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Overview of the lecture

How to reason about memory properties

Last lecture:

concrete and abstract memory models
abstractions for pointers and arrays

issues specific to the precise analysis of updates
an introduction to shape analysis with TVLA

Today: systematically avoid weak updates

a logic to describe properties of memory states
abstract domain

static analysis algorithms

combination with numerical domains

widening operators...

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

2/ 96



Weak update problems

x € [-10,-5]; y € [5,10]

1: intx p; .
2: if(2){ @ What is the final range for x 7
3: = &x; . .
4 }elsz{ * @ What is the final range for y 7
2 p=ty Abstract locations: {&x, &y, &p}
7: xp=0;
8: ...
ox by &p Imprecise results
1 [ [-10,=5] | [5,10] T . .
2 | [-10,-5] | [5,10] T @ The abstract information about
3 | [-10,-5] | [5,10] T both x and y are weakened
4 | [-10,-5] | [5,10] {&x} .
5| [-10,-5] | [5,10] T @ The fact that x # y is lost
6 | [-10,-5] | [5,10] | {&y}
7| [-10,-5] | [5,10] | {&x, &y}
8| [-10,0] | [0,10] | {&x, &y}
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@ An introduction to separation logic

© A shape abstract domain relying on separation
© Combination with a numerical domain
@ Standard static analysis algorithms

© Conclusion

@ Internships



An introduction to separation logic

Our model

Not all memory cell corresponds to a variable
@ a variable may correspond to several cells (structures...)

o dynamically allocated cells correspond to no variable at all...

Environment + Heap
o Addresses are values: Vyqqr CV
o Environments ¢ € E map variables into their addresses
o Heaps (£ € H) map addresses into values

E = X—= V.ar
H = Vi —V
f is actually only a partial function
e Memory states (or memories): M = E x H

Avoid confusion between heap (function from addresses to values) and
dynamic allocation space (often referred to as “heap”)
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An introduction to separation logic

Example of a concrete memory state (variables)

@ x and z are two list elements containing values 64 and 88, and where the

former points to the latter

@ y stores a pointer to z

Memory layout

(pointer values underlined) oy
address
&x =300| 64
304 | 312 h:
&y =308 | 312
&z = 312| 88
316 | 0x0

<

300
304
308
312
316

T 11X

TT LT

300
308
312

64
312
312
88
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An introduction to separation logic

Example of a concrete memory state (variables + dyn. cell)

@ same configuration

@ + z points to a heap allocated list element (in purple)

Memory layout

address
&x = 300
304

&y = 308
&z = 312
316

508

512

Xavier Rival (INRIA)

e: X — 300
y  — 308
04 Z — 312
312
312 h: 300 — 64
88 304 — 312
508 308 — 312
:| 312 — 88
% 316 ~— 508
512 — O
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An introduction to separation logic

Separation logic principle: avoid weak updates

How to deal with weak updates ?
Avoid them !

Always materialize exactly the cell that needs be modified

@ Can be very costly to achieve, and not always feasible

Notion of property that holds over a memory region:
special separating conjunction operator *

@ Local reasoning:
powerful principle, which allows to consider only part of the memory

Separation logic has been used in many contexts, including manual
verification, static analysis, etc...
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An introduction to separation logic

Separation logic

Several kinds of formulas:

@ pure formulas behave like formulas in first-order logic
i.e., are not attached to a memory region

@ spatial formulas describe properties attached to a memory region

Pure formulas denote value properties

e = n (neN) constants

| 1 l-value

| eoter binary operations
P = ey=e; |PPVP'|PAP”... pure predicates

Pure formulas semantics: y(P) CE x M
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An introduction to separation logic

Separation logic: points-to predicates
The next slides introduce the main separation logic formulas F ::= . ..

We start with the most basic predicate, that describes a single cell:

Points-to predicate

o Predicate:

Fui=...]lamv where a is an address and v is a value

o Concretization:

(e,;h) ev(1—v) ifandonlyif £ ={[[1](e, £) > v]

o Example:

F=4&x+— 18 &x =308 18

@ We also note 1 — e, as an |-value 1 denotes an address
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An introduction to separation logic

Separation logic: separating conjunction

Merge of concrete heaps: let g, i1 € (Vaaar — V), such that
dom(fp) Ndom(hy) = (; then, we let fip ® Ay be defined by:
ho ® A1 : dom(fp) Udom(h)) — V
x € dom(fp) —  fig(x)
X € dom(ﬁl) — ﬁl(X)

Separating conjunction

o Predicate:
FZ::...|F0>I<F1

o Concretization:
Y(Fo * F1) = {(e, o ® fu) | (e, fio) € ¥(Fo) A (e, i) € ¥(F1)}

Fo
Fo * F1 F
1
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An introduction to separation logic

An example

Concrete memory layout
(pointer values underlined) 2° =

address y
z
&x =300 64

304 | 312 f: 300
&y = 308 | 312 i| 304
&z =312 88 308
316 | 0x0 312
316

300
308
312

RN

64
312
312
88

TTTTL

A formula that abstracts away the addresses:

&x — (64,&2z) * &y — &z * &z — (88,0)
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An introduction to separation logic

Separation logic: non separating conjunction

We can also add the conventional conjunction operator, with its usual
concretization:
Non separating conjunction
o Predicate:
FZZ:...|F0/\F1
e Concretization:
v(Fo A F1) = v(Fo) N v(F1)

Exercise: describe and compare the concretizations of
@ &a — &b A &b — &a
@ &a > &b x &b — &a
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An introduction to separation logic

Separating conjunction vs non separating conjunction

o Classical conjunction: properties for the same memory region

@ Separating conjunction: properties for disjoint memory regions

&a — &b A &b — &a &a — &b *x &b — &a
@ the same heap verifies &a — &b @ two separate sub-heaps
and &b — &a respectively satisfy &a — &b and
&b — &a

@ there can be only one cell

o thusa=b o thusa#b

@ Separating conjunction and non-separating conjunction have very different
properties

@ Both express very different properties
e.g., no ambiguity on weak / strong updates
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An introduction to separation logic

Separating and non separating conjunction

Logic rules of the two conjunction operators of SL:

@ Separating conjunction:

(e,fo) € ¥(Fo) (e fn) € y(F1)
(e, ho ® 1) € v(Fo * F1)

o Non separating conjunction:

(ea ﬁ) € ’Y(FO) (ea ﬁ) € ’Y(Fl)
(e, h) € v(Fo AF1)

Reminiscent of Linear Logic [Girard87]:
resource aware / non resource aware conjunction operators
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An introduction to separation logic

Separation logic: empty store

Empty store

o Predicate:
Fi=...|emp

@ Concretization:
v(emp) = {(¢,[]) | e € E} = E x {[|}

where [| denotes the empty store

@ emp is the neutral element for x
@ by contrast the neutral element for A is TRUE, with concretization:

v(TRUE) = E x H
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An introduction to separation logic

Separation logic: other connectors

Disjunction:
@eF:=...|FpVF
@ concretization:
¥(Fo V F1) = v(Fo) U 7(F1)

Spatial implication (aka, magic wand):
o FZZ:...‘FO — Fy
@ concretization:

Y(Fo — F1) =
{(e, h) | Vho € H, (e, fo) € ¥(Fo) = (e, h @ ho) € ¥(F1)}

@ very powerful connector to describe structure segments,
used in complex SL proofs
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An introduction to separation logic

Separation logic

Summary of the main separation logic constructions seen so far:

Separation logic main connectors

v(emp) =
~+(TRUE

)

)
Y1 v) =

)

)

(Fo x Fy
v(Fo A Fy

E x {[I}

E x H

{(e, [[1](e, 8) = v]) | e € E}

{(e, o ® 1) | (e, ho) € ¥(Fo) A (e, fn) € v(F1)}
7(Fo) N ¥(F1)

Concretization of pure formulas is standard

How does this help for program reasoning ?

Xavier Rival (INRIA)
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An introduction to separation logic

Programs with pointers: syntax

Syntax extension: quite a few additional constructions

x = malloc(c) allocation of ¢ bytes
free(x) deallocation of the block pointed to by x

1 == l-values
| x (x € X)
|
| xe pointer dereference
| 1-f field read
e 1= expressions
| 1
|
| &l "address of" operator
s 1= statements
|
|
|

We do not consider pointer arithmetics here
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An introduction to separation logic

Programs with pointers: semantics

Case of l-values:

[xl(e.8) = e(x)

_ a(Je]l(e, £)) if [e](e, ) # O A [e](e, £) € Dom(£)
[xe](e. £) Q otherwise
[L-£](e,s) = [1](e, )+ offset(f) (numeric offset)

Case of expressions:

[11(e, £) = A([1](e, ) [&1](e, £) = [1](e, #)

Case of statements:
e memory allocation x = malloc(c): (e, £) — (e, £’) where
i = hle(x) « k|W{k— vi,k+1— vieq1,...,k+c—1+ vgyc_1} and
k,...,k+c—1 arefreshin £
e memory deallocation free(x): (e, £) — (e, #’) where k = ¢(x) and
ﬁIﬁ/H'J{ki—) Vibk+1— Vk+1,...,k+C71I—)Vk+C_1}
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An introduction to separation logic

Separation logic triple

Program proofs based on Hoare triples
o Notation: {F}p{F'} if and only if:
Vs,s' €S, sey(F)As € [p](s) = s’ € y(F)
@ Application: formalize proofs of programs

A few rules (straightforward proofs):

Fo = F} {Fo}p{F}} Fil—F;
{Fo}b{F1}
{&x =7}z == e{&x > e}
x does not appear in F
{&x —? % F}x = e{&x > e x F}

consequence

mutation

mutation-2

(we assume that e does not allocate memory)
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An introduction to separation logic

The frame rule

What about the resemblance between rules “mutation” and “mutation-2" ?

Theorem: the frame rule
{Fo}b{F1} freevar(F) Nwrite(b) =
{Fo * F}b{Fl * F}

frame

@ Proof by induction on the logical rules on program statements, i.e.,
essentially a large case analysis
(see biblio for a more complete set of rules)

@ Rules are proved by case analysis on the program syntax

The frame rule allows to reason locally about programs
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An introduction to separation logic

Application of the frame rule

A program with intermittent invariants, derived using the frame rule, since
each step impacts a disjoint region:

inti;
int x x;
int * y;
{&1 =7 % &x =7 % &y —7}
x = &i;
{&1 =7 % &x — &1 % &y —7}
y = &i;
{&1 =7 % &x > &i * &y > &i}
*x = 42;
{8 > 42 % &x > &i * &y — &i}

Many other program proofs done using separation logic
e.g., verification of the Deutsch-Shorr-Waite algorithm (biblio)
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An introduction to separation logic

Summarization and inductive definitions

What do we still miss ?

So far, formulas denote fixed sets of cells
Thus, no summarization of unbounded regions...

o Example all lists pointed to by x, such as:

@ How to precisely abstract these stores with a single formula
i.e., no infinite disjunction ?
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An introduction to separation logic

Inductive definitions in separation logic

List definition

a-list = a=0 A emp
V. a#0 A a-next— 0 *xa-datar— 3% ¢ -list

@ Formula abstracting our set of structures:
&x — o *x a- list

@ Summarization:
this formula is finite and describe infinitely many heaps

@ Concretization: next slide...

Practical implementation in verification/analysis tools

o Verification: hand-written definitions
@ Analysis: either built-in or user-supplied, or partly inferred
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An introduction to separation logic

Concretization by unfolding

Intuitive semantics of inductive predicates
@ Inductive predicates can be unfolded, by unrolling their definitions
Syntactic unfolding is noted A,
o A formula F with inductive predicates describes all stores described by all
formulas F such that F -2 F/

Example:
@ Let us start with x — g * ag - list; we can unfold it as follows:
&x — o * ap - list
l> &x — ap * Qp - next — a1 * ap - data — [1 x oy - list
N &x — ap * qp - next — ag * qp - data — (1 x emp A a1 = 0x0
@ We get the concrete state below:

ex | — 1 [ ox0 |
L]
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An introduction to separation logic

Example: tree

o Example:

/C
.\\
0x0 0x0
0x0 0x0

Inductive definition
@ Two recursive calls instead of one:
a-tree = a=0A emp

V. a#0 A a-left— % a-right — J
*x [3 - tree x 0 - tree
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An introduction to separation logic

Example: doubly linked list

o Example:

— | — | 0x0
0x0 | — [ —*

Inductive definition
@ We need to propagate the prev pointer as an additional parameter:
a-dli(s) = a=0 A emp

V. a#0 A a-next+— % «-previsd
x 8 -dll(«)
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An introduction to separation logic

Example: sortedness

o Example: sorted list

&x =

Inductive definition

— | — | 0x0

@ Each element should be greater than the previous one

@ The first element simply needs be greater than —co...

@ We need to propagate the lower bound, using a scalar parameter

a - Isort, .« (n)

« - Isort()

a=0A emp
V. a#0A n<f A a-next+—J
% o -data > 3 % 0 - Isort,,,(5)

a - Isort,, (—o0)
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An introduction to separation logic

A new overview of the remaining part of the lecture

How to apply separation logic to static analysis and design abstract
interpretation algorithms based on it ?

In remainder of this lecture, we will:
@ choose a small but expressive set of separation logic formulas
@ combine it with a numerical abstract domain
@ study algorithms for local concretization (equivalent to focus) and global
abstraction (widening...)
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A shape abstract domain relying on separation

Outline

e A shape abstract domain relying on separation
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A shape abstract domain relying on separation

Design of an abstract domain

A lot of things are missing to turn SL into an abstract domain

Set of logical predicates:

@ separation logic formulas are very expressive
e.g., arbitrary alternations of A and x
@ such expressiveness is not necessarily required in static analysis

Representation:

@ unstructured formulas can be represented as ASTs,
but this representation is not easy to manipulate efficiently
@ intuition over memory states typically involves graphs

Analysis algorithms:

@ inference of “optimal” invariants in SL obviously not computable
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A shape abstract domain relying on separation

Basic abstraction: structures and their contents (1/2)

o Concrete memory states

. &(x -n) = 0x...a0 17
> very low level description #(x-d) = 0x...a4 [ 0x..50

numeric offsets / field names

> pointers, numeric values: &(y - n) = 0x...b0 17 |
raw sequences of bits &(y-d) = 0x..b4 | 0x0
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A shape abstract domain relying on separation

Basic abstraction: structures and their contents (1/2)

o Concrete memory states

@ Abstraction of values into symbolic variables (nodes)

0x...a0 17 v(ap) = 0x...a0
0x...b0 y(al) =17
—| v(az) = 0x...b0
0x..b0 [ 17 v(os) =17
0x0 v(ag) = 0x0

» characterized by valuation v
» v maps symbolic variables into concrete addresses
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A shape abstract domain relying on separation

Basic abstraction: structures and their contents (1/2)

e Concrete memory states
o Abstraction of values into symbolic variables / nodes

@ Abstraction of regions into points-to edges

0x...a0 17 v(ap) = 0x...a0
0x...50 v(ay) = 17
—| v(az) = 0x...b0
0x..b0 [_IZ v(as) =17
0x0 v(as) = 0x0
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A shape abstract domain relying on separation

Basic abstraction: structures and their contents (1/2)

Concrete memory states

Abstraction of values into symbolic variables / nodes

Abstraction of regions into points-to edges
0x...a0 17
0x...b0 —|
0x...b0 V 17 V
0x0

v(ag) = 0x...a0
v(on) =17
v(az) = 0x...b0
v(az) =17
v(ag) = 0x0

Shape graph concretization

"an(G) = {(A.) ] ..

4

valuation v plays an important role to combine abstraction...
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A shape abstract domain relying on separation

Structure of shape graphs

Valuations bridge the gap between nodes and values J

Symbolic variables / nodes and intuitively abstract concrete values:

Symbolic variables

We let V! denote a countable set of symbolic variables; we usually let them be
denoted by Greek letters in the following: V* = {a, 3,4,...}

When concretizing a shape graph, we need to characterize how the concrete
instance evaluates each symbolic variable, which is the purpose of the
valuation functions:

Valuations

A valuation is a function from symbolic variables into concrete values (and is
often denoted by v): Val = V¥ — V

Note that valuations treat in the same way addresses and raw values
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A shape abstract domain relying on separation

Structure of shape graphs

Distinct edges describe separate regions J

In particular, if we split a graph into two parts:
Separating conjunction
Yon(S6 * S5 = {(fo @ fin,v) | (fo,v) € %an(SE) A (. v) € 3on(SE)}
O s O % 0

Similarly, when considering the empty set of edges, we get the empty heap
(where V* is the set of nodes):

ysh(emp) = {(0,v) | v: V¥ — V}
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A shape abstract domain relying on separation

Abstraction of contiguous regions

A single points-to edge represents one heap cell

A points-to edge encodes basic points to predicate in separation logic:

Points-to edges

o Syntax
Graph edge | Separation logic formula | Concrete view

a-f— 5 offset(£) | v(B)

o Concretization:
'Vsh(a o 3 = B) =
{([v(«) + offset(f) — v(B)],v) | v: {e,B,...} = N}
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A shape abstract domain relying on separation

Abstraction of contiguous regions

Contiguous regions are described by adjacent points-to edges ]

To describe blocks containing series of cells (e.g., in a C structure), shape

graphs utilize several outgoing edges from the node representing the base address
of the block

Field splitting model

@ Separation impacts edges / fields, not pointers

: G
@ Shape graph & G accounts for both abstract states below:

v(a)
offset(f)
offset(g)

() ; :
offset(s) v(fo) = 1(5)
offset(g) neaooood
In other words, in a field splitting model, separation:

@ asserts addresses are distinct
@ says nothing about contents
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A shape abstract domain relying on separation

Abstraction of the environment

Environments bind variables to their (concrete / abstract) address )
+0 v: ap + 0x.a0
x = & n) = 0x...20 @ az > 0r.b0
&(x - d) = Ox...a4 o
&x +0
&y = &(y - n) = 0x...b0 +4 @ e x> ap (% 0x.a0)

g(y-d)=ox.ba [ 0x0 | w7

yaz (¥ 0x..b0)

Abstract environments

e An abstract environment is a function e from variables to symbolic nodes

@ The concretization extends as follows:

mem(e, S1) = {(e, f,v) | (1) € yen(S) A e = v o o}
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A shape abstract domain relying on separation

Basic abstraction: summarization

Set of all lists of any length: Well-founded list inductive def.

&x | 0x0 &x Ix o - list =

- oo | (emp A a = 0x0)
0 AOX"'A—| V (a-d— fBoxa-n— By
' I * By - list A o # 0x0)
0x0 well-founded predicate

Inductive summary predicates
an list
ex () E—

Concretization based on unfolding and least-fixpoint:

o Y replaces an « - list predicate with one of its premises
u
o (8", F) = U{v(S[.Fu) | (S*,F) = (S}, Fu)}
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A shape abstract domain relying on separation

Inductive structures: a few instances

As before, many interesting inductive predicates encode nicely into graph
inductive definitions:

@ More complex shapes: trees
left tree
: tree u ( :
— e tree
right @
o Relations among pointers: doubly-linked lists
dli(a)

dil(s) next @
u
@O  —
prev o

o Relations between pointers and numerical: sorted lists

Isort(31)

next .
Isort(8) @
@_> l)b e < B
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A shape abstract domain relying on separation

Inductive segments

A frequent pattern:
&y

T —
wx [ =

A first attempt:
@ x points to a list, so &x — « * « - list holds
@ y points to a list, so &y — 3 * [ - list holds
However, the following does not hold

&x — ok a-list x &y — 3 x 3 - list

Why 7 violation of separation!

A second attempt:
(&% — « * « - list x TRUE) A (&y — 8 * § - list * TRUE)

Why is it still not all that good ? relation lost!
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A shape abstract domain relying on separation

Inductive segments

A frequent pattern:
&y

Could be expressed directly as an inductive with a parameter:

a-list_endp(r) == (emp,a=rm)
(o - next — [y * o - data +— [y
* o - list_endp(7),a # 0)

This definition straightforwardly derives from list
Thus, we make segments part of the fundamental predicates of the domain

list \y\ list

list

Multi-segments: possible, but harder for analysis

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 42 / 96



A shape abstract domain relying on separation

Shape graphs and separation logic

Semantic preserving translation 1 of graphs into separation logic formulas:

Graph Sf ¢ Dgh Translated formula M(S%)
: a-f—p

O s O & O n(s3)  N(S?)
(O a - list
O— %) a - list_endp(5)

list
other inductives and segments similar

Note that:
o shape graphs can be encoded into separation logic formula

o the opposite is usually not true

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017

43 / 96



@ An introduction to separation logic

9 A shape abstract domain relying on separation
© Combination with a numerical domain

@ Standard static analysis algorithms

© Conclusion

@ Internships



Combination with a numerical domain

Example

How to express both shape and numerical properties ? J

o Hybrid stores: data stored next to structures

o List of even elements:

[ ] L | 0x0
| 68 | | 24 | [ o |
o Sorted list:
0x0
8 | [ 9 | | 34 |

o Many other examples:

» list of open filed descriptors
> tries
» balanced trees: red-black, AVL...

o Note: inductive definitions also talk about data
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Combination with a numerical domain

Adding value information (here, numeric)

Concrete numeric values appear in the valuation
thus the abstracting contents boils down to abstracting v !

Example: all lists of length 2, with equal data fields Memory abstraction:

0 0
—O 0
S R A @)

Ox...aO

Ox.a4 [ 0x.b0 |y vi a1 o 15 v oo o -89
az +— 15 az — —89

0x..b0[_15 ] e -

0x.b4[ 0x0_|

Abstraction of valuations: v(a1) = v(a3), (constraint a; = a3)
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Combination with a numerical domain

A first approach to domain combination

Assumptions:

@ Graphs form a shape domain }D)Eh
abstract stores together with a physical mapping of nodes

oh 1 DY, — P((DE, — M) x (VE = V))

o Numerical values are taken in a numerical domain Dfum
abstracts physical mapping of nodes

Ynum - Drﬁ\um — ,P((Wﬂi — V))

Combined domain [CR]

o Set of abstract values: Df = ]D)ﬁh x Dium
o Concretization:

7(5ﬁ7 Nﬁ) = {(ﬁv V) eM I Ve 'Ynum(Nﬁ) A (ﬁ’ V) € 'Ysh(su)}
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Combination with a numerical domain

Formalizing the product domain

Can it be described as a reduced product ?
o Product abstraction: D! = D} x D
e Concretization: y(xg, x1) = v(x0) N y(x1)
e Reduction: D is the quotient of D! by the equivalence relation = defined by
(x0,x1) = (x5, x1) = Y(x0,x1) = 7(x9, %)
@ Abstract order: pairwise on reduced elements

Several issues:

Shape + octagons: How to compare the two elements below ?

a next leven
o s (é)—»
az < artas data
&e b @ « is even

and @—’Oﬁ"’

. what is a3 ?
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Combination with a numerical domain

Towards a more adapted combination operator

Why does this fail here ?

@ The set of nodes / symbolic variables is not fixed

@ Variables represented in the numerical domain depend on the shape
abstraction

= Thus the product is not symmetric

Intuitions
@ Graphs form a shape domain Dgh

@ For each graph St ¢ Dgh, we have a numerical lattice Dﬁumw)
#

example: if graph S* contains nodes o, a1, a2, Dnum(sﬁ) should abstract
{Oéo7 aq, az} —V

@ An abstract value is a pair (S%, N¥), such that N* ¢ foi]um(Nﬁ)
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Combination with a numerical domain

Cofibered domain

Definition [AV]

o Basis: abstract domain (Dg, C*o), with concretization
Yo : ]D)g —D
e Function: ¢ : ID)g — D, where each element of D; is an

abstract domain (Dﬁl, Eﬁl), with a concretization
Yot ID)'i — D
o Domain: D is the set of pairs (x., x!) where
Xf € </)(X§)
o Lift functions: Vx!, y¥ € D?, such that x! C¥, y#, there

exists a function M,; ,: : ¢(x*) — ¢(y*), that is
monotone for 7,: and 7,

@ Generic product, where the second lattice depends on the first

@ Provides a generic scheme for widening, comparison
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Combination with a numerical domain

Domain operations

o Lift functions allow to switch domain when needed

Comparison of (x¢,x¥) and (v, y¥)
Q First, compare xg and yg in D}

Q If X} Ty ¢, compare &, (xl) and y!

Widening of (xf,x}) and (y¢, y?)
@ First, compute the widening in the basis zg = xg v yg
© Then move to (b(zg) by computing x2 Mn £, u(Xl) and y2 = I'Iyg 2t (yf)

@ Last widen in gb(zg): zf = x§ ! )/2ti
0

0§, x8) V(e ) = (25, 2)
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Combination with a numerical domain

Domain operations

Transfer functions, e.g., assignment
@ Require memory location be materialized in the graph

i.e., the graph may have to be modified
the numerical component should be updated with lift functions

@ Require update in the graph and the numerical domain

i.e., the numerical component should be kept coherent with the graph

Proofs of soundness of transfer functions rely on:
@ the soundness of the lift functions

@ the soundness of both domain transfer functions
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Combination with a numerical domain

Overall abstract domain structure

Modular structure

o Each layer accounts for one aspect of the concrete states

o Each layer boils down to a module or functor in ML

state abstract domain D!
(e, St ') abstracts sets of (e, £)

mem

combined shape-value abstract domain Dﬂof
(S*, N%) abstracts sets of (4, v)

/

S

shape abstract domain ]D)gh
S% abstracts sets of (4,v)

value abstract domain ]D)?,um
N! abstracts sets of v
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Standard static analysis algorithms  Overview of the analysis

Outline

@ Standard static analysis algorithms
@ Overview of the analysis
@ Post-conditions and unfolding
@ Folding: widening and inclusion checking
@ Abstract interpretation framework: assumptions and results
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Standard static analysis algorithms  Overview of the analysis

Static analysis overview

A list insertion function: o list inductive structure def.

list x 1 assumed to point to a list (] Abstract preCOnditiOn:

list x t assumed to point to a list element

listxc=1; .—»’—»“St
while(c !'= NULL && c -> next !=NULL && (...)){ @ .
c = c ->next;

}

t ->next = c ->next; next O

c->next = t; . >
data
O

Result of the (interprocedural) analysis

o Over-approximations of reachable concrete states
e.g., after the insertion:

list next next list

o =0 =0

&9
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Standard static analysis algorithms  Overview of the analysis

Transfer functions

Abstract interpreter design
o Follows the semantics of the language under consideration

@ The abstract domain should provide sound transfer functions

Transfer functions:
@ Assignment: x > f =y — g or x = f = euitn
@ Test: analysis of conditions (if, while)
@ Variable creation and removal
e Memory management: malloc, free
Abstract operators:
@ Join and widening: over-approximation

@ Inclusion checking: check stabilization of abstract iterates

Should be sound i.e., not forget any concrete behavior )
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Standard static analysis algorithms  Overview of the analysis

Abstract operations

Denotational style abstract interpreter

o Concrete denotational semantics [b] : S — P(S)
o Abstract post-condition [b]#(S), computed by the analysis:

s € 7(S) = [b](s) € ¥([p]*(S))

Analysis by induction on the syntax using domain operators

[bo; b1]%(S) [ba]? o [bo]*(S)

[L=eli(S) = asim(l,e,S)
[1 = malloc(n)]*(S) = afloc(1,n,S)
[free(1)]#(S) = free(l,n,S)ﬂ <
. join( by est(e, R
[if(e) by else be]*(S) = {J (t %bgﬁn(ttgst(e)Lfa|se’5)))
[while(e)b]#(S) = test(e = false, Ifp’sF?)

where, F®: Sg + [b]*(test(e, So))
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Standard static analysis algorithms  Overview of the analysis

The algorithms underlying the transfer functions

@ Unfolding: cases analysis on summaries

X st y list (f) list next list = y
C IS] C IS :> - i \/ Ist
L%;’O - Z

@ Abstract postconditions, on “exact” regions, e.g. insertion

next

dataO

X . .
O list next list

a0

@ Widening: builds summaries and ensures termination

y mext list

3" list Cy list v é"L, — 3" list Cy list

data
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Standard static analysis algorithms  Post

Outline

@ Standard static analysis algorithms
@ Overview of the analysis
@ Post-conditions and unfolding
@ Folding: widening and inclusion checking
@ Abstract interpretation framework: assumptions and results
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diti and unfolding

Standard static analysis algorithms  Post

Analysis of an assignment in the graph domain

Steps for analyzing x = y -> next (local reasoning)
© Evaluate l-value x into points-to edge o — (3

@ Evaluate r-value y -> next into node (3’
© Replace points-to edge o — 3 with points-to edge o — 3’

With pre-condition: With pre-condition:
ux wx 09——(o)
ey by @)
e Step 1 produces ag — o o Step 1 produces ag — o
@ Step 2 produces (3, o Step 2 fails

o End result:

&x @ @ Abstract state too abstract
&y (@) By — 5> @ We need to refine it

J
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Standard static analysis algorithms  Post and

Unfolding as a local case analysis

Unfolding principle
o Case analysis, based on the inductive definition

o Generates symbolic disjunctions (analysis performed in a disjunction
domain, e.g., trace partitioning)

o Example, for lists:

C list LN @u:0

list
next @
list a#0
@_> data 0

@ Numeric predicates: approximated in the numerical domain

Soundness: by definition of the concretization of inductive structures

'Ysh Sﬁ c U{Vsh Sﬁ |5ﬁ Sﬁ}
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Standard static analysis algorithms  Post diti and unfoldi

Analysis of an assignment, with unfolding

Principle

o We have ygn(a - 1) = J{Veh(S*) | - ¢ A, sty

@ Replace « - ¢ with a finite number of disjuncts and continue

Disjunct 1: Disjunct 2:
&x.—’ &x.—> next
&Y@—>:O &y<> @ data
@ Step 1 produces ag — [p @ Step 1 produces ap — fo
o Step 2 fails: Null pointer ! o Step 2 produces /3

@ In a correct program, would be ° End result:

ruled out by a condition y # 0 x (@) next 37tk
i.e., f1 # 0 in Dhum by @2
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foldi

" Arer

Standard static analysis algorithms P and

Unfold, compute abstract post, and...

Evaluation of a transfer functions (assignment, test...)

© evaluate all expressions and |-values that are required
unfold inductive definitions if needed

© compute the effect of the concrete operation on fully materialized graph
chunks

Comparison with the previous lecture:

Using separation logic shape graphs ‘ In TVLA
Spre Shre Shost
unfold rtiall
(materialize) J' coﬂacrelfizZJ( 1\ abstract
f f
Shre e Son Spre———— Spost
When does the abstraction takes place ? More on this a bit later J

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 63 / 96



Standard static analysis algorithms  Post diti

and unfolding
Unfolding and degenerated cases
:siu]Te(l points to a dll) e at @:
@ while(c # NULL && condition) ) A
= c ->next; do. 01
@ if(z # 3 && ce—> prev #0) @ at @: @ dil(5,) ’151
C = c ->prev — prev,

= non trivial unfolding

dil(....) next — dll(ag)
. e . O du(n,])‘ @
o Materialization of c -> prev: B
frev

Segment splitting lemma: basis for segment unfolding

L it

v ¢
._>@ describes the same set of stores as @ > —-(02)

dII . dII n(,)

next next
. qe . dll(cr_) /C>
o Materialization of ¢ -> prev -> prev:

prev

o Implementation issue: discover which inductive edge to unfold
very hard !
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Standard static analysis algorithms  Post

diti foldi

and

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

x
Ipos

uy (09>

Nt =y >0Aaz # 0x0

y->d=x+1

/o \

shape
domain

numeric
domain

Xavier Rival (INRIA)

Abstract post-condition ?

Shape analysis based on separation logic

Oct, 25th, 2017
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Standard static analysis algorithms  Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/o \

shape
domain

numeric
domain

&x

Ipos

uy (09>

Nt =y >0Aaz # 0x0

y->d=x+1 = (*xa2)-d=(xap)+1

Abstract post-condition ?

Stage 1: environment resolution

o replaces x with *¢(x)

Xavier Rival (INRIA)
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Standard static analysis algorithms  Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/o \

shape
domain

numeric
domain

Stage 2: propagate into the shape + numerics domain

&x

Ipos

uy (09>

Nt =y >0Aaz # 0x0

(*a2) -d = (xap) + 1

Abstract post-condition ?

@ only symbolic nodes appear

Xavier Rival (INRIA)

Shape analysis based on separation logic
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Standard static analysis algorithms  Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/ N\

shape
domain

numeric
domain

i @)@

Ipos

uy (09>

Nt =y >0Aaz # 0x0

(*a2) -d = (xap) + 1

Abstract post-condition ?

Stage 3: resolve cells in the shape graph abstract domain

@ xaq evaluates to a; *ap evaluates to a3

@ (*xap) - d fails to evaluate: no points-to out of a3

Xavier Rival (INRIA)
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Standard static analysis algorithms  Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

[\

shape
domain

numeric
domain

&x

Ipos

uy (09>

Nt =y >0Aaz # 0x0

(*a2) -d = (xap) + 1

Abstract post-condition ?

Stage 4 (a): unfolding triggered

@ the analysis needs to locally materialize a3 - Ipos...

@ thus, unfolding starts at symbolic variable a3

Xavier Rival (INRIA)

Shape analysis based on separation logic
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Standard static analysis algorithms  Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/ N\

shape
domain

numeric
domain

e (0)—(1) 4 (@)
Ipos
&Yké:' 0509
Nt =y >0Aaz #0x0

(*a2) -d = (xap) + 1

Abstract post-condition ?

Stage 4 (b): unfolding, shape part

@ unfolding of the memory predicate part

@ numerical predicates still need be taken into account

Xavier Rival (INRIA)
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Standard static analysis algorithms  Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/N

shape
domain

numeric
domain

wx @o—(@1) 4 @3
Ipos
&Yké:' 0509
N =3 >0Aa3#0x0A s >0

(*a2) -d = (xap) + 1

Abstract post-condition ?

Stage 4 (c): unfolding, numeric part

@ numerical predicates taken into account

@ |-value a3 - A now evaluates into edge a3 - d — a4

Xavier Rival (INRIA)
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Standard static analysis algorithms  Post. diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

wx @o—(@1) 4 @3
Ipos
W.ﬁﬁ:-' 0509
N =3 >0Aa3#0x0A s >0

create node ag

/o \

shape
domain

numeric
domain

&x .—> I

&y Q23— (s

NE=a; >0Aa3#0x0A g >0

Stage 5: create a new node

@ new node o denotes a new value
will store the new value

Xavier Rival (INRIA)
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Standard static analysis algorithms  Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

wx @o—(@1) 4 @3
Ipos
&Yké:' 0509
N =3 >0Aa3#0x0A s >0

ag < a1 + 1 in numerics

/N

shape
domain

numeric
domain

&x .—> I

&y Q23— (s

NE=a; >0Aa3#0x0A g >0A > 1

Stage 6: perform numeric assignment

@ numeric assignment completely ignores pointer structures

to the new node

Xavier Rival (INRIA)
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Standard static analysis algorithms  Post diti and unfoldi

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/ N\

shape
domain

numeric
domain

mutate (a3 - d) — g into ae

&x .—> .
pos

&y 00— o=

NE=a; >0Aa3#0x0A 0y > 0Aag>1

Stage 7: perform the update in the graph

@ classic strong update in a pointer aware domain

@ symbolic node g becomes redundant and can be removed

Xavier Rival (INRIA)
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Standard static analysis algorithms  Folding: widening and inclusi hecki

Outline

@ Standard static analysis algorithms
@ Overview of the analysis
@ Post-conditions and unfolding
@ Folding: widening and inclusion checking
@ Abstract interpretation framework: assumptions and results
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Standard static analysis algorithms  Folding:

Need for a folding operation

Back to the list traversal example:

First iterates in the loop:
o at iteration 0 (before entering the loop):

1lc

' list

@ at iteration 1:
1 c
next

@ at iteration 2:

list

assume(l points to a list)
c=1,
while(c # NULL){

c = c — next;

}

The analysis unfolds, but

never folds:
So

unfold

1 c 5u.u%51
next next list
@\ Q’/\ & unfold
dat@ @ data @ S *H’ Sz
@ How to guarantee termination of the analysis ?
@ How to introduce segment edges / perform abstraction ?
Oct, 25th, 2017 67 / 96
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Standard static analysis algorithms  Folding:

Widening

@ The lattice of shape abstract values has infinite height

@ Thus iteration sequences may not terminate

Definition of a widening operator v

@ Over-approximates join:

v(X¥) C A(XPvYH)
{V(Yu) C A(XtvYh)

o Enforces termination: for all sequence (X!),cn, the sequence (Y/),cn
defined below is ultimately stationary

{ o= 2
vneN, Y, vivxi,
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Standard static analysis algorithms  Folding:

Canonicalization

Upper closure operator

p:Df — Dian C DF is an upper closure operator (uco) iff it is monotone,
extensive and idempotent.

Canonicalization

Disjunctive completion: ]D)ﬁv = finite disjunctions over D*

Canonicalization operator p, defined by py : Duv — ]Dﬁa,,v and
pu(XH) = {p(x?) | x* € X!} where p is an uco and Di,, has finite height

Canonicalization is used in many shape analysis tools:
TVLA (truth blurring), most separation logic based analysis tools

Easier to compute but less powerful than widening: does not exploit
history of computation
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Standard static analysis algorithms  Folding: widening and inclusi hecki

Weakening: definition

To design inclusion test, join and widening algorithms, we first study a more
general notion of weakening:

Weakening
We say that S} can be weakened into S if and only if
V(h,v) € %en(SE), 3 € Val, (h,1') € von(SH)

We then note S} < Sf

Applications:
@ inclusion test (comparison) inputs 5§, Sf; if returns true 5§ < Sf
o canonicalization (unary weakening) inputs S} and returns p(S7) such that
St < p(S5)
e widening / join (binary weakening ensuring termination or not) inputs Sg, Sf

and returns Sﬁp such that S,.ti < Sﬁp
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Standard static analysis algorithms  Folding: widening and inclusi hecki

Weakening: example

We consider Sg defined by:

list
@ @ next @ IS >
R
data @
and S defined by:
list
&x

Then, we have the weakening Sg < 5{ up-to a renaming in Sf:

V: Bo — o
B — o

@ weakening up-to renaming is generally required as graphs do not have the
same name space

o formalized a bit later...
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Standard static analysis algorithms  Folding: widening and inclusi hecki

Local weakening: separating conjunction rule

We can apply the local reasoning principle to weakening

If S5 < S e and SF <SP, then:

@ s @ s ® < @@ e @

Separating conjunction rule (xx)
Let us assume that

o S and S! have distinct set of source nodes

@ we can weaken Sg into Sg weak

@ we can weaken Sf into S

1,weak
. i 8 i #
then: we can weaken Sg * 57 into Sp ook 1 eak
y
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Standard static analysis algorithms  Folding: widening and inclusi hecki

Local weakening: unfolding rule

Weakening unfolded region (<)

Let us assume that S'j Sli Then, by definition of the concretization of
unfolding

we can weaken S into S

@ the proof follows from the definition of unfolding

@ it can be applied locally, on graph regions that differ due to unfolding of
inductive definitions
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Standard static analysis algorithms  Folding:

Local weakening: identity rule

Identity weakening (<4)

we can weaken St into St

@ the proof is trivial:
Ysh(S*) € 7sn(S%)

@ on itself, this principle is not very useful, but it can be applied locally, and
combined with (<z/) on graph regions that are not equal
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Standard static analysis algorithms  Folding: widening and inclusi hecki

Local weakening: example

By rule (=14):

o1 &P

data @

next list
a1 a2 >
data @

Thus, by rule (xy):

next list

<

next list
1 (&%) >
O&@

Additionally, by rule (xq):

: list

oo

e—®

4
Thus, by rule (xx):
@ o next w Iist: 3 . C list
&1 &1
data
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Standard static analysis algorithms  Folding: widening and inclusi hecki

Inclusion checking rules in the shape domain

Graphs to compare have distinct sets of nodes, thus inclusion check should carry

out a valuation transformer W : V#(S¥) —; V#(S%)

Using (and extending) the weakening principles, we obtain the following rules
(considering only inductive definition list, though these rules would extend to
other definitions straightforwardly):
o ldentity rules:
Vi, U(B)=ai = ap-frrar Chy fo-fe B
V() =a = a-list Ch, §-list
Vi, U(B)=ca; = ag-list_endp(c;) CFy fo-list_endp(5:)
@ Rules on inductives:
Vi, () =a = emp LC'y pBo-list_endp(p1)
SictySiap Y st = St oChy B
if 81 fresh , W' = W[3; — a;] and W(By) = ag then,
SiChy Br-list = ap-list_endp(ay) % S5 Chy fo-t
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Standard static analysis algorithms  Folding: widening and inclusi hecki

Inclusion checking algorithm

Comparison of (¢, St, NE) and (¢, SF, N¥)
@ start with W defined by W(3) = « if and only if there exists a variable x such
that ¢f(x) =a A (x) =3
@ iteratively apply local rules, and extend W when needed
Q if the algorithm establishes S} < S?, compare N o W and N in Dium

@ the first step ensures both environments are consistent

@ in the last step, composing with W ensures we are comparing consistent
numerical values (note that Ng and N! may have distinct sets of nodes)

This algorithm is sound:

Soundness

(b, S5, NE) CF (e, S5 NE) = (el S5, N3) € (e, S, )
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Standard static analysis algorithms  Folding:

Over-approximation of union

The principle of join and widening algorithm is similar to that of C%:
@ It can be computed region by region, as for weakening in general:
If Vi € {0,1}, Vs € {Ift,xgh}, Sf, < SE,

1

Y TS

v v v

(NI

The partitioning of inputs / different nodes sets requires a node
correspondence function

< G s @ s ®

W VE(S]) x VE(SEy) — V(S?)
@ The computation of the shape join progresses by the application of local join

rules, that produce a new (output) shape graph, that weakens both
inputs
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Standard static analysis algorithms  Folding: widening and inclusi hecki

Over-approximation of union: syntactic identity rules

In the next few slides, we focus on Vv
though the abstract union would be defined similarly in the shape domain

Several rules derive from (<4):
] IfSlﬁft:amf»—)al

and Slﬁft = ﬂo = ﬂl
and V(ap, Bo) = do, V(ay, £1) = 01, then:

SV Sk =00 £ 61
o If Sk = ap - list
and Slﬁft = fp - listy
and V(ayg, Bo) = do, then:
Skov S =5 list
1ft rgh 0
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Standard static analysis algorithms  Folding: widening and inclusi hecki

Over-approximation of union: segment introduction rule

Rule
. 51%@ . Sluft \ ngh = (Go— list ()
if then (a, Bo) PRANF A

@ s O c

(Oé, 61) (L (51

Application to list traversal, at the end of iteration 1:
o before iteration 0:

' list

1,¢c

~next list
D= By >
1 Cc

data @

@ join, before iteration 1:

e end of iteration 0:

@ list 3 list \U(ao, ,Bo) = 50
o —(0, >

1 lst V(ao, 1) = &
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Standard static analysis algorithms  Folding: widening and inclusi hecki

Over-approximation of union: segment extension rule

Rule
list lis
s Q—* @3 shvst, =
. v
f G S B T G2—() ther g vt

(0, p1) &6

Application to list traversal, at the end of iteration 1:
@ previous invariant before iteration 1:

list list
g ——_—_) >
1 list <
e end of iteration 1:
@ list : ARext % list ,
1 list \5&»
data @
@ join, before iteration 1:
® list st V(ag,Bo) = 6o
0 - 1 >
7 list w(ala 62) = 51
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Over-approximation of union: rewrite system properties

o Comparison, canonicalization and widening algorithms can be considered

rewriting systems over tuples of graphs

@ Success configuration: weakening applies on all components,
i.e., the inputs are fully “consumed” in the weakening process

o Failure configuration: some components cannot be weakened
i.e., the algorithm should return the conservative answer (i.e., T)

Termination
@ The systems are terminating

@ This ensures comparison, canonicalization, widening are computable

Non confluence !
@ The results depends on the order of application of the rules

@ Implementation requires the choice of an adequate strategy
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Over-approximation of union in the combined domain

Widening of (¢f, S&, N2) and (!, S¢, NE)

@ define W, e by V(a, 8) = e(x) = § (where ¢ is a fresh node) if and only if
f(x) = A g(x) = p

@ iteratively apply join local rules, and extend W when new relations are
inferred (for instance for points-to edges)

@ if the algorithm computes 5ﬁ v 5ti S*, compute the widening in the
numeric domain: Nf = N‘i oWy vV N o Wieh

This algorithm is sound:

Soundness

V(e S5 No) U (et St V) € (e, S*, F)

Widening also enforces termination (it only introduces segments, and the growth
induced by the introduction of segments is bounded)
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Widening / join in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

[\

shape
domain

numeric
domain

Xavier Rival (INRIA)

1@

&y @9—()

NE

]ft:(y22a522

Shape analysis based on separation logic

Ipos

ux (Bo—(B)—>
&y B—(y

N:

rgh = 33 Z 1
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Standard static analysis algorithms  Folding: widening and inclusi hecki

Widening / join in the combined domain

environment layer
shape + num + env

T

&y @9—() w G—)

ux (Bo—(B)—>

pos

. Nﬁ :(1/22()/522 Nj‘zgg,zl
cofibered layer 1 ¢
shape + num
V(ao, Bo) = do
/ \ &x W(aa, B2) = b1
. &y
shape numeric
domain domain
Stage 1: abstract environment
@ compute new abstract environment and initial node relation

e.g., ag, o both denote &x
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Widening / join in the combined domain

environment layer
shape + num + env

L@

&y &y

Nﬁ :(1/22()/522 Nr:‘:gg,zl
cofibered layer 1 ¢
shape + num
\U((!m 30) = [50
/ \ &x W(aa, B2) = b1
: &y
shape numeric
domain domain
Stage 2: join in the “cofibered” layer
operations to perform:
© compute the join in the graph
@ convert value abstractions, and join the resulting lattice
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Widening / join in the combined domain

environment layer
shape + num + env

:d @)
. . :Ipos . I pos

w @9—@) w @)

- NE =0p > a5 >2 NE=B3>1
cofibered layer 1 ¢
shape + num
V(ao, Bo) = do
/ \ ux (Go)—(%) W(ag, Ba) = b1
\U(Oq gl) = 52
- ky B
shape numeric
domain domain
Stage 2: graph join
@ apply local join rules
ex: points-to matching, weakening to inductive...
@ incremental algorithm
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Standard static analysis algorithms  Folding:

Widening / join in the combined domain

4 @)
environment layer Ipos Ipos
shape + num + env &x = (:)—b x .—>

&y @ &y @

#
NE = ap > a5 >2 N =Bs>1

cofibered layer
shape + num

V(ag, Bo) = &
/ \ #x (bo)—(2) w§§i§ /33 — 5

. \U(Oq, “31) = (52
shape numeric & @) V(as, B3) = 43

domain domain

Stage 2: graph join

@ apply local join rules
ex: points-to matching, weakening to inductive...

@ incremental algorithm
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Standard static analysis algorithms  Folding:

Widening / join in the combined domain

environment layer
shape + num + env &x &x

&y &y

#
NE = ap > a5 >2 N =Bs>1

cofibered layer
shape + num

Ipos V(ag, Bo) = o

/ \ e G v =D
V(ag, 1) =4

P \VE 1,01) = &2

shape numeric as, B3) = 43

domain domain

Stage 2: graph join

@ apply local join rules
ex: points-to matching, weakening to inductive...

@ incremental algorithm
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Standard static analysis algorithms  Folding:

Widening / join in the combined domain

environment layer
shape + num + env &x &x

&y &y

cofibered layer
shape + num

Ipos V(ao, Bo) = 6
/ \ e G v =D
W(

Qaq, “31) = 52
shape numeric & . V(as, B3) = 43

domain domain NE =03 > 2] U85 > 1]

Stage 3: conversion function application in numerics
@ remove nodes that were abstracted away
@ rename other nodes

#
NE = ap > a5 >2 N =Bs>1
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Standard static analysis algorithms  Folding:

Widening / join in the combined domain

environment layer
shape + num + env &x &x

&y &y

#
NE = ap > a5 >2 N =Bs>1

cofibered layer
shape + num

Ipos W(ag, Bo) = o
7N “o Yas

\U(Ozl, gl) = 52
shape numeric w (@) W(

as, fi3) = 03
domain domain NE = [05 > 1]

Stage 4: join in the numeric domain

@ apply U for regular join, v for a widening
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Outline

@ Standard static analysis algorithms
@ Overview of the analysis
@ Post-conditions and unfolding
@ Folding: widening and inclusion checking
@ Abstract interpretation framework: assumptions and results
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Assumptions

What assumptions do we make ?
How do we prove soundness of the analysis of a loop ?

and results

@ Assumptions in the concrete level, and for block b:

(P(M), <)
F : P(M) — P(M)

is a complete lattice, hence a CPO

is the concrete semantic (“post”) function of b

thus, the concrete semantics writes down as [b] = IfpyF

@ Assumptions in the abstract level:

Mt
Ymem : M — P(M)
FioME — M

v i M* x M# — MF

Xavier Rival (INRIA)

set of abstract elements, no order a priori

concretization
sound abstract semantic function

i.e., such that F o Ymem C Ymem © F*
widening operator, terminates, and such that

’Ymcm(mg) U fynlcnl(”l’f) g f}/mcm(”lg V TTLf)

Shape analysis based on separation logic
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Computing a loop abstract post-condition

Loop abstract semantics

The abstract semantics of loop while(rand()){b} is calculated as the limit of the
sequence of abstract iterates below:

{525

mh, = mhv Fi(mf)

Soundness proof:
e by induction over n, |, ., FX(0) € Yumem (m3)

@ by the property of widening, the abstract sequence converges at a rank N:
Vk > N, m! = ml, thus

|fP(oF = U Fk(w) C ’Ymem(m/ti/)
k
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Discussion on the abstract ordering

How about the abstract ordering ? We assumed NONE so far...
@ Logical ordering, induced by concretization, used for proofs
mg C m’f L= ”/-Ymem(mg) c '-Ymem(”tf)”

o Approximation of the logical ordering, implemented as a function
is_le: M*f x Mf — {true, T}, used to test the convergence of abstract
iterates

is_le(mg, m{) = true = Yuwom () < Yunem ()

Abstract semantics is not assumed (and is actually most likely NOT)
monotone with respect to either of these orders...

o Also, computational ordering would be used for proving widening
termination
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Conclusion

Updates and summarization

Weak updates cause significant precision loss...
Separation logic makes updates strong

Separation logic

Separating conjunction combines properties on disjoint stores

o Fundamental idea: * forces to identify what is modified

o Before an update (or a read) takes place, memory cells need to be
materialized

@ Local reasoning: properties on unmodified cells pertain

Summaries

Inductive predicates describe unbounded memory regions

o Last lecture: array segments and transitive closure (TVLA)
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Conclusion

Partial concretization, Global abstraction

Separation and summaries should be maintained by the analysis

)

Last lecture: Shre S ost
partially abstract
concretize
p
Spre—— Spost

Today, two separate processes:

Local (partial) concretization Global abstraction
For materialization: Widening on loop heads:
Shre Sty st
unfold
(materialize)
.
Sgre,ref—) Sgost Sg — V — Slu

v
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Bibliography

o [JR]: Separation Logic: A Logic for Shared Mutable Data Structures.
John C. Reynolds. In LICS'02, pages 55-74, 2002.

o [DHY]: A Local Shape Analysis Based on Separation Logic.
Dino Distefano, Peter W. O’Hearn et Hongseok Yang.
In TACAS'06, pages 287-302.

o [CR]: Relational inductive shape analysis.
Bor-Yuh Evan Chang et Xavier Rival.
In POPL’'08, pages 247-260, 2008.

o [AV]: Abstract Cofibered Domains: Application to the Alias Analysis
of Untyped Programs.
Arnaud Venet. In SAS'96, pages 366—382.

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 92 / 96



Conclusion

Assignment and paper reading

The Frame rule:
o formalize the Hoare logic rules for a language with pointer assignments and
condition tests

@ prove the Frame rule by induction over the syntax of programs

Reading;:

Separation Logic: A Logic for Shared Mutable Data Structures.

John C. Reynolds. In LICS'02, pages 5574, 2002. Formalizes the Frame
rule, among others
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Internships

Internship on memory abstraction

Reduced product of TVLA and separation logic abstract domains:

@ reduced product allows to express conjunctive properties
often used in numeric abstract domains, but not for heap abstraction

@ TVLA (previous course) uses low level local predicates
@ separation logic is based on region predicates
@ how to combine them 7 what information would we gain 7

Summarization based on universal quantification:

@ memory abstractions use summarization
for arrays, arrays segments, linked structures...

@ another form of summarization based on an unbounded set E
*{P(x) | x € E}

definition of fold / unfold, analysis operations...

@ analysis of new kinds of structures, e.g., union finds
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Internships

Internship on Automated Verification of Fault-Tolerant
Distributed Systems

Supervised by Cezara Dragoi, PhD funding available

Fault tolerance is achieved using replication: the application/data is copied on
different processess; at the core of replication is the consensus that ensures that
all replicas are identical!

Theoretical and practical challenges
Class of programs:

@ Implementation of consensus: Zab, Viewstamped, Multi-Paxos, PBFT (Practical
Byzantine Faut Tolerant consensus)

@ Consensus protocols but also other weaker forms of agreement, e.g., lattice
agreement, blockchain, where replicas are different but there is a notion of
convergence

Verification challenges:

@ Abstract domains for consensus: logics that capture the specification and the
transition relation of the protocol/implementation with good algorithmic properties

@ Development of modular verification techniques for safety and liveness, e.g., Hoare
like style reasoning

Xavier Rival (INRIA) Shape analysis based on separation logic Oct, 25th, 2017 926 / 96



	An introduction to separation logic
	A shape abstract domain relying on separation
	Combination with a numerical domain
	Standard static analysis algorithms
	Overview of the analysis
	Post-conditions and unfolding
	Folding: widening and inclusion checking
	Abstract interpretation framework: assumptions and results

	Conclusion
	Internships

