Shape analysis based on separation logic

MPRI — Cours 2.6 “Interprétation abstraite :
application a la vérification et a I'analyse statique”

Xavier Rival

INRIA

Oct, 25th, 2017

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

1/ 096

Overview of the lecture

How to reason about memory properties

Last lecture:

concrete and abstract memory models
abstractions for pointers and arrays

issues specific to the precise analysis of updates
an introduction to shape analysis with TVLA

Today: systematically avoid weak updates

a logic to describe properties of memory states
abstract domain

static analysis algorithms

combination with numerical domains

widening operators...

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

2/ 96

Weak update problems

x € [-10,-5]; y € [5,10]

1: intx p; .
2: if(2){ @ What is the final range for x 7
3: = &x; . .
4 }elsz{ * @ What is the final range for y 7
2 p=ty Abstract locations: {&x, &y, &p}
7: xp=0;
8: ...
ox by &p Imprecise results
1 [[-10,=5] | [5,10] T . .
2 | [-10,-5] | [5,10] T @ The abstract information about
3 | [-10,-5] | [5,10] T both x and y are weakened
4 | [-10,-5] | [5,10] {&x} .
5| [-10,-5] | [5,10] T @ The fact that x # y is lost
6 | [-10,-5] | [5,10] | {&y}
7| [-10,-5] | [5,10] | {&x, &y}
8| [-10,0] | [0,10] | {&x, &y}
Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 3 /96

@ An introduction to separation logic

© A shape abstract domain relying on separation
© Combination with a numerical domain
@ Standard static analysis algorithms

© Conclusion

@ Internships

An introduction to separation logic

Our model

Not all memory cell corresponds to a variable
@ a variable may correspond to several cells (structures...)

o dynamically allocated cells correspond to no variable at all...

Environment + Heap
o Addresses are values: Vyqqr CV
o Environments ¢ € E map variables into their addresses
o Heaps (£ € H) map addresses into values

E = X—= V.ar
H = Vi —V
f is actually only a partial function
e Memory states (or memories): M = E x H

Avoid confusion between heap (function from addresses to values) and
dynamic allocation space (often referred to as “heap”)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 5/ 96

An introduction to separation logic

Example of a concrete memory state (variables)

@ x and z are two list elements containing values 64 and 88, and where the

former points to the latter

@ y stores a pointer to z

Memory layout

(pointer values underlined) oy
address
&x =300| 64
304 | 312 h:
&y =308 | 312
&z = 312| 88
316 | 0x0

<

300
304
308
312
316

T 11X

TT LT

300
308
312

64
312
312
88

Xavier Rival (INRIA) Shape analysis based on separation logic

Oct, 25th, 2017

6 / 96

An introduction to separation logic

Example of a concrete memory state (variables + dyn. cell)

@ same configuration

@ + z points to a heap allocated list element (in purple)

Memory layout

address
&x = 300
304

&y = 308
&z = 312
316

508

512

Xavier Rival (INRIA)

e: X — 300
y — 308
04 Z — 312
312
312 h: 300 — 64
88 304 — 312
508 308 — 312
:| 312 — 88
% 316 ~— 508
512 — O
Shape analysis based on separation logic Oct, 25th, 2017

7 / 96

An introduction to separation logic

Separation logic principle: avoid weak updates

How to deal with weak updates ?
Avoid them !

Always materialize exactly the cell that needs be modified

@ Can be very costly to achieve, and not always feasible

Notion of property that holds over a memory region:
special separating conjunction operator *

@ Local reasoning:
powerful principle, which allows to consider only part of the memory

Separation logic has been used in many contexts, including manual
verification, static analysis, etc...

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 8 / 96

An introduction to separation logic

Separation logic

Several kinds of formulas:

@ pure formulas behave like formulas in first-order logic
i.e., are not attached to a memory region

@ spatial formulas describe properties attached to a memory region

Pure formulas denote value properties

e = n (neN) constants

| 1 l-value

| eoter binary operations
P = ey=e; |PPVP'|PAP”... pure predicates

Pure formulas semantics: y(P) CE x M

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

9 /96

An introduction to separation logic

Separation logic: points-to predicates
The next slides introduce the main separation logic formulas F ::= . ..

We start with the most basic predicate, that describes a single cell:

Points-to predicate

o Predicate:

Fui=...]lamv where a is an address and v is a value

o Concretization:

(e,;h) ev(1—v) ifandonlyif £ ={[[1](e, £) > v]

o Example:

F=4&x+— 18 &x =308 18

@ We also note 1 — e, as an |-value 1 denotes an address

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

10 / 96

An introduction to separation logic

Separation logic: separating conjunction

Merge of concrete heaps: let g, i1 € (Vaaar — V), such that
dom(fp) Ndom(hy) = (; then, we let fip ® Ay be defined by:
ho ® A1 : dom(fp) Udom(h)) — V
x € dom(fp) — fig(x)
X € dom(ﬁl) — ﬁl(X)

Separating conjunction

o Predicate:
FZ::...|F0>I<F1

o Concretization:
Y(Fo * F1) = {(e, o ® fu) | (e, fio) € ¥(Fo) A (e, i) € ¥(F1)}

Fo
Fo * F1 F
1

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

11 / 96

An introduction to separation logic

An example

Concrete memory layout
(pointer values underlined) 2° =

address y
z
&x =300 64

304 | 312 f: 300
&y = 308 | 312 i| 304
&z =312 88 308
316 | 0x0 312
316

300
308
312

RN

64
312
312
88

TTTTL

A formula that abstracts away the addresses:

&x — (64,&2z) * &y — &z * &z — (88,0)

Xavier Rival (INRIA) Shape analysis based on separation logic

Oct, 25th, 2017

12 / 96

An introduction to separation logic

Separation logic: non separating conjunction

We can also add the conventional conjunction operator, with its usual
concretization:
Non separating conjunction
o Predicate:
FZZ:...|F0/\F1
e Concretization:
v(Fo A F1) = v(Fo) N v(F1)

Exercise: describe and compare the concretizations of
@ &a — &b A &b — &a
@ &a > &b x &b — &a

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

13 / 96

An introduction to separation logic

Separating conjunction vs non separating conjunction

o Classical conjunction: properties for the same memory region

@ Separating conjunction: properties for disjoint memory regions

&a — &b A &b — &a &a — &b *x &b — &a
@ the same heap verifies &a — &b @ two separate sub-heaps
and &b — &a respectively satisfy &a — &b and
&b — &a

@ there can be only one cell

o thusa=b o thusa#b

@ Separating conjunction and non-separating conjunction have very different
properties

@ Both express very different properties
e.g., no ambiguity on weak / strong updates

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 14 / 96

An introduction to separation logic

Separating and non separating conjunction

Logic rules of the two conjunction operators of SL:

@ Separating conjunction:

(e,fo) € ¥(Fo) (e fn) € y(F1)
(e, ho ® 1) € v(Fo * F1)

o Non separating conjunction:

(ea ﬁ) € ’Y(FO) (ea ﬁ) € ’Y(Fl)
(e, h) € v(Fo AF1)

Reminiscent of Linear Logic [Girard87]:
resource aware / non resource aware conjunction operators

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

15 / 96

An introduction to separation logic

Separation logic: empty store

Empty store

o Predicate:
Fi=...|emp

@ Concretization:
v(emp) = {(¢,[]) | e € E} = E x {[|}

where [| denotes the empty store

@ emp is the neutral element for x
@ by contrast the neutral element for A is TRUE, with concretization:

v(TRUE) = E x H

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

16 / 96

An introduction to separation logic

Separation logic: other connectors

Disjunction:
@eF:=...|FpVF
@ concretization:
¥(Fo V F1) = v(Fo) U 7(F1)

Spatial implication (aka, magic wand):
o FZZ:...‘FO — Fy
@ concretization:

Y(Fo — F1) =
{(e, h) | Vho € H, (e, fo) € ¥(Fo) = (e, h @ ho) € ¥(F1)}

@ very powerful connector to describe structure segments,
used in complex SL proofs

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

17 / 96

An introduction to separation logic

Separation logic

Summary of the main separation logic constructions seen so far:

Separation logic main connectors

v(emp) =
~+(TRUE

)

)
Y1 v) =

)

)

(Fo x Fy
v(Fo A Fy

E x {[I}

E x H

{(e, [[1](e, 8) = v]) | e € E}

{(e, o ® 1) | (e, ho) € ¥(Fo) A (e, fn) € v(F1)}
7(Fo) N ¥(F1)

Concretization of pure formulas is standard

How does this help for program reasoning ?

Xavier Rival (INRIA)

Shape analysis based on separation logic Oct, 25th, 2017

18 / 96

An introduction to separation logic

Programs with pointers: syntax

Syntax extension: quite a few additional constructions

x = malloc(c) allocation of ¢ bytes
free(x) deallocation of the block pointed to by x

1 == l-values
| x (x € X)
|
| xe pointer dereference
| 1-f field read
e 1= expressions
| 1
|
| &l "address of" operator
s 1= statements
|
|
|

We do not consider pointer arithmetics here

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

19 / 96

An introduction to separation logic

Programs with pointers: semantics

Case of l-values:

[xl(e.8) = e(x)

_ a(Je]l(e, £)) if [e](e,) # O A [e](e, £) € Dom(£)
[xe](e. £) Q otherwise
[L-£](e,s) = [1](e,)+ offset(f) (numeric offset)

Case of expressions:

[11(e, £) = A([1](e,) [&1](e, £) = [1](e, #)

Case of statements:
e memory allocation x = malloc(c): (e, £) — (e, £’) where
i = hle(x) « k|W{k— vi,k+1— vieq1,...,k+c—1+ vgyc_1} and
k,...,k+c—1 arefreshin £
e memory deallocation free(x): (e, £) — (e, #’) where k = ¢(x) and
ﬁIﬁ/H'J{ki—) Vibk+1— Vk+1,...,k+C71I—)Vk+C_1}

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 20 / 96

An introduction to separation logic

Separation logic triple

Program proofs based on Hoare triples
o Notation: {F}p{F'} if and only if:
Vs,s' €S, sey(F)As € [p](s) = s’ € y(F)
@ Application: formalize proofs of programs

A few rules (straightforward proofs):

Fo = F} {Fo}p{F}} Fil—F;
{Fo}b{F1}
{&x =7}z == e{&x > e}
x does not appear in F
{&x —? % F}x = e{&x > e x F}

consequence

mutation

mutation-2

(we assume that e does not allocate memory)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

21/ 96

An introduction to separation logic

The frame rule

What about the resemblance between rules “mutation” and “mutation-2" ?

Theorem: the frame rule
{Fo}b{F1} freevar(F) Nwrite(b) =
{Fo * F}b{Fl * F}

frame

@ Proof by induction on the logical rules on program statements, i.e.,
essentially a large case analysis
(see biblio for a more complete set of rules)

@ Rules are proved by case analysis on the program syntax

The frame rule allows to reason locally about programs

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

22 / 96

An introduction to separation logic

Application of the frame rule

A program with intermittent invariants, derived using the frame rule, since
each step impacts a disjoint region:

inti;
int x x;
int * y;
{&1 =7 % &x =7 % &y —7}
x = &i;
{&1 =7 % &x — &1 % &y —7}
y = &i;
{&1 =7 % &x > &i * &y > &i}
*x = 42;
{8 > 42 % &x > &i * &y — &i}

Many other program proofs done using separation logic
e.g., verification of the Deutsch-Shorr-Waite algorithm (biblio)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 23 / 96

An introduction to separation logic

Summarization and inductive definitions

What do we still miss ?

So far, formulas denote fixed sets of cells
Thus, no summarization of unbounded regions...

o Example all lists pointed to by x, such as:

@ How to precisely abstract these stores with a single formula
i.e., no infinite disjunction ?

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

24 / 96

An introduction to separation logic

Inductive definitions in separation logic

List definition

a-list = a=0 A emp
V. a#0 A a-next— 0 *xa-datar— 3% ¢ -list

@ Formula abstracting our set of structures:
&x — o *x a- list

@ Summarization:
this formula is finite and describe infinitely many heaps

@ Concretization: next slide...

Practical implementation in verification/analysis tools

o Verification: hand-written definitions
@ Analysis: either built-in or user-supplied, or partly inferred

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

25 / 96

An introduction to separation logic

Concretization by unfolding

Intuitive semantics of inductive predicates
@ Inductive predicates can be unfolded, by unrolling their definitions
Syntactic unfolding is noted A,
o A formula F with inductive predicates describes all stores described by all
formulas F such that F -2 F/

Example:
@ Let us start with x — g * ag - list; we can unfold it as follows:
&x — o * ap - list
l> &x — ap * Qp - next — a1 * ap - data — [1 x oy - list
N &x — ap * qp - next — ag * qp - data — (1 x emp A a1 = 0x0
@ We get the concrete state below:

ex | — 1 [ox0 |
L]

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

26 / 96

An introduction to separation logic

Example: tree

o Example:

/C
.\\
0x0 0x0
0x0 0x0

Inductive definition
@ Two recursive calls instead of one:
a-tree = a=0A emp

V. a#0 A a-left— % a-right — J
*x [3 - tree x 0 - tree

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

27 / 96

An introduction to separation logic

Example: doubly linked list

o Example:

— | — | 0x0
0x0 | — [—*

Inductive definition
@ We need to propagate the prev pointer as an additional parameter:
a-dli(s) = a=0 A emp

V. a#0 A a-next+— % «-previsd
x 8 -dll(«)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

28 / 96

An introduction to separation logic

Example: sortedness

o Example: sorted list

&x =

Inductive definition

— | — | 0x0

@ Each element should be greater than the previous one

@ The first element simply needs be greater than —co...

@ We need to propagate the lower bound, using a scalar parameter

a - Isort, .« (n)

« - Isort()

a=0A emp
V. a#0A n<f A a-next+—J
% o -data > 3 % 0 - Isort,,,(5)

a - Isort,, (—o0)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

20 / 96

An introduction to separation logic

A new overview of the remaining part of the lecture

How to apply separation logic to static analysis and design abstract
interpretation algorithms based on it ?

In remainder of this lecture, we will:
@ choose a small but expressive set of separation logic formulas
@ combine it with a numerical abstract domain
@ study algorithms for local concretization (equivalent to focus) and global
abstraction (widening...)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 30 / 96

A shape abstract domain relying on separation

Outline

e A shape abstract domain relying on separation

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 31 / 96

A shape abstract domain relying on separation

Design of an abstract domain

A lot of things are missing to turn SL into an abstract domain

Set of logical predicates:

@ separation logic formulas are very expressive
e.g., arbitrary alternations of A and x
@ such expressiveness is not necessarily required in static analysis

Representation:

@ unstructured formulas can be represented as ASTs,
but this representation is not easy to manipulate efficiently
@ intuition over memory states typically involves graphs

Analysis algorithms:

@ inference of “optimal” invariants in SL obviously not computable

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

32 /96

A shape abstract domain relying on separation

Basic abstraction: structures and their contents (1/2)

o Concrete memory states

. &(x -n) = 0x...a0 17
> very low level description #(x-d) = 0x...a4 [0x..50

numeric offsets / field names

> pointers, numeric values: &(y - n) = 0x...b0 17 |
raw sequences of bits &(y-d) = 0x..b4 | 0x0
Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

33/ 96

A shape abstract domain relying on separation

Basic abstraction: structures and their contents (1/2)

o Concrete memory states

@ Abstraction of values into symbolic variables (nodes)

0x...a0 17 v(ap) = 0x...a0
0x...b0 y(al) =17
—| v(az) = 0x...b0
0x..b0 [17 v(os) =17
0x0 v(ag) = 0x0

» characterized by valuation v
» v maps symbolic variables into concrete addresses

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

33/ 96

A shape abstract domain relying on separation

Basic abstraction: structures and their contents (1/2)

e Concrete memory states
o Abstraction of values into symbolic variables / nodes

@ Abstraction of regions into points-to edges

0x...a0 17 v(ap) = 0x...a0
0x...50 v(ay) = 17
—| v(az) = 0x...b0
0x..b0 [_IZ v(as) =17
0x0 v(as) = 0x0

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

33/ 96

A shape abstract domain relying on separation

Basic abstraction: structures and their contents (1/2)

Concrete memory states

Abstraction of values into symbolic variables / nodes

Abstraction of regions into points-to edges
0x...a0 17
0x...b0 —|
0x...b0 V 17 V
0x0

v(ag) = 0x...a0
v(on) =17
v(az) = 0x...b0
v(az) =17
v(ag) = 0x0

Shape graph concretization

"an(G) = {(A.)] ..

4

valuation v plays an important role to combine abstraction...

Xavier Rival (INRIA) Shape analysis based on separation logic

Oct, 25th, 2017

33/ 96

A shape abstract domain relying on separation

Structure of shape graphs

Valuations bridge the gap between nodes and values J

Symbolic variables / nodes and intuitively abstract concrete values:

Symbolic variables

We let V! denote a countable set of symbolic variables; we usually let them be
denoted by Greek letters in the following: V* = {a, 3,4,...}

When concretizing a shape graph, we need to characterize how the concrete
instance evaluates each symbolic variable, which is the purpose of the
valuation functions:

Valuations

A valuation is a function from symbolic variables into concrete values (and is
often denoted by v): Val = V¥ — V

Note that valuations treat in the same way addresses and raw values

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 34 / 96

A shape abstract domain relying on separation

Structure of shape graphs

Distinct edges describe separate regions J

In particular, if we split a graph into two parts:
Separating conjunction
Yon(S6 * S5 = {(fo @ fin,v) | (fo,v) € %an(SE) A (. v) € 3on(SE)}
O s O % 0

Similarly, when considering the empty set of edges, we get the empty heap
(where V* is the set of nodes):

ysh(emp) = {(0,v) | v: V¥ — V}

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 35 / 96

A shape abstract domain relying on separation

Abstraction of contiguous regions

A single points-to edge represents one heap cell

A points-to edge encodes basic points to predicate in separation logic:

Points-to edges

o Syntax
Graph edge | Separation logic formula | Concrete view

a-f— 5 offset(£) | v(B)

o Concretization:
'Vsh(a o 3 = B) =
{([v(«) + offset(f) — v(B)],v) | v: {e,B,...} = N}

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

36 / 96

A shape abstract domain relying on separation

Abstraction of contiguous regions

Contiguous regions are described by adjacent points-to edges]

To describe blocks containing series of cells (e.g., in a C structure), shape

graphs utilize several outgoing edges from the node representing the base address
of the block

Field splitting model

@ Separation impacts edges / fields, not pointers

: G
@ Shape graph & G accounts for both abstract states below:

v(a)
offset(f)
offset(g)

() ; :
offset(s) v(fo) = 1(5)
offset(g) neaooood
In other words, in a field splitting model, separation:

@ asserts addresses are distinct
@ says nothing about contents

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 37 / 96

A shape abstract domain relying on separation

Abstraction of the environment

Environments bind variables to their (concrete / abstract) address)
+0 v: ap + 0x.a0
x = & n) = 0x...20 @ az > 0r.b0
&(x - d) = Ox...a4 o
&x +0
&y = &(y - n) = 0x...b0 +4 @ e x> ap (% 0x.a0)

g(y-d)=ox.ba [0x0 | w7

yaz (¥ 0x..b0)

Abstract environments

e An abstract environment is a function e from variables to symbolic nodes

@ The concretization extends as follows:

mem(e, S1) = {(e, f,v) | (1) € yen(S) A e = v o o}

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 38 / 96

A shape abstract domain relying on separation

Basic abstraction: summarization

Set of all lists of any length: Well-founded list inductive def.

&x | 0x0 &x Ix o - list =

- oo | (emp A a = 0x0)
0 AOX"'A—| V (a-d— fBoxa-n— By
' I * By - list A o # 0x0)
0x0 well-founded predicate

Inductive summary predicates
an list
ex () E—

Concretization based on unfolding and least-fixpoint:

o Y replaces an « - list predicate with one of its premises
u
o (8", F) = U{v(S[.Fu) | (S*,F) = (S}, Fu)}

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 39 / 96

A shape abstract domain relying on separation

Inductive structures: a few instances

As before, many interesting inductive predicates encode nicely into graph
inductive definitions:

@ More complex shapes: trees
left tree
: tree u (:
— e tree
right @
o Relations among pointers: doubly-linked lists
dli(a)

dil(s) next @
u
@O —
prev o

o Relations between pointers and numerical: sorted lists

Isort(31)

next .
Isort(8) @
@_> l)b e < B

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

40 / 96

A shape abstract domain relying on separation

Inductive segments

A frequent pattern:
&y

T —
wx [=

A first attempt:
@ x points to a list, so &x — « * « - list holds
@ y points to a list, so &y — 3 * [- list holds
However, the following does not hold

&x — ok a-list x &y — 3 x 3 - list

Why 7 violation of separation!

A second attempt:
(&% — « * « - list x TRUE) A (&y — 8 * § - list * TRUE)

Why is it still not all that good ? relation lost!

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

41 / 96

A shape abstract domain relying on separation

Inductive segments

A frequent pattern:
&y

Could be expressed directly as an inductive with a parameter:

a-list_endp(r) == (emp,a=rm)
(o - next — [y * o - data +— [y
* o - list_endp(7),a # 0)

This definition straightforwardly derives from list
Thus, we make segments part of the fundamental predicates of the domain

list \y\ list

list

Multi-segments: possible, but harder for analysis

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 42 / 96

A shape abstract domain relying on separation

Shape graphs and separation logic

Semantic preserving translation 1 of graphs into separation logic formulas:

Graph Sf ¢ Dgh Translated formula M(S%)
: a-f—p

O s O & O n(s3) N(S?)
(O a - list
O— %) a - list_endp(5)

list
other inductives and segments similar

Note that:
o shape graphs can be encoded into separation logic formula

o the opposite is usually not true

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

43 / 96

@ An introduction to separation logic

9 A shape abstract domain relying on separation
© Combination with a numerical domain

@ Standard static analysis algorithms

© Conclusion

@ Internships

Combination with a numerical domain

Example

How to express both shape and numerical properties ? J

o Hybrid stores: data stored next to structures

o List of even elements:

[] L | 0x0
| 68 | | 24 | [o |
o Sorted list:
0x0
8 | [9 | | 34 |

o Many other examples:

» list of open filed descriptors
> tries
» balanced trees: red-black, AVL...

o Note: inductive definitions also talk about data

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 45 / 96

Combination with a numerical domain

Adding value information (here, numeric)

Concrete numeric values appear in the valuation
thus the abstracting contents boils down to abstracting v !

Example: all lists of length 2, with equal data fields Memory abstraction:

0 0
—O 0
S R A @)

Ox...aO

Ox.a4 [0x.b0 |y vi a1 o 15 v oo o -89
az +— 15 az — —89

0x..b0[_15] e -

0x.b4[0x0_|

Abstraction of valuations: v(a1) = v(a3), (constraint a; = a3)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 46 / 96

Combination with a numerical domain

A first approach to domain combination

Assumptions:

@ Graphs form a shape domain }D)Eh
abstract stores together with a physical mapping of nodes

oh 1 DY, — P((DE, — M) x (VE = V))

o Numerical values are taken in a numerical domain Dfum
abstracts physical mapping of nodes

Ynum - Drﬁ\um — ,P((Wﬂi — V))

Combined domain [CR]

o Set of abstract values: Df =]D)ﬁh x Dium
o Concretization:

7(5ﬁ7 Nﬁ) = {(ﬁv V) eM I Ve 'Ynum(Nﬁ) A (ﬁ’ V) € 'Ysh(su)}

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

47 / 96

Combination with a numerical domain

Formalizing the product domain

Can it be described as a reduced product ?
o Product abstraction: D! = D} x D
e Concretization: y(xg, x1) = v(x0) N y(x1)
e Reduction: D is the quotient of D! by the equivalence relation = defined by
(x0,x1) = (x5, x1) = Y(x0,x1) = 7(x9, %)
@ Abstract order: pairwise on reduced elements

Several issues:

Shape + octagons: How to compare the two elements below ?

a next leven
o s (é)—»
az < artas data
&e b @ « is even

and @—’Oﬁ"’

. what is a3 ?

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 48 / 96

Combination with a numerical domain

Towards a more adapted combination operator

Why does this fail here ?

@ The set of nodes / symbolic variables is not fixed

@ Variables represented in the numerical domain depend on the shape
abstraction

= Thus the product is not symmetric

Intuitions
@ Graphs form a shape domain Dgh

@ For each graph St ¢ Dgh, we have a numerical lattice Dﬁumw)
#

example: if graph S* contains nodes o, a1, a2, Dnum(sﬁ) should abstract
{Oéo7 aq, az} —V

@ An abstract value is a pair (S%, N¥), such that N* ¢ foi]um(Nﬁ)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 49 / 96

Combination with a numerical domain

Cofibered domain

Definition [AV]

o Basis: abstract domain (Dg, C*o), with concretization
Yo :]D)g —D
e Function: ¢ : ID)g — D, where each element of D; is an

abstract domain (Dﬁl, Eﬁl), with a concretization
Yot ID)'i — D
o Domain: D is the set of pairs (x., x!) where
Xf € </)(X§)
o Lift functions: Vx!, y¥ € D?, such that x! C¥, y#, there

exists a function M,; ,: : ¢(x*) — ¢(y*), that is
monotone for 7,: and 7,

@ Generic product, where the second lattice depends on the first

@ Provides a generic scheme for widening, comparison

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 50 / 96

Combination with a numerical domain

Domain operations

o Lift functions allow to switch domain when needed

Comparison of (x¢,x¥) and (v, y¥)
Q First, compare xg and yg in D}

Q If X} Ty ¢, compare &, (xl) and y!

Widening of (xf,x}) and (y¢, y?)
@ First, compute the widening in the basis zg = xg v yg
© Then move to (b(zg) by computing x2 Mn £, u(Xl) and y2 = I'Iyg 2t (yf)

@ Last widen in gb(zg): zf = x§ !)/2ti
0

0§, x8) V(e) = (25, 2)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 51 / 96

Combination with a numerical domain

Domain operations

Transfer functions, e.g., assignment
@ Require memory location be materialized in the graph

i.e., the graph may have to be modified
the numerical component should be updated with lift functions

@ Require update in the graph and the numerical domain

i.e., the numerical component should be kept coherent with the graph

Proofs of soundness of transfer functions rely on:
@ the soundness of the lift functions

@ the soundness of both domain transfer functions

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

52 / 96

Combination with a numerical domain

Overall abstract domain structure

Modular structure

o Each layer accounts for one aspect of the concrete states

o Each layer boils down to a module or functor in ML

state abstract domain D!
(e, St ') abstracts sets of (e, £)

mem

combined shape-value abstract domain Dﬂof
(S*, N%) abstracts sets of (4, v)

/

S

shape abstract domain]D)gh
S% abstracts sets of (4,v)

value abstract domain]D)?,um
N! abstracts sets of v

Xavier Rival (INRIA) Shape analysis based on separation logic

Oct, 25th, 2017

53 / 96

Standard static analysis algorithms Overview of the analysis

Outline

@ Standard static analysis algorithms
@ Overview of the analysis
@ Post-conditions and unfolding
@ Folding: widening and inclusion checking
@ Abstract interpretation framework: assumptions and results

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 54 / 96

Standard static analysis algorithms Overview of the analysis

Static analysis overview

A list insertion function: o list inductive structure def.

list x 1 assumed to point to a list (] Abstract preCOnditiOn:

list x t assumed to point to a list element

listxc=1; .—»’—»“St
while(c !'= NULL && c -> next !=NULL && (...)){ @ .
c = c ->next;

}

t ->next = c ->next; next O

c->next = t; . >
data
O

Result of the (interprocedural) analysis

o Over-approximations of reachable concrete states
e.g., after the insertion:

list next next list

o =0 =0

&9

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

55 / 96

Standard static analysis algorithms Overview of the analysis

Transfer functions

Abstract interpreter design
o Follows the semantics of the language under consideration

@ The abstract domain should provide sound transfer functions

Transfer functions:
@ Assignment: x > f =y — g or x = f = euitn
@ Test: analysis of conditions (if, while)
@ Variable creation and removal
e Memory management: malloc, free
Abstract operators:
@ Join and widening: over-approximation

@ Inclusion checking: check stabilization of abstract iterates

Should be sound i.e., not forget any concrete behavior)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 56 / 96

Standard static analysis algorithms Overview of the analysis

Abstract operations

Denotational style abstract interpreter

o Concrete denotational semantics [b] : S — P(S)
o Abstract post-condition [b]#(S), computed by the analysis:

s € 7(S) = [b](s) € ¥([p]*(S))

Analysis by induction on the syntax using domain operators

[bo; b1]%(S) [ba]? o [bo]*(S)

[L=eli(S) = asim(l,e,S)
[1 = malloc(n)]*(S) = afloc(1,n,S)
[free(1)]#(S) = free(l,n,S)ﬂ <
. join(by est(e, R
[if(e) by else be]*(S) = {J (t %bgﬁn(ttgst(e)Lfa|se’5)))
[while(e)b]#(S) = test(e = false, Ifp’sF?)

where, F®: Sg + [b]*(test(e, So))

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

57 / 96

Standard static analysis algorithms Overview of the analysis

The algorithms underlying the transfer functions

@ Unfolding: cases analysis on summaries

X st y list (f) list next list = y
C IS] C IS :> - i \/ Ist
L%;’O - Z

@ Abstract postconditions, on “exact” regions, e.g. insertion

next

dataO

X . .
O list next list

a0

@ Widening: builds summaries and ensures termination

y mext list

3" list Cy list v é"L, — 3" list Cy list

data

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 58 / 96

Standard static analysis algorithms Post

Outline

@ Standard static analysis algorithms
@ Overview of the analysis
@ Post-conditions and unfolding
@ Folding: widening and inclusion checking
@ Abstract interpretation framework: assumptions and results

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 59 / 96

diti and unfolding

Standard static analysis algorithms Post

Analysis of an assignment in the graph domain

Steps for analyzing x = y -> next (local reasoning)
© Evaluate l-value x into points-to edge o — (3

@ Evaluate r-value y -> next into node (3’
© Replace points-to edge o — 3 with points-to edge o — 3’

With pre-condition: With pre-condition:
ux wx 09——(o)
ey by @)
e Step 1 produces ag — o o Step 1 produces ag — o
@ Step 2 produces (3, o Step 2 fails

o End result:

&x @ @ Abstract state too abstract
&y (@) By — 5> @ We need to refine it

J

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

60 / 96

Standard static analysis algorithms Post and

Unfolding as a local case analysis

Unfolding principle
o Case analysis, based on the inductive definition

o Generates symbolic disjunctions (analysis performed in a disjunction
domain, e.g., trace partitioning)

o Example, for lists:

C list LN @u:0

list
next @
list a#0
@_> data 0

@ Numeric predicates: approximated in the numerical domain

Soundness: by definition of the concretization of inductive structures

'Ysh Sﬁ c U{Vsh Sﬁ |5ﬁ Sﬁ}

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 61 / 96

Standard static analysis algorithms Post diti and unfoldi

Analysis of an assignment, with unfolding

Principle

o We have ygn(a - 1) = J{Veh(S*) | - ¢ A, sty

@ Replace « - ¢ with a finite number of disjuncts and continue

Disjunct 1: Disjunct 2:
&x.—’ &x.—> next
&Y@—>:O &y<> @ data
@ Step 1 produces ag — [p @ Step 1 produces ap — fo
o Step 2 fails: Null pointer ! o Step 2 produces /3

@ In a correct program, would be ° End result:

ruled out by a condition y # 0 x (@) next 37tk
i.e., f1 # 0 in Dhum by @2

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 62 / 96

foldi

" Arer

Standard static analysis algorithms P and

Unfold, compute abstract post, and...

Evaluation of a transfer functions (assignment, test...)

© evaluate all expressions and |-values that are required
unfold inductive definitions if needed

© compute the effect of the concrete operation on fully materialized graph
chunks

Comparison with the previous lecture:

Using separation logic shape graphs ‘ In TVLA
Spre Shre Shost
unfold rtiall
(materialize) J' coﬂacrelfizZJ(1\ abstract
f f
Shre e Son Spre———— Spost
When does the abstraction takes place ? More on this a bit later J

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 63 / 96

Standard static analysis algorithms Post diti

and unfolding
Unfolding and degenerated cases
:siu]Te(l points to a dll) e at @:
@ while(c # NULL && condition)) A
= c ->next; do. 01
@ if(z # 3 && ce—> prev #0) @ at @: @ dil(5,) ’151
C = c ->prev — prev,

= non trivial unfolding

dil(....) next — dll(ag)
. e . O du(n,])‘ @
o Materialization of c -> prev: B
frev

Segment splitting lemma: basis for segment unfolding

L it

v ¢
._>@ describes the same set of stores as @ > —-(02)

dII . dII n(,)

next next
. qe . dll(cr_) /C>
o Materialization of ¢ -> prev -> prev:

prev

o Implementation issue: discover which inductive edge to unfold
very hard !

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 64 / 96

Standard static analysis algorithms Post

diti foldi

and

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

x
Ipos

uy (09>

Nt =y >0Aaz # 0x0

y->d=x+1

/o \

shape
domain

numeric
domain

Xavier Rival (INRIA)

Abstract post-condition ?

Shape analysis based on separation logic

Oct, 25th, 2017

65 / 96

Standard static analysis algorithms Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/o \

shape
domain

numeric
domain

&x

Ipos

uy (09>

Nt =y >0Aaz # 0x0

y->d=x+1 = (*xa2)-d=(xap)+1

Abstract post-condition ?

Stage 1: environment resolution

o replaces x with *¢(x)

Xavier Rival (INRIA)

Shape analysis based on separation logic Oct, 25th, 2017

65 / 96

Standard static analysis algorithms Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/o \

shape
domain

numeric
domain

Stage 2: propagate into the shape + numerics domain

&x

Ipos

uy (09>

Nt =y >0Aaz # 0x0

(*a2) -d = (xap) + 1

Abstract post-condition ?

@ only symbolic nodes appear

Xavier Rival (INRIA)

Shape analysis based on separation logic

Oct, 25th, 2017

65 / 96

Standard static analysis algorithms Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/ N\

shape
domain

numeric
domain

i @)@

Ipos

uy (09>

Nt =y >0Aaz # 0x0

(*a2) -d = (xap) + 1

Abstract post-condition ?

Stage 3: resolve cells in the shape graph abstract domain

@ xaq evaluates to a; *ap evaluates to a3

@ (*xap) - d fails to evaluate: no points-to out of a3

Xavier Rival (INRIA)

Shape analysis based on separation logic Oct, 25th, 2017

65 / 96

Standard static analysis algorithms Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

[\

shape
domain

numeric
domain

&x

Ipos

uy (09>

Nt =y >0Aaz # 0x0

(*a2) -d = (xap) + 1

Abstract post-condition ?

Stage 4 (a): unfolding triggered

@ the analysis needs to locally materialize a3 - Ipos...

@ thus, unfolding starts at symbolic variable a3

Xavier Rival (INRIA)

Shape analysis based on separation logic

Oct, 25th, 2017

65 / 96

Standard static analysis algorithms Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/ N\

shape
domain

numeric
domain

e (0)—(1) 4 (@)
Ipos
&Yké:' 0509
Nt =y >0Aaz #0x0

(*a2) -d = (xap) + 1

Abstract post-condition ?

Stage 4 (b): unfolding, shape part

@ unfolding of the memory predicate part

@ numerical predicates still need be taken into account

Xavier Rival (INRIA)

Shape analysis based on separation logic Oct, 25th, 2017

65 / 96

Standard static analysis algorithms Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/N

shape
domain

numeric
domain

wx @o—(@1) 4 @3
Ipos
&Yké:' 0509
N =3 >0Aa3#0x0A s >0

(*a2) -d = (xap) + 1

Abstract post-condition ?

Stage 4 (c): unfolding, numeric part

@ numerical predicates taken into account

@ |-value a3 - A now evaluates into edge a3 - d — a4

Xavier Rival (INRIA)

Shape analysis based on separation logic Oct, 25th, 2017

65 / 96

Standard static analysis algorithms Post. diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

wx @o—(@1) 4 @3
Ipos
W.ﬁﬁ:-' 0509
N =3 >0Aa3#0x0A s >0

create node ag

/o \

shape
domain

numeric
domain

&x .—> I

&y Q23— (s

NE=a; >0Aa3#0x0A g >0

Stage 5: create a new node

@ new node o denotes a new value
will store the new value

Xavier Rival (INRIA)

Shape analysis based on separation logic Oct, 25th, 2017

65 / 96

Standard static analysis algorithms Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

wx @o—(@1) 4 @3
Ipos
&Yké:' 0509
N =3 >0Aa3#0x0A s >0

ag < a1 + 1 in numerics

/N

shape
domain

numeric
domain

&x .—> I

&y Q23— (s

NE=a; >0Aa3#0x0A g >0A > 1

Stage 6: perform numeric assignment

@ numeric assignment completely ignores pointer structures

to the new node

Xavier Rival (INRIA)

Shape analysis based on separation logic Oct, 25th, 2017

65 / 96

Standard static analysis algorithms Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/ N\

shape
domain

numeric
domain

mutate (a3 - d) — g into ae

&x .—> .
pos

&y 00— o=

NE=a; >0Aa3#0x0A 0y > 0Aag>1

Stage 7: perform the update in the graph

@ classic strong update in a pointer aware domain

@ symbolic node g becomes redundant and can be removed

Xavier Rival (INRIA)

Shape analysis based on separation logic Oct, 25th, 2017

65 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Outline

@ Standard static analysis algorithms
@ Overview of the analysis
@ Post-conditions and unfolding
@ Folding: widening and inclusion checking
@ Abstract interpretation framework: assumptions and results

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 66 / 96

Standard static analysis algorithms Folding:

Need for a folding operation

Back to the list traversal example:

First iterates in the loop:
o at iteration 0 (before entering the loop):

1lc

' list

@ at iteration 1:
1 c
next

@ at iteration 2:

list

assume(l points to a list)
c=1,
while(c # NULL){

c = c — next;

}

The analysis unfolds, but

never folds:
So

unfold

1 c 5u.u%51
next next list
@\ Q’/\ & unfold
dat@ @ data @ S *H’ Sz
@ How to guarantee termination of the analysis ?
@ How to introduce segment edges / perform abstraction ?
Oct, 25th, 2017 67 / 96

Xavier Rival (INRIA) Shape analysis based on separation logic

Standard static analysis algorithms Folding:

Widening

@ The lattice of shape abstract values has infinite height

@ Thus iteration sequences may not terminate

Definition of a widening operator v

@ Over-approximates join:

v(X¥) C A(XPvYH)
{V(Yu) C A(XtvYh)

o Enforces termination: for all sequence (X!),cn, the sequence (Y/),cn
defined below is ultimately stationary

{ o= 2
vneN, Y, vivxi,

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 68 / 96

Standard static analysis algorithms Folding:

Canonicalization

Upper closure operator

p:Df — Dian C DF is an upper closure operator (uco) iff it is monotone,
extensive and idempotent.

Canonicalization

Disjunctive completion:]D)ﬁv = finite disjunctions over D*

Canonicalization operator p, defined by py : Duv —]Dﬁa,,v and
pu(XH) = {p(x?) | x* € X!} where p is an uco and Di,, has finite height

Canonicalization is used in many shape analysis tools:
TVLA (truth blurring), most separation logic based analysis tools

Easier to compute but less powerful than widening: does not exploit
history of computation

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 69 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Weakening: definition

To design inclusion test, join and widening algorithms, we first study a more
general notion of weakening:

Weakening
We say that S} can be weakened into S if and only if
V(h,v) € %en(SE), 3 € Val, (h,1') € von(SH)

We then note S} < Sf

Applications:
@ inclusion test (comparison) inputs 5§, Sf; if returns true 5§ < Sf
o canonicalization (unary weakening) inputs S} and returns p(S7) such that
St < p(S5)
e widening / join (binary weakening ensuring termination or not) inputs Sg, Sf

and returns Sﬁp such that S,.ti < Sﬁp

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 70 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Weakening: example

We consider Sg defined by:

list
@ @ next @ IS >
R
data @
and S defined by:
list
&x

Then, we have the weakening Sg < 5{ up-to a renaming in Sf:

V: Bo — o
B — o

@ weakening up-to renaming is generally required as graphs do not have the
same name space

o formalized a bit later...

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 71 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Local weakening: separating conjunction rule

We can apply the local reasoning principle to weakening

If S5 < S e and SF <SP, then:

@ s @ s ® < @@ e @

Separating conjunction rule (xx)
Let us assume that

o S and S! have distinct set of source nodes

@ we can weaken Sg into Sg weak

@ we can weaken Sf into S

1,weak
. i 8 i #
then: we can weaken Sg * 57 into Sp ook 1 eak
y
Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 72 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Local weakening: unfolding rule

Weakening unfolded region (<)

Let us assume that S'j Sli Then, by definition of the concretization of
unfolding

we can weaken S into S

@ the proof follows from the definition of unfolding

@ it can be applied locally, on graph regions that differ due to unfolding of
inductive definitions

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

73 / 96

Standard static analysis algorithms Folding:

Local weakening: identity rule

Identity weakening (<4)

we can weaken St into St

@ the proof is trivial:
Ysh(S*) € 7sn(S%)

@ on itself, this principle is not very useful, but it can be applied locally, and
combined with (<z/) on graph regions that are not equal

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 74 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Local weakening: example

By rule (=14):

o1 &P

data @

next list
a1 a2 >
data @

Thus, by rule (xy):

next list

<

next list
1 (&%) >
O&@

Additionally, by rule (xq):

: list

oo

e—®

4
Thus, by rule (xx):
@ o next w Iist: 3 . C list
&1 &1
data

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 75 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Inclusion checking rules in the shape domain

Graphs to compare have distinct sets of nodes, thus inclusion check should carry

out a valuation transformer W : V#(S¥) —; V#(S%)

Using (and extending) the weakening principles, we obtain the following rules
(considering only inductive definition list, though these rules would extend to
other definitions straightforwardly):
o ldentity rules:
Vi, U(B)=ai = ap-frrar Chy fo-fe B
V() =a = a-list Ch, §-list
Vi, U(B)=ca; = ag-list_endp(c;) CFy fo-list_endp(5:)
@ Rules on inductives:
Vi, () =a = emp LC'y pBo-list_endp(p1)
SictySiap Y st = St oChy B
if 81 fresh , W' = W[3; — a;] and W(By) = ag then,
SiChy Br-list = ap-list_endp(ay) % S5 Chy fo-t

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

76 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Inclusion checking algorithm

Comparison of (¢, St, NE) and (¢, SF, N¥)
@ start with W defined by W(3) = « if and only if there exists a variable x such
that ¢f(x) =a A (x) =3
@ iteratively apply local rules, and extend W when needed
Q if the algorithm establishes S} < S?, compare N o W and N in Dium

@ the first step ensures both environments are consistent

@ in the last step, composing with W ensures we are comparing consistent
numerical values (note that Ng and N! may have distinct sets of nodes)

This algorithm is sound:

Soundness

(b, S5, NE) CF (e, S5 NE) = (el S5, N3) € (e, S,)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 77 / 96

Standard static analysis algorithms Folding:

Over-approximation of union

The principle of join and widening algorithm is similar to that of C%:
@ It can be computed region by region, as for weakening in general:
If Vi € {0,1}, Vs € {Ift,xgh}, Sf, < SE,

1

Y TS

v v v

(NI

The partitioning of inputs / different nodes sets requires a node
correspondence function

< G s @ s ®

W VE(S]) x VE(SEy) — V(S?)
@ The computation of the shape join progresses by the application of local join

rules, that produce a new (output) shape graph, that weakens both
inputs

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 78 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Over-approximation of union: syntactic identity rules

In the next few slides, we focus on Vv
though the abstract union would be defined similarly in the shape domain

Several rules derive from (<4):
] IfSlﬁft:amf»—)al

and Slﬁft = ﬂo = ﬂl
and V(ap, Bo) = do, V(ay, £1) = 01, then:

SV Sk =00 £ 61
o If Sk = ap - list
and Slﬁft = fp - listy
and V(ayg, Bo) = do, then:
Skov S =5 list
1ft rgh 0

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

79 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Over-approximation of union: segment introduction rule

Rule
. 51%@ . Sluft \ ngh = (Go— list ()
if then (a, Bo) PRANF A

@ s O c

(Oé, 61) (L (51

Application to list traversal, at the end of iteration 1:
o before iteration 0:

' list

1,¢c

~next list
D= By >
1 Cc

data @

@ join, before iteration 1:

e end of iteration 0:

@ list 3 list \U(ao, ,Bo) = 50
o —(0, >

1 lst V(ao, 1) = &
Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

80 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Over-approximation of union: segment extension rule

Rule
list lis
s Q—* @3 shvst, =
. v
f G S B T G2—() ther g vt

(0, p1) &6

Application to list traversal, at the end of iteration 1:
@ previous invariant before iteration 1:

list list
g ——_—_) >
1 list <
e end of iteration 1:
@ list : ARext % list ,
1 list \5&»
data @
@ join, before iteration 1:
® list st V(ag,Bo) = 6o
0 - 1 >
7 list w(ala 62) = 51
Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

81 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Over-approximation of union: rewrite system properties

o Comparison, canonicalization and widening algorithms can be considered

rewriting systems over tuples of graphs

@ Success configuration: weakening applies on all components,
i.e., the inputs are fully “consumed” in the weakening process

o Failure configuration: some components cannot be weakened
i.e., the algorithm should return the conservative answer (i.e., T)

Termination
@ The systems are terminating

@ This ensures comparison, canonicalization, widening are computable

Non confluence !
@ The results depends on the order of application of the rules

@ Implementation requires the choice of an adequate strategy

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

82 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Over-approximation of union in the combined domain

Widening of (¢f, S&, N2) and (!, S¢, NE)

@ define W, e by V(a, 8) = e(x) = § (where ¢ is a fresh node) if and only if
f(x) = A g(x) = p

@ iteratively apply join local rules, and extend W when new relations are
inferred (for instance for points-to edges)

@ if the algorithm computes 5ﬁ v 5ti S*, compute the widening in the
numeric domain: Nf = N‘i oWy vV N o Wieh

This algorithm is sound:

Soundness

V(e S5 No) U (et St V) € (e, S*, F)

Widening also enforces termination (it only introduces segments, and the growth
induced by the introduction of segments is bounded)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 83 / 96

Standard static analysis algorithms Folding: widening and i

Widening / join in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

[\

shape
domain

numeric
domain

Xavier Rival (INRIA)

1@

&y @9—()

NE

]ft:(y22a522

Shape analysis based on separation logic

Ipos

ux (Bo—(B)—>
&y B—(y

N:

rgh = 33 Z 1

Oct, 25th, 2017 84 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Widening / join in the combined domain

environment layer
shape + num + env

T

&y @9—() w G—)

ux (Bo—(B)—>

pos

. Nﬁ :(1/22()/522 Nj‘zgg,zl
cofibered layer 1 ¢
shape + num
V(ao, Bo) = do
/ \ &x W(aa, B2) = b1
. &y
shape numeric
domain domain
Stage 1: abstract environment
@ compute new abstract environment and initial node relation

e.g., ag, o both denote &x
Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 84 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Widening / join in the combined domain

environment layer
shape + num + env

L@

&y &y

Nﬁ :(1/22()/522 Nr:‘:gg,zl
cofibered layer 1 ¢
shape + num
\U((!m 30) = [50
/ \ &x W(aa, B2) = b1
: &y
shape numeric
domain domain
Stage 2: join in the “cofibered” layer
operations to perform:
© compute the join in the graph
@ convert value abstractions, and join the resulting lattice
Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 84 / 96

Standard static analysis algorithms Folding: widening and inclusi hecki

Widening / join in the combined domain

environment layer
shape + num + env

:d @)
. . :Ipos . I pos

w @9—@) w @)

- NE =0p > a5 >2 NE=B3>1
cofibered layer 1 ¢
shape + num
V(ao, Bo) = do
/ \ ux (Go)—(%) W(ag, Ba) = b1
\U(Oq gl) = 52
- ky B
shape numeric
domain domain
Stage 2: graph join
@ apply local join rules
ex: points-to matching, weakening to inductive...
@ incremental algorithm
Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 84 / 96

idening and i

Standard static analysis algorithms Folding:

Widening / join in the combined domain

4 @)
environment layer Ipos Ipos
shape + num + env &x = (:)—b x .—>

&y @ &y @

#
NE = ap > a5 >2 N =Bs>1

cofibered layer
shape + num

V(ag, Bo) = &
/ \ #x (bo)—(2) w§§i§ /33 — 5

. \U(Oq, “31) = (52
shape numeric & @) V(as, B3) = 43

domain domain

Stage 2: graph join

@ apply local join rules
ex: points-to matching, weakening to inductive...

@ incremental algorithm

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 84 / 96

idening and i

Standard static analysis algorithms Folding:

Widening / join in the combined domain

environment layer
shape + num + env &x &x

&y &y

#
NE = ap > a5 >2 N =Bs>1

cofibered layer
shape + num

Ipos V(ag, Bo) = o

/ \ e G v =D
V(ag, 1) =4

P \VE 1,01) = &2

shape numeric as, B3) = 43

domain domain

Stage 2: graph join

@ apply local join rules
ex: points-to matching, weakening to inductive...

@ incremental algorithm

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 84 / 96

rdeni lusion checki

and i

Standard static analysis algorithms Folding:

Widening / join in the combined domain

environment layer
shape + num + env &x &x

&y &y

cofibered layer
shape + num

Ipos V(ao, Bo) = 6
/ \ e G v =D
W(

Qaq, “31) = 52
shape numeric & . V(as, B3) = 43

domain domain NE =03 > 2] U85 > 1]

Stage 3: conversion function application in numerics
@ remove nodes that were abstracted away
@ rename other nodes

#
NE = ap > a5 >2 N =Bs>1

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

84 / 96

idening and i

Standard static analysis algorithms Folding:

Widening / join in the combined domain

environment layer
shape + num + env &x &x

&y &y

#
NE = ap > a5 >2 N =Bs>1

cofibered layer
shape + num

Ipos W(ag, Bo) = o
7N “o Yas

\U(Ozl, gl) = 52
shape numeric w (@) W(

as, fi3) = 03
domain domain NE = [05 > 1]

Stage 4: join in the numeric domain

@ apply U for regular join, v for a widening

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 84 / 96

Standard static analysis algorithms Abstract interpi ion fr k: i and results

Outline

@ Standard static analysis algorithms
@ Overview of the analysis
@ Post-conditions and unfolding
@ Folding: widening and inclusion checking
@ Abstract interpretation framework: assumptions and results

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 85 / 96

Standard static analysis algorithms Abstract interpi

Assumptions

What assumptions do we make ?
How do we prove soundness of the analysis of a loop ?

and results

@ Assumptions in the concrete level, and for block b:

(P(M), <)
F : P(M) — P(M)

is a complete lattice, hence a CPO

is the concrete semantic (“post”) function of b

thus, the concrete semantics writes down as [b] = IfpyF

@ Assumptions in the abstract level:

Mt
Ymem : M — P(M)
FioME — M

v i M* x M# — MF

Xavier Rival (INRIA)

set of abstract elements, no order a priori

concretization
sound abstract semantic function

i.e., such that F o Ymem C Ymem © F*
widening operator, terminates, and such that

’Ymcm(mg) U fynlcnl(”l’f) g f}/mcm(”lg V TTLf)

Shape analysis based on separation logic

Oct, 25th, 2017

86 / 96

Standard static analysis algorithms Abstract interpi i T k: i and results

Computing a loop abstract post-condition

Loop abstract semantics

The abstract semantics of loop while(rand()){b} is calculated as the limit of the
sequence of abstract iterates below:

{525

mh, = mhv Fi(mf)

Soundness proof:
e by induction over n, |, ., FX(0) € Yumem (m3)

@ by the property of widening, the abstract sequence converges at a rank N:
Vk > N, m! = ml, thus

|fP(oF = U Fk(w) C ’Ymem(m/ti/)
k

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 87 / 96

Standard static analysis algorithms Abstract interp ion fr k: i and results

Discussion on the abstract ordering

How about the abstract ordering ? We assumed NONE so far...
@ Logical ordering, induced by concretization, used for proofs
mg C m’f L= ”/-Ymem(mg) c '-Ymem(”tf)”

o Approximation of the logical ordering, implemented as a function
is_le: M*f x Mf — {true, T}, used to test the convergence of abstract
iterates

is_le(mg, m{) = true = Yuwom () < Yunem ()

Abstract semantics is not assumed (and is actually most likely NOT)
monotone with respect to either of these orders...

o Also, computational ordering would be used for proving widening
termination

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 88 / 96

@ An introduction to separation logic

e A shape abstract domain relying on separation
© Combination with a numerical domain

o Standard static analysis algorithms

© Conclusion

@ Internships

Conclusion

Updates and summarization

Weak updates cause significant precision loss...
Separation logic makes updates strong

Separation logic

Separating conjunction combines properties on disjoint stores

o Fundamental idea: * forces to identify what is modified

o Before an update (or a read) takes place, memory cells need to be
materialized

@ Local reasoning: properties on unmodified cells pertain

Summaries

Inductive predicates describe unbounded memory regions

o Last lecture: array segments and transitive closure (TVLA)

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

90 / 96

Conclusion

Partial concretization, Global abstraction

Separation and summaries should be maintained by the analysis

)

Last lecture: Shre S ost
partially abstract
concretize
p
Spre—— Spost

Today, two separate processes:

Local (partial) concretization Global abstraction
For materialization: Widening on loop heads:
Shre Sty st
unfold
(materialize)
.
Sgre,ref—) Sgost Sg — V — Slu

v

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

91 / 96

Conclusion

Bibliography

o [JR]: Separation Logic: A Logic for Shared Mutable Data Structures.
John C. Reynolds. In LICS'02, pages 55-74, 2002.

o [DHY]: A Local Shape Analysis Based on Separation Logic.
Dino Distefano, Peter W. O’Hearn et Hongseok Yang.
In TACAS'06, pages 287-302.

o [CR]: Relational inductive shape analysis.
Bor-Yuh Evan Chang et Xavier Rival.
In POPL’'08, pages 247-260, 2008.

o [AV]: Abstract Cofibered Domains: Application to the Alias Analysis
of Untyped Programs.
Arnaud Venet. In SAS'96, pages 366—382.

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 92 / 96

Conclusion

Assignment and paper reading

The Frame rule:
o formalize the Hoare logic rules for a language with pointer assignments and
condition tests

@ prove the Frame rule by induction over the syntax of programs

Reading;:

Separation Logic: A Logic for Shared Mutable Data Structures.

John C. Reynolds. In LICS'02, pages 5574, 2002. Formalizes the Frame
rule, among others

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 93 / 96

@ An introduction to separation logic

e A shape abstract domain relying on separation
© Combination with a numerical domain

o Standard static analysis algorithms

© Conclusion

© Internships

Internships

Internship on memory abstraction

Reduced product of TVLA and separation logic abstract domains:

@ reduced product allows to express conjunctive properties
often used in numeric abstract domains, but not for heap abstraction

@ TVLA (previous course) uses low level local predicates
@ separation logic is based on region predicates
@ how to combine them 7 what information would we gain 7

Summarization based on universal quantification:

@ memory abstractions use summarization
for arrays, arrays segments, linked structures...

@ another form of summarization based on an unbounded set E
*{P(x) | x € E}

definition of fold / unfold, analysis operations...

@ analysis of new kinds of structures, e.g., union finds

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

95 / 96

Internships

Internship on Automated Verification of Fault-Tolerant
Distributed Systems

Supervised by Cezara Dragoi, PhD funding available

Fault tolerance is achieved using replication: the application/data is copied on
different processess; at the core of replication is the consensus that ensures that
all replicas are identical!

Theoretical and practical challenges
Class of programs:

@ Implementation of consensus: Zab, Viewstamped, Multi-Paxos, PBFT (Practical
Byzantine Faut Tolerant consensus)

@ Consensus protocols but also other weaker forms of agreement, e.g., lattice
agreement, blockchain, where replicas are different but there is a notion of
convergence

Verification challenges:

@ Abstract domains for consensus: logics that capture the specification and the
transition relation of the protocol/implementation with good algorithmic properties

@ Development of modular verification techniques for safety and liveness, e.g., Hoare
like style reasoning

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 926 / 96

	An introduction to separation logic
	A shape abstract domain relying on separation
	Combination with a numerical domain
	Standard static analysis algorithms
	Overview of the analysis
	Post-conditions and unfolding
	Folding: widening and inclusion checking
	Abstract interpretation framework: assumptions and results

	Conclusion
	Internships

