

JVj ← a0 +
∑

i aiVi K = J a0 +
∑

i aiVi − Vj = 0 ? K ◦ JVj ← ? K

Hence, by the question 2, we get:

←−−−−−−−−−−−−−−−
JVj ← a0 +

∑
i aiVi K =

←−−−−−−
JVj ← ? K ◦

←−−−−−−−−−−−−−−−−−−−
J a0 +

∑
i aiVi − Vj = 0 ? K

which can be abstracted as
←−−−−−−
JVj ← ? K

]
◦
←−−−−−−−−−−−−−−−−−−−
J a0 +

∑
i aiVi − Vj = 0 ? K

]
. We can thus reuse and

combine the sound abstractions of the random assignment from question 4 and the assertions
from question 5.

Question 7

? Recall that
←−−−−−−−−−−−−−−−−−
Jwhile e ≥ 0 do {P } KE = gfp←−−−−−

J e<0 ? KE
λR.(R ∩

←−−−−−−
J e ≥ 0 ? K(

←−−
JP KR)). To com-

pute an abstract under-approximation of this fixpoint in the polyhedra domain, we assume
first that we have constructed a sound abstract under-approximation F] of F (R) = R ∩
←−−−−−−
J e ≥ 0 ? K(

←−−
JP KR), and an abstract under-approximation X] of

←−−−−−−
J e < 0 ? KE, for instance by us-

ing the previous questions. We then construct the iteration X]
0

def
= X], X]

n+1 = X]
nOF](X

]
n).

By the second part of the definition of O, this iteration stabilizes in finite time. Let us denote
i this stable iterate: we have X]

i = X]
i OF

](X]
i). Using the first part of the definition of O, we

have γ(X]
i) = γ(X]

iOF
](X]

i)) ⊆ γ(X]
i)∩γ(F](X]

i)). In particular, γ(X]
i) ⊆ γ(F](X]

i)) and, by

soundness of F], γ(X]
i) ⊆ F (γ(X]

i)); hence, γ(X]
i) is a pre-fixpoint of F . We also have, by in-

duction on the number of iterations, γ(X]
i) ⊆ γ(X]

i−1) ⊆ · · · ⊆ γ(X]
0) = γ(X]) ⊆

←−−−−−−
J e < 0 ? KE.

9

By Tarksi’s characterization of greatest fixpoints (i.e., gfpx F is the largest pre-fixpoint of

F smaller than x) we deduce that γ(X]
i) ⊆ gfp←−−−−−

J e<0 ? KE
F , hence, it is a sound under-

approximation.
? Given two polyhedra γ(G1) and γ(G2) given as sets of generators G1, G2, we propose the

following lower widening: G1 OG2 = { g ∈ G1 | γ(G2 ∪ {g}) = γ(G2) }, i.e., we only keep the
generators of G1 that are already included in the polyhedron γ(G2). As G1 OG2 is a subset
of the generators of G1, we have γ(G1 O G2) ⊆ γ(G1). As G1 O G2 contains only generators
included in the polyhedron γ(G2), we also have γ(G1 OG2) ⊆ γ(G2). Moreover, as the set of
generators in a sequence with lower widening is finite and decreases, the sequence necessarily
stabilizes in finite time.

Historical notes: There is not much work on abstract operators for under-approximations. Most
works focus on over-approximations, and so, are suitable for invariant analysis as well as neces-
sary condition inference, but not sufficient condition inference. This problem was inspired by the
article: A. Miné. Backward under-approximations in numeric abstract domains to automatically
infer sufficient program conditions. In SCP, 33 pages, Oct. 2013, Elsevier.

JILKJI

10

