
Static Analysis of Concurrent Programs
MPRI 2–6: Abstract Interpretation,

application to verification and static analysis

Antoine Miné

Year 2017–2018

Course 8
8 November 2017

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 1 / 92

Introduction

Concurrent programming

Idea:

Decompose a program into a set of (loosely) interacting processes.

Why concurrent programs?

exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over”
change in Moore’s law (×2 transistors every 2 years)

exploit several computers
(distributed computing)

ease of programming
(GUI, network code, reactive programs)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 2 / 92

Introduction

Models of concurrent programs

Many models:

process calculi: CSP, π−calculus, join calculus

message passing

shared memory (threads)

transactional memory

combination of several models

Example implementations:

C, C++ with a thread library (POSIX threads, Win32)

C, C++ with a message library (MPI, OpenMP)

Java (native threading API)

Erlang (based on π−calculus)

JoCaml (OCaml + join calculus)

processor-level (interrupts, test-and-set instructions)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 3 / 92

Introduction

Scope

In this course: static thread model

implicit communication through shared memory

explicit communication through synchronisation primitives

fixed number of threads (no dynamic creation of threads)

numeric programs (real-valued variables)

Goal: static analysis

infer numeric program invariants

parametrized by a choice of numeric abstract domains

discover run-time errors (e.g., division by 0)

discover data-races (unprotected accesses by concurrent threads)

discover deadlocks (some threads block each other indefinitely)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 4 / 92

Introduction

Outline

From sequential to concurrent abstract interpreters

alternate sequential semantics
(denotational semantics with errors)

interleaving concurrent semantics

(non-relational) interference-based analysis

robustness against weakly consistent memory models

synchronization: data-races, locks and deadlocks

Abstract rely-guarantee

rely-guarantee proof method

complete modular concrete semantics

relational interference abstractions

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 5 / 92

Introduction

Simple structured numeric language

finite set of (toplevel) threads: prog1 to progn

finite set of numeric program variables V ∈ V

finite set of statement locations ` ∈ L
finite set of potential error locations ω ∈ Ω

Structured language syntax

parprog ::= `prog1
` || . . . || `progn` (parallel composition)

`prog` ::= `V ← exp` (assignment)

| `if exp ./ 0 then `prog` fi` (conditional)

| `while `exp ./ 0 do `prog` done` (loop)

| `prog; `prog` (sequence)

exp ::= V | [c1, c2] | − exp | exp �ω exp

c1, c2 ∈ R ∪ {+∞,−∞}, � ∈ {+,−,×, / }, ./∈ {=, <, . . . }

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 6 / 92

From sequential to concurrent semantics

From sequential to concurrent semantics

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 7 / 92

From sequential to concurrent semantics Sequential semantics

Sequential semantics

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 8 / 92

From sequential to concurrent semantics Sequential semantics

Reminder: transition systems

Transition system: (Σ, τ, I)

Σ: set of program states

τ ⊆ Σ× Σ: transition relation
we note (σ, σ′) ∈ τ as σ →τ σ

′

I ⊆ Σ: set of initial states

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 9 / 92

From sequential to concurrent semantics Sequential semantics

Reminder: traces of a transition system

Maximal trace semantics: M∞ ∈ P(Σ∞)

Set of total executions σ0, . . . , σn, . . .

starting in an initial state σ0 ∈ I and either

ending in a blocking state in B def
= {σ | ∀σ′:σ 6→τ σ

′ }
or infinite

M∞
def
= {σ0, . . . , σn |σ0 ∈ I ∧ σn ∈ B ∧ ∀i < n:σi →τ σi+1 } ∪
{σ0, . . . , σn . . . |σ0 ∈ I ∧ ∀i < ω:σi →τ σi+1 }

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 10 / 92

From sequential to concurrent semantics Sequential semantics

Reminder: prefix trace abstraction

Finite prefix trace semantics: Tp ∈ P(Σ∗)

set of finite prefixes of executions:

Tp
def
= {σ0, . . . , σn | n ≥ 0, σ0 ∈ I, ∀i < n:σi →τ σi+1 }

Tp is an abstraction of the maximal trace semantics

Tp = α∗�(M∞) where α∗�(X)
def
= { t ∈ Σ∗ | ∃u ∈ X : t � u }

can prove safety properties

cannot prove termination nor inevitability

fixpoint characterisation: Tp = lfpFp where

Fp(X) = I ∪ {σ0, . . . , σn+1 |σ0, . . . , σn ∈ X ∧ σn →τ σn+1 }

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 11 / 92

From sequential to concurrent semantics Sequential semantics

Reminder: reachable state abstraction

Reachable state semantics: R ∈ P(Σ)

set of states reachable in any execution:
R def

= {σ | ∃n ≥ 0, σ0, . . . , σn:σ0 ∈ I, ∀i < n:σi →τ σi+1 ∧ σ = σn }

R is an abstraction of the finite trace semantics: R = αp(Tp)

where αp(X)
def
= {σ | ∃σ0, . . . , σn ∈ X :σ = σn }

R can prove state safety properties: R ⊆ S
(executions stay in S)

R cannot prove ordering, termination, inevitability properties

fixpoint characterisation: R = lfpFR where

FR(X) = I ∪ {σ | ∃σ′ ∈ X :σ′ →τ σ }

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 12 / 92

From sequential to concurrent semantics Sequential semantics

States of a sequential program, with errors

Simple sequential numeric programs: parprog ::= `iprog`
x
.

Program states: Σ
def
= (L × E) ∪ Ω

a control state in L, and

either a memory state: an environment in E def
= V→ R

or an error state, in Ω

Initial states:

start at the first control point `i with variables set to 0:

I def
= { (`i , λV .0) }

Note that P(Σ) ' (L → P(E))× P(Ω):

a state property in P(E) at each program point in L
and a set of errors in P(Ω)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 13 / 92

From sequential to concurrent semantics Sequential semantics

Expression semantics with errors

Expression semantics: EJ exp K : E → (P(R)× P(Ω))

EJV K ρ def
= 〈 { ρ(V) }, ∅ 〉

EJ [c1, c2] K ρ def
= 〈 { x ∈ R | c1 ≤ x ≤ c2 }, ∅ 〉

EJ−e K ρ def
= let 〈V , O 〉 = EJ e K ρ in

〈 {−v | ∈ V }, O 〉

EJ e1 �ω e2 K ρ def
= let 〈V1, O1 〉 = EJ e1 K ρ in

let 〈V2, O2 〉 = EJ e2 K ρ in
〈 { v1 � v2 | vi ∈ Vi , � 6= / ∨ v2 6= 0 },
O1 ∪ O2 ∪ {ω if � = / ∧ 0 ∈ V2 } 〉

defined by structural induction on the syntax

evaluates in an environment ρ to a set of values

also returns a set of accumulated errors
(here, only divisions by zero)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 14 / 92

From sequential to concurrent semantics Sequential semantics

Reminders: semantics in equational form

Principle: (without handling errors in Ω)

see lfp f as the least solution of an equation x = f (x)
partition states by control: P(L × E) ' L → P(E)
X` ∈ P(E): invariant at ` ∈ L
∀` ∈ L:X`

def
= {m ∈ E | (`,m) ∈ R}

=⇒ set of (recursive) equations on X`

Example:
`1
i ← 2;

`2
n← [−∞,+∞];

`3
while `4

i < n do
`5
if [0, 1] = 0 then

`6
i ← i + 1

fi
`7
done

`8

X1 = I
X2 = CJ i ← 2 KX1

X3 = CJ n← [−∞,+∞] KX2

X4 = X3 ∪ X7

X5 = CJ i < n KX4

X6 = X5

X7 = X5 ∪ CJ i ← i + 1 KX6

X8 = CJ i ≥ n KX4

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 15 / 92

From sequential to concurrent semantics Sequential semantics

Semantics in denotational form

Input-output function CJ prog K

CJ prog K : (P(E)× P(Ω))→ (P(E)× P(Ω))

CJX ← e K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ[X 7→ v] | v ∈ Vρ }, Oρ 〉

CJ e ./ 0? K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ | ∃v ∈ Vρ: v ./ 0 }, Oρ 〉

where 〈Vρ, Oρ 〉
def
= EJ e K ρ

CJ if e ./ 0 then s fi KX def
= (CJ s K ◦ CJ e ./ 0? K)X t CJ e 6./ 0? KX

CJ while e ./ 0 do s done KX def
=

CJ e 6./ 0? K (lfpλY .X t (CJ s K ◦ CJ e ./ 0? K)Y)

CJ s1; s2 K def
= CJ s2 K ◦ CJ s1 K

mutate memory states in E , accumulate errors in Ω
(t is the element-wise ∪ in P(E)× P(Ω))

structured: nested loops yield nested fixpoints
big-step: forget information on intermediate locations `

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 16 / 92

From sequential to concurrent semantics Sequential semantics

Abstract semantics in denotational form

Extend a numeric abstract domain E] abstracting P(E)

to D] def
= E] × P(Ω).

C]J prog K : D] → D]

C]JX ← e K 〈R], O 〉 and C]J e ./ 0? K 〈R], O 〉 are given

C]J if e ./ 0 then s fi KX] def
=

(C]J s K ◦ C]J e ./ 0? K)X] t] C]J e 6./ 0? KX]

C]J while e ./ 0 do s done KX] def
=

C]J e 6./ 0? K (limλY].Y] O (X] t (C]J s K ◦ C]J e ./ 0? K)Y]))

C]J s1; s2 K def
= C]J s2 K ◦ C]J s1 K

the abstract interpreter mimicks an actual interpreter

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 17 / 92

From sequential to concurrent semantics Sequential semantics

Equational vs. denotational form

Equational:


X1 = >
X2 = F2(X1)
X3 = F3(X1)
X4 = F4(X3,X4)

Denotational:

i = 0;
while (i < nb)
{
 a[i] =12;
 i++;
}

CJ while c do b done KX def
=

CJ¬c? K (lfpλY .X ∪ CJ b? K (CJ c KY))

CJ if c then t fi KX def
=

CJ t K (CJ c? KX) ∪ CJ¬c? KX
. . .

linear memory in program length

flexible solving strategy
flexible context sensitivity

easy to adapt to concurrency,
using a product of CFG

linear memory in program depth

fixed iteration strategy
fixed context sensitivity
(follows the program structure)

no inductive definition of the product
=⇒ thread-modular analysis

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 18 / 92

From sequential to concurrent semantics Concurrent semantics

Concurrent semantics

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 19 / 92

From sequential to concurrent semantics Concurrent semantics

Multi-thread execution model

t1 t2

`1 while random do `4 while random do
`2 if x < y then `5 if y < 100 then
`3 x ← x + 1 `6 y ← y + [1,3]

Execution model:

finite number of threads

the memory is shared (x ,y)

each thread has its own program counter

execution interleaves steps from threads t1 and t2

(assignments and tests are assumed to be atomic)

=⇒ we have the global invariant 0 ≤ x ≤ y ≤ 102

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 20 / 92

From sequential to concurrent semantics Concurrent semantics

Labelled transition systems

Labelled transition system: (Σ,A, τ, I)

Σ: set of program states

A: set of actions

τ ⊆ Σ×A× Σ: transition relation
we note (σ, a, σ′) ∈ τ as σ

a→τ σ
′

I ⊆ Σ: set of initial states

Labelled traces: sequences of states interspersed with actions

denoted as σ0
a0→ σ1

a1→ · · ·σn
an→ σn+1

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 21 / 92

From sequential to concurrent semantics Concurrent semantics

From concurrent programs to labelled transition systems

Notations:

concurrent program:
parprog ::= `i1prog1

`x1 || · · · || `inprogn`
x
n

threads identifiers: T
def
= { 1, . . . , n }

Program states: Σ
def
= ((T→ L)× E) ∪ Ω

a control state L(t) ∈ L for each thread t ∈ T and

a single shared memory state ρ ∈ E
or an error state ω ∈ Ω

Initial states:

threads start at their first control point `it , variables are set to 0:

I def
= { (λt.`it , λV .0) }

Actions: thread identifiers: A def
= T

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 22 / 92

From sequential to concurrent semantics Concurrent semantics

From concurrent programs to labelled transition systems

Transition relation: τ ⊆ Σ×A× Σ

(L, ρ)
t→τ (L′, ρ′)

def⇐⇒ (L(t), ρ)→τ [progt]
(L′(t), ρ′) ∧

∀u 6= t: L(u) = L′(u)

(L, ρ)
t→τ ω

def⇐⇒ (L(t), ρ)→τ [progt]
ω

based on the transition relation of individual threads
seen as sequential processes progt :
τ [prog] ⊆ (L × E)× ((L × E) ∪ Ω)

choose a thread t to run
update ρ and L(t)
leave L(u) intact for u 6= t

(See course 3 for the full definition of τ [prog].)

each σ → σ′ in τ [progt] leads to many transitions in τ !

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 23 / 92

From sequential to concurrent semantics Concurrent semantics

Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

Blocking states: B def
= {σ | ∀σ′: ∀t:σ

t
6→τ σ

′ }

Maximal traces: M∞ (finite or infinite)

M∞
def
= {σ0

t0→ · · ·
tn−1→ σn | n ≥ 0 ∧ σ0 ∈ I ∧ σn ∈ B ∧ ∀i < n:σi

ti→τ σi+1 } ∪
{σ0

t0→ σ1 . . . | n ≥ 0 ∧ σ0 ∈ I ∧ ∀i < ω:σi
ti→τ σi+1 }

Finite prefix traces: Tp

Tp
def
= {σ0

t0→ · · · tn−1→ σn | n ≥ 0 ∧ σ0 ∈ I ∧ ∀i < n:σi
ti→τ σi+1 }

Fixpoint form: Tp = lfpFp where

Fp(X) = I ∪ {σ0
t0→ · · · tn→ σn+1 | n ≥ 0 ∧ σ0

t0→ · · ·
tn−1→ σn ∈ X ∧ σn

tn→τ σn+1 }

Abstraction: Tp = α∗�(M∞)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 24 / 92

From sequential to concurrent semantics Concurrent semantics

Fairness

Fairness conditions: avoid threads being denied to run

Given enabled(σ, t)
def⇐⇒ ∃σ′ ∈ Σ:σ

t→τ σ
′,

an infinite trace σ0
t0→ · · ·σn

tn→ · · · is:

weakly fair if ∀t ∈ T:
(∃i : ∀j ≥ i : enabled(σj , t)) =⇒ (∀i :∃j ≥ i : aj = t)
(no thread can be continuously enabled without running)

strongly fair if ∀t ∈ T:
(∀i : ∃j ≥ i : enabled(σj , t)) =⇒ (∀i : ∃j ≥ i : aj = t)
(no thread can be infinitely often enabled without running)

Proofs under fairness conditions given:

the maximal traces M∞ of a program

a property X to prove (as a set of traces)

the set F of all (weakly or strongly) fair and of finite traces

=⇒ prove M∞ ∩ F ⊆ X instead of M∞ ⊆ X

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 25 / 92

From sequential to concurrent semantics Concurrent semantics

Fairness (cont.)

Example: while x ≥ 0 do x ← x + 1 done || x ← −1

may not terminate without fairness

always terminates under weak and strong fairness

Finite prefix trace abstraction

M∞ ∩ F ⊆ X is abstracted into testing α∗�(M∞ ∩ F) ⊆ α∗�(X)

for all fairness conditions F , α∗�(M∞ ∩ F) = α∗�(M∞) = Tp
=⇒ fairness-dependent properties cannot be proved with finite prefixes only

In the following, we ignore fairness conditions.
(see [Cous85])

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 26 / 92

From sequential to concurrent semantics Concurrent semantics

Equational state semantics

State abstraction R: as before

R def
= {σ | ∃n ≥ 0, σ0

t0→ · · ·σn:σ0 ∈ I ∀i < n:σi
ti→τ σi+1 ∧ σ = σn }

R = αp(Tp) where αp(X)
def
= {σ | ∃n ≥ 0, σ0

t0→ · · ·σn ∈ X :σ = σn }

R = lfpFR where FR(X) = I ∪ {σ | ∃σ′ ∈ X , t ∈ T:σ′
t→τ σ }

Equational form: (without handling errors in Ω)

for each L ∈ T→ L, a variable XL with value in E
equations are derived from thread equations eq(progt) as:
XL1 =

⋃
t∈T{F (XL2 , . . . ,XLN) |

∃(X`1 = F (X`2 , . . . ,X`N)) ∈ eq(progt):
∀i ≤ N: Li (t) = `i , ∀u 6= t: Li (u) = L1(u) }

Join with ∪ equations from eq(progt) updating a single thread t ∈ T.

(See course 3 for the full definition of eq(prog).)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 27 / 92

From sequential to concurrent semantics Concurrent semantics

Equational state semantics (illustration)

× =

Product of control-flow graphs:

control state = tuple of program points
=⇒ combinatorial explosion of abstract states

transfer functions are duplicated

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 28 / 92

From sequential to concurrent semantics Concurrent semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 102

t1 t2

`1 while random do `4 while random do
`2 if x < y then `5 if y < 100 then
`3 x ← x + 1 `6 y ← y + [1,3]

Equation system:
X1,4 = I
X2,4 = X1,4 ∪ CJ x ≥ y KX2,4 ∪ CJ x ← x + 1 KX3,4

X3,4 = CJ x < y KX2,4

X1,5 = X1,4 ∪ CJ y ≥ 100 KX1,5 ∪ CJ y ← y + [1, 3] KX1,6

X2,5 = X1,5 ∪ CJ x ≥ y KX2,5 ∪ CJ x ← x + 1 KX3,5 ∪
X2,4 ∪ CJ y ≥ 100 KX2,5 ∪ CJ y ← y + [1, 3] KX2,6

X3,5 = CJ x < y KX2,5 ∪ X3,4 ∪ CJ y ≥ 100 KX3,5 ∪ CJ y ← y + [1, 3] KX3,6

X1,6 = CJ y < 100 KX1,5

X2,6 = X1,6 ∪ CJ x ≥ y KX2,6 ∪ CJ x ← x + 1 KX3,6 ∪ CJ y < 100 KX2,5

X3,6 = CJ x < y KX2,6 ∪ CJ y < 100 KX3,5

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 29 / 92

From sequential to concurrent semantics Concurrent semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 102

t1 t2

`1 while random do `4 while random do
`2 if x < y then `5 if y < 100 then
`3 x ← x + 1 `6 y ← y + [1,3]

Pros:

easy to construct

easy to further abstract in an abstract domain E]

Cons:

explosion of the number of variables and equations

explosion of the size of equations
=⇒ efficiency issues

the equation system does not reflect the program structure
(not defined by induction on the concurrent program)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 29 / 92

From sequential to concurrent semantics Concurrent semantics

Wish-list

We would like to:

keep information attached to syntactic program locations
(control points in L, not control point tuples in T→ L)

be able to abstract away control information
(precision/cost trade-off control)

avoid duplicating thread instructions

have a computation structure based on the program syntax
(denotational style)

Ideally: thread-modular denotational-style semantics

(analyze each thread independently by induction on its syntax)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 30 / 92

From sequential to concurrent semantics Simple interference semantics

Simple interference semantics

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 31 / 92

From sequential to concurrent semantics Simple interference semantics

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
 a[i] --;
 i++;
}

i = 0;
while (i < nb)
{
 a[i] ++;
 i++;
}

Principle:

analyze each thread in isolation

gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read

iterate until stabilization while widening interferences

=⇒ one more level of fixpoint iteration

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 32 / 92

From sequential to concurrent semantics Simple interference semantics

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
 a[i] --;
 i++;
}

i = 0;
while (i < nb)
{
 a[i] ++;
 i++;
}

Principle:

analyze each thread in isolation

gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read

iterate until stabilization while widening interferences

=⇒ one more level of fixpoint iteration

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 32 / 92

From sequential to concurrent semantics Simple interference semantics

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
 a[i] --;
 i++;
}

i = 0;
while (i < nb)
{
 a[i] ++;
 i++;
}

Principle:

analyze each thread in isolation

gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read

iterate until stabilization while widening interferences

=⇒ one more level of fixpoint iteration

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 32 / 92

From sequential to concurrent semantics Simple interference semantics

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
 a[i] --;
 i++;
}

i = 0;
while (i < nb)
{
 a[i] ++;
 i++;
}

... ...

▽ ▽

Principle:

analyze each thread in isolation

gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read

iterate until stabilization while widening interferences

=⇒ one more level of fixpoint iteration

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 32 / 92

From sequential to concurrent semantics Simple interference semantics

Example

t1

`1 while random do
`2 if x < y then
`3 x ← x + 1

t2

`4 while random do
`5 if y < 100 then
`6 y ← y + [1, 3]

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 33 / 92

From sequential to concurrent semantics Simple interference semantics

Example

t1

`1 while random do
`2 if x < y then
`3 x ← x + 1

t2

`4 while random do
`5 if y < 100 then
`6 y ← y + [1, 3]

Analysis of t1 in isolation

(1): x = y = 0
(2): x = y = 0
(3):⊥

X1 = I
X2 = X1 ∪ CJ x ← x + 1 KX3 ∪ CJ x ≥ y KX2

X3 = CJ x < y KX2

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 33 / 92

From sequential to concurrent semantics Simple interference semantics

Example

t1

`1 while random do
`2 if x < y then
`3 x ← x + 1

t2

`4 while random do
`5 if y < 100 then
`6 y ← y + [1, 3]

Analysis of t2 in isolation

(4): x = y = 0
(5): x = 0, y ∈ [0, 102]
(6): x = 0, y ∈ [0, 99]

X4 = I
X5 = X4 ∪ CJ y ← y + [1, 3] KX6 ∪ CJ y ≥ 100 KX5

X6 = CJ y < 100 KX5

output interferences: y ← [1, 102]

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 33 / 92

From sequential to concurrent semantics Simple interference semantics

Example

t1

`1 while random do
`2 if x < y then
`3 x ← x + 1

t2

`4 while random do
`5 if y < 100 then
`6 y ← y + [1, 3]

Re-analysis of t1 with interferences from t2

input interferences: y ← [1, 102]

(1): x = y = 0
(2): x ∈ [0, 102], y = 0
(3): x ∈ [0, 102], y = 0

X1 = I
X2 = X1a ∪ CJ x ← x + 1 KX3 ∪ CJ x ≥ (y | [1, 102]) KX2

X3 = CJ x < (y | [1, 102]) KX2

output interferences: x ← [1, 102]

subsequent re-analyses are identical (fixpoint reached)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 33 / 92

From sequential to concurrent semantics Simple interference semantics

Example

t1

`1 while random do
`2 if x < y then
`3 x ← x + 1

t2

`4 while random do
`5 if y < 100 then
`6 y ← y + [1, 3]

Derived abstract analysis:

similar to a sequential program analysis, but iterated
(can be parameterized by arbitrary abstract domains)

efficient (few reanalyses are required in practice)

interferences are non-relational and flow-insensitive
(limit inherited from the concrete semantics)

Limitation:
we get x , y ∈ [0, 102]; we don’t get that x ≤ y
simplistic view of thread interferences (volatile variables)

based on an incomplete concrete semantics!

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 33 / 92

From sequential to concurrent semantics Simple interference semantics

Denotational semantics with interferences

Interferences in I
def
= T× V× R

〈 t, X , v 〉 means: t can store the value v into the variable X

We define the analysis of a thread t
with respect to a set of interferences I ⊆ I.

Expressions with interference: for thread t

EtJ exp K : (E × P(I))→ (P(R)× P(Ω))

Apply interferences to read variables:

EtJX K 〈 ρ, I 〉 def
= 〈 { ρ(X) } ∪ { v | ∃u 6= t: 〈 u, X , v 〉 ∈ I }, ∅ 〉

Pass recursively I down to sub-expressions:

EtJ−e K 〈 ρ, I 〉 def
=

let 〈V , O 〉 = EtJ e K 〈 ρ, I 〉 in 〈 {−v | v ∈ V }, O 〉
. . .

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 34 / 92

From sequential to concurrent semantics Simple interference semantics

Denotational semantics with interferences (cont.)

Statements with interference: for thread t

CtJ prog K : (P(E)× P(Ω)× P(I))→ (P(E)× P(Ω)× P(I))

pass interferences to expressions

collect new interferences due to assignments

accumulate interferences from inner statements

CtJX ← e K 〈R, O, I 〉 def
=

〈 ∅, O, I 〉 t
⊔
ρ∈R 〈 { ρ[X 7→ v] | v ∈ Vρ }, Oρ, { 〈 t, X , v 〉 | v ∈ Vρ } 〉

CtJ s1; s2 K def
= CtJ s2 K ◦ CtJ s1 K

· · ·

noting 〈Vρ, Oρ 〉
def
= EtJ e K 〈 ρ, I 〉

t is now the element-wise ∪ in P(E)× P(Ω)× P(I)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 35 / 92

From sequential to concurrent semantics Simple interference semantics

Denotational semantics with interferences (cont.)

Program semantics: PJ parprog K ⊆ Ω

Given parprog ::= prog1 || · · · || progn, we compute:

PJ parprog K def
=
[
lfpλ〈O, I 〉.

⊔
t∈T [CtJ progt K 〈 E0, ∅, I 〉]Ω,I

]
Ω

each thread analysis starts in an initial environment set

E0
def
= {λV .0 }

[X]Ω,I projects X ∈ P(E)× P(Ω)× P(I) on P(Ω)× P(I)
and interferences and errors from all threads are joined
(the output environments are ignored)

PJ parprog K only outputs the set of possible run-time errors

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 36 / 92

From sequential to concurrent semantics Simple interference semantics

Interference abstraction

Abstract interferences I]

P(I)
def
= P(T× V× R) is abstracted as I]

def
= (T× V)→ R]

where R] abstracts P(R) (e.g. intervals)

Abstract semantics with interferences C]tJ s K

derived from C]J s K in a generic way:

Example: C]t JX ← e K 〈R], Ω, I] 〉

for each Y in e, get its interference Y]R =
⊔]
R { I

]〈 u, Y 〉 | u 6= t }

if Y]R 6= ⊥
]
R, replace Y in e with get〈Y , R] 〉 t]R Y]R

(where get(Y ,R]) extracts the abstract values in R] of a variable Y from
R] ∈ E])
compute 〈R]′, O′ 〉 = C]J e K 〈R], O 〉
enrich I]〈 t, X 〉 with get(X ,R]′)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 37 / 92

From sequential to concurrent semantics Simple interference semantics

Static analysis with interferences

Abstract analysis

P]J parprog K def
=[

limλ〈O, I] 〉.〈O, I] 〉O
⊔]

t∈T

[
C]tJ progt K 〈 E]0, ∅, I] 〉

]
Ω,I]

]
Ω

effective analysis by structural induction

termination ensured by a widening

parametrized by a choice of abstract domains R], E]

interferences are flow-insensitive and non-relational in R]

thread analysis remains flow-sensitive and relational in E]

(reminder: [X]Ω, [Y]Ω,I] keep only X ’s component in Ω, Y ’s components in Ω and I])

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 38 / 92

From sequential to concurrent semantics Path-based semantics

Path-based semantics

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 39 / 92

From sequential to concurrent semantics Path-based semantics

Control paths

atomic ::= X ← exp | exp ./ 0?

Control paths

π : prog→ P(atomic∗)

π(X ← e)
def
= {X ← e }

π(if e ./ 0 then s fi)
def
= ({ e ./ 0? } · π(s)) ∪ { e 6./ 0? }

π(while e ./ 0 do s done)
def
=
(⋃

i≥0({ e ./ 0? } · π(s))i
)
· { e 6./ 0? }

π(s1; s2)
def
= π(s1) · π(s2)

π(prog) is a (generally infinite) set of finite control paths

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 40 / 92

From sequential to concurrent semantics Path-based semantics

Path-based concrete semantics of sequential programs

Join-over-all-path semantics

�JP K : (P(E)× P(Ω))→ (P(E)× P(Ω)) P ⊆ atomic∗

�JP K〈R, O 〉 def
=

⊔
s1·...·sn∈P

(CJ sn K ◦ · · · ◦ CJ s1 K)〈R, O 〉

Semantic equivalence

CJ prog K = �Jπ(prog) K
(not true in the abstract)

Advantages:

easily extended to concurrent programs (path interleavings)

able to model program transformations (weak memory models)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 41 / 92

From sequential to concurrent semantics Path-based semantics

Path-based concrete semantics of concurrent programs

Concurrent control paths

π∗
def
= { interleavings of π(progt), t ∈ T }
= { p ∈ atomic∗ | ∀t ∈ T, proj t(p) ∈ π(progt) }

Interleaving program semantics

P∗J parprog K def
= [�Jπ∗ K〈 E0, ∅ 〉]Ω

(proj t(p) keeps only the atomic statement in p coming from thread t)

(' sequentially consistent executions [Lamport 79])

Issues:

too many paths to consider exhaustively
no induction structure to iterate on
=⇒ abstract as a denotational semantics
unrealistic assumptions on granularity and memory consistency

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 42 / 92

From sequential to concurrent semantics Path-based semantics

Soundness of the interference semantics

Soundness theorem

P∗J parprog K ⊆ PJ parprog K

Proof sketch:

define �tJP KX def
=

⊔
{CtJ s1; . . . ; sn K X | s1 · . . . · sn ∈ P },

then �tJπ(s) K = CtJ s K ;

given the interference fixpoint I ⊆ I from PJ parprog K ,

prove by recurrence on the length of p ∈ π∗ that:

∀t ∈ T,∀ρ ∈ [�J p K〈 E0, ∅ 〉]E ,
∃ρ′ ∈ [�tJ proj t(p) K〈 E0, ∅, I 〉]E such that
∀X ∈ V, ρ(X) = ρ′(X) or 〈 u, X , ρ(X) 〉 ∈ I for some u 6= t.

[�J p K〈 E0, ∅ 〉]Ω ⊆
⋃

t∈T [�tJ proj t(p) K〈 E0, ∅, I 〉]Ω

Note: sound but not complete

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 43 / 92

From sequential to concurrent semantics Weakly consistent memories

Weakly consistent memories

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 44 / 92

From sequential to concurrent semantics Weakly consistent memories

Issues with weak consistency

program written

F1 ← 1; F2 ← 1;
if F2 = 0 then if F1 = 0 then

S1 S2

fi fi

−→
program executed

if F2 = 0 then if F1 = 0 then

F1 ← 1; F2 ← 1;
S1 S2

fi fi

(simplified Dekker mutual exclusion algorithm)

S1 and S2 cannot execute simultaneously.

Not a sequentially consistent behavior!

Caused by:

write FIFOs, caches, distributed memory

hardware or compiler optimizations, transformations

. . .

behavior accepted by Java [Mans05]

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 45 / 92

From sequential to concurrent semantics Weakly consistent memories

Issues with weak consistency

program written

F1 ← 1; F2 ← 1;
if F2 = 0 then if F1 = 0 then

S1 S2

fi fi

−→
program executed

if F2 = 0 then if F1 = 0 then

F1 ← 1; F2 ← 1;
S1 S2

fi fi

(simplified Dekker mutual exclusion algorithm)

S1 and S2 can execute simultaneously.
Not a sequentially consistent behavior!

Caused by:

write FIFOs, caches, distributed memory

hardware or compiler optimizations, transformations

. . .

behavior accepted by Java [Mans05]

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 45 / 92

From sequential to concurrent semantics Weakly consistent memories

Hardware memory model example: TSO

buffer2

shared memory

x ← 1

y ← 12

x ← 5

x ← 10

x=0 y=99

x ← 1

y ← 12

x ← 5

x ← 10

buffer1

thread1 thread2

Total Store Ordering: model for intel x86

each thread writes to a FIFO queue

queues are flushed non-deterministically to the shared memory

a thread reads back from its queue if possible
and from shared memory otherwise

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 46 / 92

From sequential to concurrent semantics Weakly consistent memories

Out of thin air principle

original program

R1 ← X; R ← Y;

Y ← R1 X ← R2

−→
“optimized” program

Y ← 42;

R1 ← X; R2 ← Y;

Y ← R1 X ← R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 47 / 92

From sequential to concurrent semantics Weakly consistent memories

Out of thin air principle

original program

R1 ← X; R ← Y;

Y ← R1 X ← R2

−→
“optimized” program

Y ← 42;

R1 ← X; R2 ← Y;

Y ← R1 X ← R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 47 / 92

From sequential to concurrent semantics Weakly consistent memories

Atomicity and granularity

original program

X ← X + 1 X ← X + 1

−→
executed program

r1 ← X + 1 r2 ← X + 1
X ← r1 X ← r2

We assumed that assignments are atomic. . .

but that may not be the case

The second program admits more behaviors
e.g.: X = 1 at the end of the program

[Reyn04]

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 48 / 92

From sequential to concurrent semantics Weakly consistent memories

Atomicity and granularity

original program

X ← X + 1 X ← X + 1

−→
executed program

r1 ← X + 1 r2 ← X + 1
X ← r1 X ← r2

We assumed that assignments are atomic. . .
but that may not be the case

The second program admits more behaviors
e.g.: X = 1 at the end of the program

[Reyn04]

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 48 / 92

From sequential to concurrent semantics Weakly consistent memories

Path-based definition of weak consistency

Acceptable control path transformations: p q

only reduce interferences and errors

Reordering: X1 ← e1 · X2 ← e2 X2 ← e2 · X1 ← e1

(if X1 /∈ var(e2), X2 /∈ var(e1), and e1 does not stop the program)

Propagation: X ← e · s X ← e · s[e/X]
(if X /∈ var(e), var(e) are thread-local, and e is deterministic)

Factorization: s1 · . . . · sn X ← e · s1[X/e] · . . . · sn[X/e]
(if X is fresh, ∀i , var(e) ∩ lval(si) = ∅, and e has no error)

Decomposition: X ← e1 + e2 T ← e1 · X ← T + e2

(change of granularity)

. . .

but NOT:

“out-of-thin-air” writes: X ← e X ← 42 · X ← e

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 49 / 92

From sequential to concurrent semantics Weakly consistent memories

Soundness of the interference semantics

Interleaving semantics of transformed programs P′∗J parprog K

π′(s)
def
= { p | ∃p′ ∈ π(s): p′ ∗ p }

π′∗
def
= { interleavings of π′(progt), t ∈ T }

P′∗J parprog K def
= [�Jπ′∗ K〈 E0, ∅ 〉]Ω

Soundness theorem

P′∗J parprog K ⊆ PJ parprog K

=⇒ the interference semantics is sound
wrt. weakly consistent memories and changes of granularity

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 50 / 92

From sequential to concurrent semantics Locks

Locks

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 51 / 92

From sequential to concurrent semantics Locks

Scheduling

Synchronization primitives

prog ::= lock(m)
| unlock(m)

m ∈ M : finite set of non-recursive mutexes

Scheduling

mutexes ensure mutual exclusion
at each time, each mutex can be locked by a single thread

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 52 / 92

From sequential to concurrent semantics Locks

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

We use a refinement of the simple interference semantics
by partitioning wrt. an abstract local view of the scheduler C

E E × C, E] C→ E]

I
def
= T× V× R I

def
= T× C× V× R,

I]
def
= (T× V)→ R] I]

def
= (T× C× V)→ R]

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 53 / 92

From sequential to concurrent semantics Locks

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

lock(m) unlock(m)

p2

p1

Data-race effects

Across read / write not protected by a mutex.
Partition wrt. mutexes M ⊆ M held by the current thread t.

CtJX ← e K 〈 ρ, M, I 〉 adds { 〈 t, M, X , v 〉 | v ∈ EtJX K 〈 ρ, M, I 〉 } to I

EtJX K 〈 ρ, M, I 〉 =

{ ρ(X) } ∪ { v | 〈 t ′, M ′, X , v 〉 ∈ I , t 6= t ′, M ∩M ′ = ∅ }

Bonus: we get a data-race analysis for free!

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 53 / 92

From sequential to concurrent semantics Locks

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

Well-synchronized effects

last write before unlock affects first read after lock

partition interferences wrt. a protecting mutex m (and M)

CtJ unlock(m) K 〈 ρ, M, I 〉 stores ρ(X) into I

CtJ lock(m) K 〈 ρ, M, I 〉 imports values form I into ρ

imprecision: non-relational, largely flow-insensitive

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 53 / 92

From sequential to concurrent semantics Locks

Example analysis

abstract consumer/producer

N consumers N producers

while 0=0 do while 0=0 do

lock(m);`1 lock(m);

if X>0 then `2X←X-1 fi; X←X+1;

unlock(m); if X>100 then X←100 fi;
`3Y←X unlock(m)

done done

Assuming we have several (N) producers and consumers:

no data-race interference (proof of the absence of data-race)

well-synchronized interferences:
consumer : x ← [0, 99]
producer : x ← [1, 100]

=⇒ we get that x ∈ [0, 100]

(without locks, if N > 1, our concrete semantics cannot bound x!)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 54 / 92

From sequential to concurrent semantics Locks

Locks and priorities

priority-based critical sections

high thread low thread
L ← isLocked(m); lock(m);

if L = 0 then Z ← Y;

Y ← Y+1; Y ← 0;

yield() unlock(m)

Real-time scheduling

only the highest priority unblocked thread can run

lock and yield may block

yielding threads wake up non-deterministically
preempting lower-priority threads

explicit synchronisation enforces memory consistency
prevents data races

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 55 / 92

From sequential to concurrent semantics Locks

Locks and priorities

priority-based critical sections

high thread low thread
L ← isLocked(m); lock(m);

if L = 0 then Z ← Y;

Y ← Y+1; Y ← 0;

yield() unlock(m)

Partition interferences and environments wrt. scheduling state

partition wrt. mutexes tested with isLocked

X ← isLocked(m) creates two partitions

P0 where X = 0 and m is free
P1 where X = 1 and m is locked

P0 handled as if m where locked

blocking primitives merge P0 and P1 (lock, yield)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 55 / 92

From sequential to concurrent semantics Locks

Priority-based scheduling

yieldyield

yield

yield

priority

Analysis: refined transfer of interference based on priority

partition interferences wrt. thread and priority
support for manual priority change, and for priority ceiling protocol

higher priority processes inject state from yield into every point

lower priority processes inject data-race interferences into yield

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 56 / 92

From sequential to concurrent semantics Locks

Deadlock checking

t1 t2

lock(a) lock(a)
lock(c) lock(b)
unlock(c) unlock(a)
lock(b) lock(a)
unlock(b) unlock(a)

unlock(a) unlock(b)

t1

t1

a

t1

a,b

t2

t2

b

t2

b,a

a

ab

t2

 a a

b

t1

a,c c

During the analysis, gather:

all reachable mutex configurations: R ⊆ T× P(M)
lock instructions from these configurations R × M

Then, construct a blocking graph between lock instructions

((t,m), `) blocks ((t ′,m′), `′) if
t 6= t ′ and m ∩m′ = ∅ (configurations not in mutual exclusion)

` ∈ m′ (blocking lock)

A deadlock is a cycle in the blocking graph.
generalization to larger cycles, with more threads involved in a deadlock, is easy

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 57 / 92

From sequential to concurrent semantics Locks

Deadlock checking

t1 t2

lock(a) lock(a)
lock(c) lock(b)
unlock(c) unlock(a)
lock(b) lock(a)
unlock(b) unlock(a)

unlock(a) unlock(b)

lock(b) blocks

lock(a) blocks

lock(a) blocks

t1

t1

a

t1

a,b

t2

t2

b

t2

b,a

a

ab

t2

 a a

b

t1

a,c c

During the analysis, gather:

all reachable mutex configurations: R ⊆ T× P(M)
lock instructions from these configurations R × M

Then, construct a blocking graph between lock instructions

((t,m), `) blocks ((t ′,m′), `′) if
t 6= t ′ and m ∩m′ = ∅ (configurations not in mutual exclusion)

` ∈ m′ (blocking lock)

A deadlock is a cycle in the blocking graph.
generalization to larger cycles, with more threads involved in a deadlock, is easy

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 57 / 92

Abstract rely-guarantee

Abstract rely-guarantee

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 58 / 92

Abstract rely-guarantee Rely-guarantee proof method

Rely-guarantee proof method

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 59 / 92

Abstract rely-guarantee Rely-guarantee proof method

Reminder: Floyd–Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: {P} prog {Q}
annotate programs with logic assertions {P} prog {Q}
(if P holds before prog, then Q holds after prog)

check that {P}prog{Q} is derivable with the following rules
(the assertions are program invariants)

{P[e/X]}X ← e {P}
{P ∧ e ./ 0} s {Q} P ∧ e 6./ 0⇒ Q

{P} if e ./ 0 then s fi {Q}

{P} s1 {Q} {Q} s2 {R}
{P} s1; s2 {R}

{P ∧ e ./ 0} s {P}
{P} while e ./ 0 do s done {P ∧ e 6./ 0}

{P′} s {Q′} P ⇒ P′ Q′ ⇒ Q

{P} s {Q}

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 60 / 92

Abstract rely-guarantee Rely-guarantee proof method

Floyd–Hoare logic as abstract interpretation

Link with the equational state semantics: (X`)`∈L

Correspondence between `prog`
′

and {P} prog {Q}:
if P (resp. Q) models exactly the points in X` (resp. X`′)
then {P} prog {Q} is a derivable Hoare triple

if {P} prog {Q} is derivable, then X` |= P and X`′ |= Q
(all the points in X` (resp. X`′) satisfy P (resp. Q))

=⇒ X` provides the most precise Hoare assertions
in a constructive form

γ(X]`) provides (less precise) Hoare assertions
in a computable form

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 61 / 92

Abstract rely-guarantee Rely-guarantee proof method

Owicki–Gries proof method

Extension of Floyd–Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

{P1} s1 {Q1} {P2} s2 {Q2}
{P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}

This rule is not always sound!
e.g., we have {X = 0,Y = 0}X ← 1 {X = 1,Y = 0}

and {X = 0,Y = 0} if X = 0 then Y ← 1 fi {X = 0,Y = 1}
but not {X = 0,Y = 0}X ← 1 || if X = 0 then Y ← 1 fi {false}

=⇒ we need a side-condition to the rule:
{P1} s1 {Q1} and {P2} s2 {Q2} must not interfere

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 62 / 92

Abstract rely-guarantee Rely-guarantee proof method

Owicki–Gries proof method

Extension of Floyd–Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

{P1} s1 {Q1} {P2} s2 {Q2}
{P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}

This rule is not always sound!
e.g., we have {X = 0,Y = 0}X ← 1 {X = 1,Y = 0}

and {X = 0,Y = 0} if X = 0 then Y ← 1 fi {X = 0,Y = 1}
but not {X = 0,Y = 0}X ← 1 || if X = 0 then Y ← 1 fi {false}

=⇒ we need a side-condition to the rule:
{P1} s1 {Q1} and {P2} s2 {Q2} must not interfere

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 62 / 92

Abstract rely-guarantee Rely-guarantee proof method

Owicki–Gries proof method (cont.)

interference freedom

given proofs ∆1 and ∆2 of {P1} s1 {Q1} and {P2} s2 {Q2}

∆1 does not interfere with ∆2 if:
for any Φ appearing before a statement in ∆1

for any {P′2} s′2 {Q′2} appearing in ∆2

{Φ ∧ P′2} s′2 {Φ} holds
and moreover {Q1 ∧ P′2} s′2 {Q1}

i.e.: the assertions used to prove {P1} s1 {Q1} are stable by s2

e.g., {X = 0,Y ∈ [0, 1]}X ← 1 {X = 1,Y ∈ [0, 1]}
{X ∈ [0, 1],Y = 0} if X = 0 then Y ← 1 fi {X ∈ [0, 1],Y ∈ [0, 1]}

=⇒ {X = 0,Y = 0}X ← 1 || if X = 0 then Y ← 1 fi {X = 1,Y ∈ [0, 1]}

Summary:

pros: the invariants are local to threads

cons: the proof is not compositional
(proving one thread requires delving into the proof of other threads)

=⇒ not satisfactory

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 63 / 92

Abstract rely-guarantee Rely-guarantee proof method

Jones’ rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].

Rely-guarantee “quintuples”: R,G ` {P} prog {Q}
if P is true before prog is executed

and the effect of other threads is included in R (rely)

then Q is true after prog

and the effect of prog is included in G (guarantee)

where:

P and Q are assertions on states (in P(Σ))

R and G are assertions on transitions (in P(Σ×A× Σ))

The parallel composition rule becomes:

R ∨ G2,G1 ` {P1} s1 {Q1} R ∨ G1,G2 ` {P2} s2 {Q2}
R,G1 ∨ G2 ` {P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 64 / 92

Abstract rely-guarantee Rely-guarantee proof method

Rely-guarantee example

checking t1

`1 while random do

x unchanged

`2 if x < y then

y incremented

`3 x ← x+1

0 ≤ y ≤ 102

fi

done

`1 : x = y = 0
`2 : x , y ∈ [0, 102], x ≤ y
`3 : x ∈ [0, 101], y ∈ [1, 102], x < y

checking t2

y unchanged

`4 while random do

0 ≤ x ≤ y

`5 if y < 100 then
`6 y ← y + [1,3]

fi

done

at `4 : x = y = 0
at `5 : x , y ∈ [0, 102], x ≤ y
at `6 : x ∈ [0, 99], y ∈ [0, 99], x ≤ y

In this example:

guarantee exactly what is relied on (R1 = G1 and R2 = G2)

rely and guarantee are global assertions

Benefits of rely-guarantee:

invariants are still local to threads

checking a thread does not require looking at other threads,
only at an abstraction of their semantics

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 65 / 92

Abstract rely-guarantee Rely-guarantee proof method

Rely-guarantee example

checking t1

`1 while random do x unchanged
`2 if x < y then y incremented
`3 x ← x+1 0 ≤ y ≤ 102

fi

done

`1 : x = y = 0
`2 : x , y ∈ [0, 102], x ≤ y
`3 : x ∈ [0, 101], y ∈ [1, 102], x < y

checking t2

y unchanged `4 while random do

0 ≤ x ≤ y `5 if y < 100 then
`6 y ← y + [1,3]

fi

done

at `4 : x = y = 0
at `5 : x , y ∈ [0, 102], x ≤ y
at `6 : x ∈ [0, 99], y ∈ [0, 99], x ≤ y

In this example:

guarantee exactly what is relied on (R1 = G1 and R2 = G2)

rely and guarantee are global assertions

Benefits of rely-guarantee:

invariants are still local to threads

checking a thread does not require looking at other threads,
only at an abstraction of their semantics

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 65 / 92

Abstract rely-guarantee Rely-guarantee proof method

Auxiliary variables

Example

t1 t2

`1 x ← x + 1 `2 `3 x ← x + 1 `4

Goal: prove {x = 0} t1 || t2 {x = 2}.

we must rely on and guarantee that
each thread increments x exactly once!

Solution: auxiliary variables
do not change the semantics but store extra information:

past values of variables (history of the computation)

program counter of other threads (pct)

Example: for t1: {(pc2 = `3 ∧ x = 0) ∨ (pc2 = `4 ∧ x = 1)}
x ← x + 1

{(pc2 = `3 ∧ x = 1) ∨ (pc2 = `4 ∧ x = 2)}

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 66 / 92

Abstract rely-guarantee Rely-guarantee proof method

Auxiliary variables

Example

t1 t2

`1 x ← x + 1 `2 `3 x ← x + 1 `4

Goal: prove {x = 0} t1 || t2 {x = 2}.
we must rely on and guarantee that
each thread increments x exactly once!

Solution: auxiliary variables
do not change the semantics but store extra information:

past values of variables (history of the computation)

program counter of other threads (pct)

Example: for t1: {(pc2 = `3 ∧ x = 0) ∨ (pc2 = `4 ∧ x = 1)}
x ← x + 1

{(pc2 = `3 ∧ x = 1) ∨ (pc2 = `4 ∧ x = 2)}
Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 66 / 92

Abstract rely-guarantee Rely-guarantee as abstract interpretation

Rely-guarantee as abstract interpretation

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 67 / 92

Abstract rely-guarantee Rely-guarantee as abstract interpretation

Modularity: main idea

bThread

x = 0

while x<y

 x++;

/* bla bla */

a b b a

Main idea: separate execution steps

from the current thread a

found by analysis by induction on the syntax of a

from other threads b

given as parameter in the analysis of a
inferred during the analysis of b

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 68 / 92

Abstract rely-guarantee Rely-guarantee as abstract interpretation

Trace decomposition

a

a

a

b

a

b

bb

Reachable states projected on thread t: Rl(t)

attached to thread control point in L, not control state in T→ L
remember other thread’s control point as “auxiliary variables”
(required for completeness)

Rl(t)
def
= πt(R) ⊆ L× (V ∪ { pct′ | t 6= t ′ ∈ T })→ R

where πt(R)
def
= { 〈 L(t), ρ [∀t ′ 6= t: pct′ 7→ L(t ′)] 〉 | 〈 L, ρ 〉 ∈ R }

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 69 / 92

Abstract rely-guarantee Rely-guarantee as abstract interpretation

Trace decomposition

a

a

a

b

a

b

bb

Interferences generated by t: A(t) (' guarantees on transitions)

Extract the transitions with action t observed in Tp
(subset of the transition system, containing only transitions actually used in reachability)

A(t)
def
= αI(Tp)(t)

where αI(X)(t)
def
= { 〈σi , σi+1 〉 | ∃σ0

a1→ σ1 · · ·
an→ σn ∈ X : ai+1 = t }

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 69 / 92

Abstract rely-guarantee Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

bThread

x = 0

while x<y

 x++;

/* bla bla */

a b b a

Principle: express Rl(t) and A(t) directly, without computing Tp

States: Rl
Interleave:

transitions from the current thread t

transitions from interferences A by other threads

Rl(t) = lfpRt(A), where

Rt(Y)(X)
def
= πt(I) ∪ {πt(σ′) | ∃πt(σ) ∈ X :σ

t→τ σ′ } ∪
{πt(σ′) | ∃πt(σ) ∈ X : ∃t′ 6= t: 〈σ, σ′ 〉 ∈ Y (t′) }

=⇒ similar to reachability for a sequential program, up to A

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 70 / 92

Abstract rely-guarantee Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

a

a b b a

x = 0

while x<y

 x++;

/* bla bla */

Thread

Principle: express Rl(t) and A(t) directly, without computing Tp

Interferences: A

Collect transitions from a thread t and reachable states R:

A(t) = B(Rl)(t), where

B(Z)(t)
def
= { 〈σ, σ′ 〉 |πt(σ) ∈ Z(t) ∧ σ t→τ σ′ }

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 70 / 92

Abstract rely-guarantee Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

a

a b b a

x = 0

while x<y

 x++;

/* bla bla */

Thread

Principle: express Rl(t) and A(t) directly, without computing Tp

Recursive definition:

Rl(t) = lfpRt(A)

A(t) = B(Rl)(t)

=⇒ express the most precise solution as nested fixpoints:

Rl = lfpλZ .λt. lfpRt(B(Z))

Completeness: ∀t:Rl(t) ' R (πt is bijective thanks to auxiliary variables)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 70 / 92

Abstract rely-guarantee Rely-guarantee as abstract interpretation

Fixpoint form

Constructive fixpoint form:

Use Kleene’s iteration to construct fixpoints:

Rl = lfp H =
⊔

n∈N Hn(λt.∅)
in the pointwise powerset lattice

∏
t∈T {t} → P(Σt)

H(Z)(t) = lfp Rt(B(Z)) =
⋃

n∈N(Rt(B(Z)))n(∅)
in the powerset lattice P(Σt)

(similar to the sequential semantics of thread t in isolation)

=⇒ nested iterations

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 71 / 92

Abstract rely-guarantee Rely-guarantee as abstract interpretation

Abstract rely-guarantee

Suggested algorithm: nested iterations with acceleration

once abstract domains for states and interferences are chosen

start from Rl]0
def
= A]0

def
= λt.⊥]

while A]n is not stable

compute ∀t ∈ T:Rl]n+1(t)
def
= lfp R]t (A]n)

by iteration with widening O

(' separate analysis of each thread)

compute A]n+1
def
= A]n O B](Rl]n+1)

when A]n = A]n+1, return Rl]n

=⇒ thread-modular analysis
parameterized by abstract domains
able to easily reuse existing sequential analyses

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 72 / 92

Abstract rely-guarantee Thread-modular abstractions

Thread-modular abstractions

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 73 / 92

Abstract rely-guarantee Thread-modular abstractions

Flow-insensitive abstraction

Flow-insensitive abstraction:

reduce as much control information as possible

but keep flow-sensitivity on each thread’s control location

Local state abstraction: remove auxiliary variables

αnf
R (X)

def
= { (`, ρ|V) | (`, ρ) ∈ X } ∪ (X ∩ Ω)

Interference abstraction: remove all control state

αnf
A (Y)

def
= { (ρ, ρ′) | ∃L, L′ ∈ T→ L: ((L, ρ), (L′, ρ′)) ∈ Y }

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 74 / 92

Abstract rely-guarantee Thread-modular abstractions

Flow-insensitive abstraction (cont.)

Flow-insensitive fixpoint semantics: (omitting errors Ω)

We apply αnf
R and αnf

A to the nested fixpoint semantics.

Rlnf def
= lfpλZ .λt. lfpRnf

t(Bnf (Z)), where

Bnf (Z)(t)
def
= { (ρ, ρ′) | ∃`, `′ ∈ L: (`, ρ) ∈ Z(t) ∧ (`, ρ)→t (`′, ρ′) }

(extract interferences from reachable states)

Rnf
t (Y)(X)

def
= R loc

t (X) ∪ Anf
t (Y)(X) (interleave steps)

R loc
t (X)

def
= {(`it , λV .0)} ∪ { (`′, ρ′) | ∃(`, ρ) ∈ X : (`, ρ)→t (`′, ρ′) } (thread step)

Anf
t (Y)(X)

def
= { (`, ρ′) | ∃ρ, u 6= t: (`, ρ) ∈ X ∧ (ρ, ρ′) ∈ Y (u) } (interference step)

where →t is the transition relation for thread t alone: τ [progt]

Cost/precision trade-off:

less variables
=⇒ subsequent numeric abstractions are more efficient

sufficient to analyze our first example (slide 26)

insufficient to analyze x ← x + 1 || x ← x + 1 (slide 35)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 75 / 92

Abstract rely-guarantee Thread-modular abstractions

Retrieving the simple interference-based analysis

Cartesian abstraction: on interferences

forget the relations between variables
forget the relations between values before and after transitions
(input-output relationship)

only remember which variables are modified, and their value:

αnr
A (Y)

def
= λV .{ x ∈ V | ∃(ρ, ρ′) ∈ Y : ρ(V) 6= x ∧ ρ′(V) = x }

to apply interferences, we get, in the nested fixpoint form:

Anr
t (Y)(X)

def
=

{ (`, ρ[V 7→ v]) | (`, ρ) ∈ X ,V ∈ V, ∃u 6= t: v ∈ Y (u)(V) }
no modification on the state
(the analysis of each thread can still be relational)

=⇒ we get back our simple interference analysis!

Finally, use a numeric abstract domain α : P(V→ R)→ D]
(for interferences, V→ P(R) is abstracted as V→ D])

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 76 / 92

Abstract rely-guarantee Thread-modular abstractions

A note on unbounded threads

Extension: relax the finiteness constraint on T

there is still a finite syntactic set of threads Ts

some threads T∞ ⊆ Ts can have several instances

(possibly an unbounded number)

Flow-insensitive analysis:

local state and interference domains have finite dimensions
(Et and (L × E)× (L × E), as opposed to E and E × E)

all instances of a thread t ∈ Ts are isomorphic
=⇒ iterate the analysis on the finite set Ts (instead of T)

we must handle self-interferences for threads in T∞:

Anf
t (Y)(X)

def
=

{ (`, ρ′) | ∃ρ, u: (u 6= t∨ t ∈ T∞)∧ (`, ρ) ∈ X ∧ (ρ, ρ′) ∈ Y (u) }

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 77 / 92

Abstract rely-guarantee Thread-modular abstractions

From traces to thread-modular analyses

abstract states

(T× L)→ E]
abstract interferences

T→ E]
static analyzer

non-relational interferences

T→ P(E)

αE
OO

local states

(T× L)→ P(E)

αE

OO

flow-insensitive interferences

T→ P(E × E)

αnr
A

OO

rely-guarantee
(without aux. variables)

local states

Rl :
∏

t∈T {t} → P(Σt)

αnf
R

OO

interferences

A : T→ P(Σ× Σ)

αnf
A

OO

rely-guarantee
(with aux. variables)

πt

OO
αitf
OO

interleaved execution trace prefixes test
Tp ∈ P(Σ∗)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 78 / 92

Abstract rely-guarantee Thread-modular abstractions

Compare with sequential analyses

abstract states

L → E] static analyzer

states

R ∈ P(Σ)

αE

OO

reachability

execution trace prefixes

Tp ∈ P(Σ∗)

αp

OO

test

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 79 / 92

Abstract rely-guarantee Beyond simple interferences

Beyond simple interferences

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 80 / 92

Abstract rely-guarantee Beyond simple interferences

Weakly relational interferences

Clock thread

while Clock < 106 do

Clock ← Clock + 1;

...

done

Accumulator thread

while random do

Prec ← Clock;

...

delta ← Clock - Prec;

if random then x ← x + delta endif;

...

done

clock is a global, increasing clock

x accumulates periods of time

no overflow on Clock - Prec, nor x ← x + delta

To prove this we need relational abstractions of interferences
(keep input-output relationships)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 81 / 92

Abstract rely-guarantee Beyond simple interferences

Monotonicity abstraction

Abstraction:

map variables to 1 monotonic or > don’t know

αmono
A (Y)

def
= λV .if ∀〈 ρ, ρ′ 〉 ∈ Y : ρ(V) ≤ ρ′(V) then 1 else >

keep some input-output relationships

forgets all relations between variables

flow-insensitive

Inference and use

gather:

Amono(t)(V) =1⇐⇒
all assignments to V in t have the form V ← V + e, with e ≥ 0

use: combined with non-relational interferences

if ∀t:Amono(t)(V) =1
then any test with non-relational interference CJX ≤ (V | [a, b]) K
can be strengthened into CJX ≤ V K

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 82 / 92

Abstract rely-guarantee Beyond simple interferences

Relational invariant interferences

Abstraction: keep relations maintained by interferences

remove control state in interferences (αnf
A)

keep mutex state M (set of mutexes held)

forget input-output relationships

keep relationships between variables

αinv
A (Y)

def
= { 〈M, ρ 〉 | ∃ρ′: 〈 〈M, ρ 〉, 〈M, ρ′ 〉 〉 ∈ Y ∨ 〈 〈M, ρ′ 〉, 〈M, ρ 〉 〉 ∈ Y }

〈M, ρ 〉 ∈ αinv
A (Y) =⇒ 〈M, ρ 〉 ∈ αinv

A (Y) after any sequence of interferences from Y

Lock invariant:

{ ρ | ∃t ∈ T ,M: 〈M, ρ 〉 ∈ αinv
A (I(t)), m /∈ M }

property maintained outside code protected by m

possibly broken while m is locked

restored before unlocking m

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 83 / 92

Abstract rely-guarantee Beyond simple interferences

Relational lock invariants

t1

t2

lock unlock

lock unlock

Improved interferences: mixing simple interferences and lock invariants

apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

gather lock invariants for lock / unlock pairs

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 84 / 92

Abstract rely-guarantee Beyond simple interferences

Relational lock invariants

t1

t2

lock unlock

lock unlock

non−rel

Improved interferences: mixing simple interferences and lock invariants

apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

gather lock invariants for lock / unlock pairs

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 84 / 92

Abstract rely-guarantee Beyond simple interferences

Relational lock invariants

t1

t2

rel

lock unlock

lock unlock

Improved interferences: mixing simple interferences and lock invariants

apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

gather lock invariants for lock / unlock pairs

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 84 / 92

Abstract rely-guarantee Beyond simple interferences

Relational lock invariants

t1

t2

rel

lock unlock

lock unlock

non−rel

Improved interferences: mixing simple interferences and lock invariants

apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant

gather lock invariants for lock / unlock pairs

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 84 / 92

Abstract rely-guarantee Beyond simple interferences

Weakly relational interference example

analyzing t1

t1 t2

while random do x unchanged

lock(m); y incremented

if x < y then 0 ≤ y ≤ 102

x ← x + 1;

unlock(m)

analyzing t2

t1 t2

y unchanged while random do

0 ≤ x, x ≤ y lock(m);

if y < 100 then

y ← y + [1,3];

unlock(m)

Using all three interference abstractions:

non-relational interferences (0 ≤ y ≤ 102, 0 ≤ x)

lock invariants, with the octagon domain (x ≤ y)

monotonic interferences (y monotonic)

we can prove automatically that x ≤ y holds

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 85 / 92

Abstract rely-guarantee Beyond simple interferences

Subsequence interference

t1: clock in H

while random do

if H < 10,000 then

H ← H+1

t2: sample H into C

while random do

C ← H

t3: accumulate time in T

while random do

if random then T ← 0

else T ← T + (C-L)

L ← C

Problem: we wish to prove that T ≤ L ≤ C ≤ H

it is sufficient to prove the monotony of H, C , and L
but monotony is not transitive
X is only assigned monotonic variables 6=⇒ X is monotonic

=⇒ we infer an additional property implying monotony

Abstraction: subsequence
Asseq(t)(V) = {W ∈ V |V ’s values are a subsequence of W ’s values }

αsseq
R (X)(V)

def
= {W |

∀〈〈 `0, ρ0 〉, . . . , 〈 `n, ρn 〉〉 ∈ X : ∃i0, . . . , in:
∀k: ik ≤ k ∧ ik ≤ ik+1 ∧ ∀j : ρj (V) = ρij (W) }

based on a trace version of the modular semantics

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 86 / 92

Summary

Summary

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 87 / 92

Summary

Conclusion

We presented static analysis methods that are:

inspired from thread-modular proof methods

abstractions of complete concrete semantics
(for safety properties)

sound for all interleavings

sound for weakly consistent memory semantics
(when using non-relational, flow-insensitive interference abstraction)

aware of scheduling, priorities and synchronization

parametrized by abstract domains
(independent domains for state abstraction and interference abstraction)

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 88 / 92

Bibliography

Bibliography

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 89 / 92

Bibliography

Bibliography

[Bour93] F. Bourdoncle. Efficient chaotic iteration strategies with

widenings. In Proc. FMPA’93, LNCS vol. 735, pp. 128–141, Springer,

1993.

[Carr09] J.-L. Carré & C. Hymans. From single-thread to

multithreaded: An efficient static analysis algorithm. In

arXiv:0910.5833v1, EADS, 2009.

[Cous84] P. Cousot & R. Cousot. Invariance proof methods and

analysis techniques for parallel programs. In Automatic Program

Construction Techniques, chap. 12, pp. 243–271, Macmillan, 1984.

[Cous85] R. Cousot. Fondements des méthodes de preuve d’invariance

et de fatalité de programmes parallèles. In Thèse d’Etat es sc. math.,

INP Lorraine, Nancy, 1985.

[Hoar69] C. A. R. Hoare. An axiomatic basis for computer

programming. In Com. ACM, 12(10):576–580, 1969.

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 90 / 92

Bibliography

Bibliography (cont.)

[Jone81] C. B. Jones. Development methods for computer programs

including a notion of interference. In PhD thesis, Oxford University, 1981.

[Lamp77] L. Lamport. Proving the correctness of multiprocess

programs. In IEEE Trans. on Software Engineering, 3(2):125–143, 1977.

[Lamp78] L. Lamport. Time, clocks, and the ordering of events in a

distributed system. In Comm. ACM, 21(7):558–565, 1978.

[Mans05] J. Manson, B. Pugh & S. V. Adve. The Java memory

model. In Proc. POPL’05, pp. 378–391, ACM, 2005.

[Miné12] A. Miné. Static analysis of run-time errors in embedded

real-time parallel C programs. In LMCS 8(1:26), 63 p., arXiv, 2012.

[Owic76] S. Owicki & D. Gries. An axiomatic proof technique for

parallel programs I. In Acta Informatica, 6(4):319–340, 1976.

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 91 / 92

Bibliography

Bibliography (cont.)

[Reyn04] J. C. Reynolds. Toward a grainless semantics for

shared-variable concurrency. In Proc. FSTTCS’04, LNCS vol. 3328,

pp. 35–48, Springer, 2004.

[Sara07] V. A. Saraswat, R. Jagadeesan, M. M. Michael & C. von

Praun. A theory of memory models. In Proc. PPoPP’07, pp. 161–172,

ACM, 2007.

Course 8 Static Analysis of Concurrent Programs Antoine Miné p. 92 / 92

	Introduction
	From sequential to concurrent semantics
	Sequential semantics
	Concurrent semantics
	Simple interference semantics
	Path-based semantics
	Weakly consistent memories
	Locks

	Abstract rely-guarantee
	Rely-guarantee proof method
	Rely-guarantee as abstract interpretation
	Thread-modular abstractions
	Beyond simple interferences

	Summary
	Bibliography

