Relational Numerical Abstract Domains

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2017-2018

Course 04 4 October 2017

Outline

- The need for relational domains.
- Presentation of a few relational numerical abstract domains
 - linear equality domain
 - polyhedra domain
 - weakly relational domains: zones, octagons
- Bibliography

Shortcomings of non-relational domains

Accumulated loss of precision

Non-relation domains cannot represent variable relationships

Rate limiter Y ← 0; while • 1=1 do X ← [-128,128]; D ← [0,16]; S ← Y; Y ← X; R ← X - S;

if $R \le -D$ then $Y \leftarrow S - D$ fi;

if R > D then $Y \leftarrow S + D$ fi

done

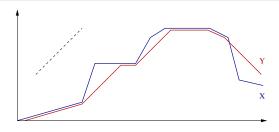
X: input signal

Y: output signal

S: last output

R: delta Y - S

D: max. allowed for |R|



Accumulated loss of precision

Non-relation domains cannot represent variable relationships

Rate limiter

```
\begin{array}{l} Y \leftarrow \text{O; while} \bullet \text{1=1 do} \\ \text{X} \leftarrow \text{[-128,128]; D} \leftarrow \text{[0,16];} \\ \text{S} \leftarrow \text{Y; Y} \leftarrow \text{X; R} \leftarrow \text{X} - \text{S;} \\ \text{if R} \leq \text{-D then Y} \leftarrow \text{S} - \text{D fi;} \\ \text{if R} \geq \text{D then Y} \leftarrow \text{S} + \text{D fi} \\ \text{done} \end{array}
```

X: input signal

: output signal

S: last output

R: delta Y - S

D: max. allowed for |R|

Iterations in the interval domain (without widening):

$\mathcal{X}_{ullet}^{\sharp 0}$	$\mathcal{X}_{ullet}^{\sharp 1}$	$\mathcal{X}_{\bullet}^{\sharp 2}$	 $\mathcal{X}^{\sharp n}$
Y = 0	$ Y \le 144$	$ Y \le 160$	 $ Y \leq 128 + 16n$

In fact, $Y \in [-128, 128]$ always holds.

To prove that, e.g. $Y \ge -128$, we must be able to:

- represent the properties R = X S and $R \le -D$
- combine them to deduce $S X \ge D$, and then $Y = S D \ge X$

Antoine Miné

The need for relational loop invariants

To prove some invariant after the end of a loop, we often need to find a loop invariant of a more complex form

```
relational loop invariant

X ← 0; I ← 1;

while • I < 5000 do

if [0,1] = 1 then X ← X + 1 else X ← X - 1 fi;

I ← I + 1

done •
```

```
A non-relational analysis finds at \blacklozenge that I=5000 and X\in\mathbb{Z}
```

The best invariant is:
$$(I = 5000) \land (X \in [-4999, 4999]) \land (X \equiv 0 \text{ [2]})$$

To find this non-relational invariant, we must find a relational loop invariant at \bullet : $(-I < X < I) \land (X + I \equiv 1 \ [2]) \land (I \in [1,5000])$, and apply the loop exit condition $C^{\sharp} \llbracket I \geq 5000 \rrbracket$

Modular analysis

store the maximum of X,Y,0 into Z

```
\begin{array}{c} \underline{\text{max}}(X,Y,Z) \\ \\ Z \leftarrow X ; \\ \text{if } Y > Z \text{ then } Z \leftarrow Y ; \\ \text{if } Z < 0 \text{ then } Z \leftarrow 0; \end{array}
```

Modular analysis:

- analyze a procedure once (procedure summary)
- reuse the summary at each call site (instantiation)
 ⇒ improved efficiency

Modular analysis

store the maximum of X,Y,0 into Z'

```
\frac{\max(X,Y,Z)}{X' \leftarrow X; Y' \leftarrow Y; Z' \leftarrow Z;}
Z' \leftarrow X';
if Y' > Z' then Z' \lefta Y';
if Z' < 0 then Z' \lefta 0;
(Z' \ge X \land Z' \ge Y \land Z' \ge 0 \land X' = X \land Y' = Y)
```

Modular analysis:

- analyze a procedure once (procedure summary)
- reuse the summary at each call site (instantiation)
 ⇒ improved efficiency
- infer a relation between input X,Y,Z and output X',Y',Z' values, in $\mathcal{P}((\mathbb{V} \to \mathbb{R}) \times (\mathbb{V} \to \mathbb{R})) \equiv \mathcal{P}((\mathbb{V} \times \mathbb{V}) \to \mathbb{R})$
- requires inferring relational information

[Anco10], [Jean09]

Linear equality domain

The affine equality domain

Here $\mathbb{I} \in {\mathbb{Q}, \mathbb{R}}$.

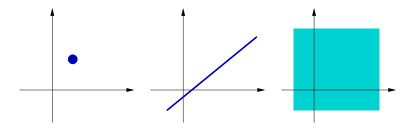
We look for invariants of the form:

$$\bigwedge_{i} \left(\sum_{i=1}^{n} \alpha_{ij} V_{i} = \beta_{j} \right), \ \alpha_{ij}, \beta_{j} \in \mathbb{I}$$

where all the α_{ij} and β_j are inferred automatically.

We use a domain of affine spaces proposed by [Karr76]:

$$\mathcal{D}^{\sharp} \stackrel{\mathrm{def}}{=} \{ \text{ affine subspaces of } \mathbb{V} \to \mathbb{I} \}$$



Affine equality representation

Machine representation: an affine subspace is represented as

- either the constant ⊥[♯],
- or a pair $\langle \mathbf{M}, \vec{C} \rangle$ where
 - $\mathbf{M} \in \mathbb{I}^{m \times n}$ is a $m \times n$ matrix, $n = |\mathbb{V}|$ and $m \le n$,
 - $\vec{C} \in \mathbb{I}^m$ is a row-vector with m rows.

 $\langle \mathbf{M}, \vec{\mathcal{C}} \rangle$ represents an equation system, with solutions:

$$\gamma(\langle \mathsf{M}, \vec{C} \rangle) \stackrel{\mathrm{def}}{=} \{ \ \vec{V} \in \mathbb{I}^n \ | \ \mathsf{M} \times \vec{V} = \vec{C} \ \}$$

M should be in row echelon form:

• $\forall i \leq m$: $\exists k_i$: $M_{ik_i} = 1$ and

$$\forall c < k_i : M_{ic} = 0, \ \forall l \neq i : M_{lk_i} = 0,$$

• if i < i' then $k_i < k_{i'}$ (leading index)

example:

		_				
I	1	0	0	5	0	-
1	0	1	0	6	0	
	0	0	1	7	0	
	0	0	0	0	1	

Remarks:

the representation is unique

as $m \le n = |\mathbb{V}|$, the memory cost is in $\mathcal{O}(n^2)$ at worst \top is represented as the empty equation system: m = 0

Galois connection

Galois connection:

(actually, a Galois insertion)

between arbitrary subsets and affine subsets

$$(\mathcal{P}(\mathbb{I}^n),\subseteq) \stackrel{\gamma}{\longleftarrow_{\alpha}} (Aff(\mathbb{I}^n),\subseteq)$$

- $\bullet \ \gamma(X) \stackrel{\text{def}}{=} X \tag{identity}$
- $\alpha(X) \stackrel{\text{def}}{=}$ smallest affine subset containing X

 $Aff(\mathbb{I}^n)$ is closed under arbitrary intersections, so we have:

$$\alpha(X) = \bigcap \{ Y \in Aff(\mathbb{I}^n) | X \subseteq Y \}$$

 $Aff(\mathbb{I}^n)$ contains every point in \mathbb{I}^n

we can also construct $\alpha(X)$ by abstract union:

$$\alpha(X) = \cup^{\sharp} \left\{ \left\{ x \right\} \mid x \in X \right\}$$

Notes:

- we have assimilated $\mathbb{V} \to \mathbb{I}$ to \mathbb{I}^n
- we have used $Aff(\mathbb{I}^n)$ instead of the matrix representation \mathcal{D}^{\sharp} for simplicity; a Galois connection also exists between $\mathcal{P}(\mathbb{I}^n)$ and \mathcal{D}^{\sharp}

Normalisation and emptiness testing

Let $\mathbf{M} \times \vec{V} = \vec{C}$ be a system, not necessarily in normal form.

The Gaussian reduction $Gauss(\langle \mathbf{M}, \vec{C} \rangle)$ tells in $\mathcal{O}(n^3)$ time:

- whether the system is satisfiable, and in that case
- gives an equivalent system $\langle \mathbf{M}', \vec{C'} \rangle$ in normal form

i.e. returns an element in \mathcal{D}^{\sharp} .

Principle: reorder lines, and combine lines linearly to eliminate variables

Example:

Affine equality operators

Applications

If
$$\mathcal{X}^{\sharp}$$
, $\mathcal{Y}^{\sharp} \neq \perp^{\sharp}$, we define:

$$\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \textit{Gauss} \left(\left\langle \left[\begin{array}{c} \mathbf{M}_{\mathcal{X}^{\sharp}} \\ \mathbf{M}_{\mathcal{Y}^{\sharp}} \end{array} \right], \left[\begin{array}{c} \vec{C}_{\mathcal{X}^{\sharp}} \\ \vec{C}_{\mathcal{Y}^{\sharp}} \end{array} \right] \right\rangle \right)$$

$$\mathcal{X}^{\sharp} = {}^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \mathbf{M}_{\mathcal{X}^{\sharp}} = \mathbf{M}_{\mathcal{Y}^{\sharp}} \quad \text{and} \quad \vec{C}_{\mathcal{X}^{\sharp}} = \vec{C}_{\mathcal{Y}^{\sharp}}$$

$$\mathcal{X}^{\sharp} \subset^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} = {}^{\sharp} \mathcal{X}^{\sharp}$$

$$\mathsf{C}^{\sharp} \llbracket \sum_{j} \alpha_{j} \mathsf{V}_{j} - \beta = 0 \, \rrbracket \, \mathcal{X}^{\sharp} \, \stackrel{\mathrm{def}}{=} \, \mathit{Gauss} \left(\left\langle \left[\begin{array}{c} \mathsf{M}_{\mathcal{X}^{\sharp}} \\ \alpha_{1} \cdots \alpha_{n} \end{array} \right], \left[\begin{array}{c} \vec{\mathsf{C}}_{\mathcal{X}^{\sharp}} \\ \beta \end{array} \right] \right\rangle \right)$$

$$C^{\sharp} \llbracket e \bowtie 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\mathrm{def}}{=} \mathcal{X}^{\sharp}$$
 for other tests

Remark:

$$\subseteq^{\sharp}, =^{\sharp}, \cap^{\sharp}, =^{\sharp} \text{ and } \mathsf{C}^{\sharp} \llbracket \sum_{j} \alpha_{j} V_{j} - \beta = 0 \rrbracket \text{ are exact:} \\ \mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \iff \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(\mathcal{Y}^{\sharp}), \quad \gamma(\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp}) = \gamma(\mathcal{X}^{\sharp}) \cap \gamma(\mathcal{Y}^{\sharp}), \dots$$

Generator representation

Generator representation

An affine subspace can also be represented as a set of vector generators $\vec{G}_1, \ldots, \vec{G}_m$ and an origin point \vec{O} , denoted as $[\mathbf{G}, \vec{O}]$.

$$\gamma([\mathbf{G}, \vec{O}]) \stackrel{\mathrm{def}}{=} \{ \mathbf{G} \times \vec{\lambda} + \vec{O} \mid \vec{\lambda} \in \mathbb{I}^m \} \quad (\mathbf{G} \in \mathbb{I}^{n \times m}, \vec{O} \in \mathbb{I}^n)$$

We can switch between a generator and a constraint representation:

• From generators to constraints: $\langle \mathbf{M}, \vec{C} \rangle = \textit{Cons}([\mathbf{G}, \vec{O}])$

Write the system $\vec{V} = \mathbf{G} \times \vec{\lambda} + \vec{O}$ with variables \vec{V} , $\vec{\lambda}$. Solve it in $\vec{\lambda}$ (by row operations).

Keep the constraints involving only \vec{V} .

e.g.
$$\left\{ \begin{array}{ll} X & = & \lambda + 2 \\ Y & = & 2\lambda + \mu + 3 \\ Z & = & \mu \end{array} \right. \Longrightarrow \left\{ \begin{array}{ll} X - 2 & = & \lambda \\ -2X + Y + 1 & = & \mu \\ 2X - Y + Z - 1 & = & 0 \end{array} \right.$$

The result is: 2X - Y + Z = 1.

Generator representation (cont.)

• From constraints to generators: $[\mathbf{G}, \vec{O}] \stackrel{\text{def}}{=} \textit{Gen}(\langle \mathbf{M}, \vec{C} \rangle)$

Assume $\langle \mathbf{M}, \vec{C} \rangle$ is normalized. For each non-leading variable V, assign a distinct λ_V , solve leading variables in terms of non-leading ones.

e.g.
$$\left\{ \begin{array}{ccc} X + 0.5Y & = & 7 \\ Z & = & 5 \end{array} \right. \implies \left[\begin{array}{c} -0.5 \\ 1 \\ 0 \end{array} \right] \lambda_Y + \left[\begin{array}{c} 7 \\ 0 \\ 5 \end{array} \right]$$

Affine equality operators (cont.)

Applications

Given
$$\mathcal{X}^{\sharp}$$
, $\mathcal{Y}^{\sharp} \neq \bot^{\sharp}$, we define:
$$\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\mathrm{def}}{=} \mathit{Cons} \left(\left[\mathbf{G}_{\mathcal{X}^{\sharp}} \; \mathbf{G}_{\mathcal{Y}^{\sharp}} \; (\vec{O}_{\mathcal{Y}^{\sharp}} - \vec{O}_{\mathcal{X}^{\sharp}}), \; \vec{O}_{\mathcal{X}^{\sharp}} \right] \right)$$

$$\mathsf{C}^{\sharp} \left[V_{j} \leftarrow \left[-\infty, +\infty \right] \right] \mathcal{X}^{\sharp} \stackrel{\mathrm{def}}{=} \mathit{Cons} \left(\left[\mathbf{G}_{\mathcal{X}^{\sharp}} \; \vec{x_{j}}, \; \vec{O}_{\mathcal{X}^{\sharp}} \right] \right)$$

$$\mathsf{C}^{\sharp} \left[V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i} + \beta \right] \mathcal{X}^{\sharp} \stackrel{\mathrm{def}}{=}$$
 if $\alpha_{j} = 0$, $(\mathsf{C}^{\sharp} \left[\sum_{i} \alpha_{i} V_{i} - V_{j} + \beta = 0 \right] \circ \mathsf{C}^{\sharp} \left[V_{j} \leftarrow \left[-\infty, +\infty \right] \right] \right) \mathcal{X}^{\sharp}$ if $\alpha_{j} \neq 0$, \mathcal{X}^{\sharp} where V_{j} is replaced with $(V_{j} - \sum_{i \neq j} \alpha_{i} V_{i} - \beta) / \alpha_{j}$ (proofs on next slide)
$$\mathsf{C}^{\sharp} \left[V_{j} \leftarrow \mathsf{e} \right] \mathcal{X}^{\sharp} \stackrel{\mathrm{def}}{=} \mathsf{C}^{\sharp} \left[V_{j} \leftarrow \left[-\infty, +\infty \right] \right] \mathcal{X}^{\sharp} \text{ for other assignments}$$

Remarks:

- ∪[‡] is optimal, but not exact.
- $C^{\sharp} \llbracket V_i \leftarrow \sum_i \alpha_i V_i + \beta \rrbracket$ and $C^{\sharp} \llbracket V_i \leftarrow [-\infty, +\infty] \rrbracket$ are exact.

Affine assignments: proofs

$$C^{\sharp} \llbracket V_j \leftarrow \sum_i \alpha_i V_i + \beta \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=}$$
if $\alpha_j = 0$, $(C^{\sharp} \llbracket \sum_i \alpha_i V_i - V_j + \beta = 0 \rrbracket \circ C^{\sharp} \llbracket V_j \leftarrow [-\infty, +\infty] \rrbracket) \mathcal{X}^{\sharp}$
if $\alpha_j \neq 0$, \mathcal{X}^{\sharp} where V_j is replaced with $(V_j - \sum_{i \neq j} \alpha_i V_i - \beta) / \alpha_j$

Proof sketch:

we use the following identities in the concrete

non-invertible assignment: $\alpha_i = 0$

$$\mathbb{C}[\![V_j \leftarrow e]\!] = \mathbb{C}[\![V_j \leftarrow e]\!] \circ \mathbb{C}[\![V_j \leftarrow [-\infty, +\infty]]\!]$$
 as the value of V_j is not used in

so:
$$C[V_j \leftarrow e] = C[V_j - e = 0] \circ C[V_j \leftarrow [-\infty, +\infty]]$$

 \Longrightarrow reduces the assignment to a test

invertible assignment: $\alpha_j \neq 0$

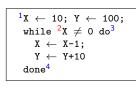
$$\begin{array}{l} \mathbb{C}[\![V_j \leftarrow e]\!] \subseteq \mathbb{C}[\![V_j \leftarrow e]\!] \circ \mathbb{C}[\![V_j \leftarrow [-\infty, +\infty]]\!] \text{ as e depends on } V \\ \text{(e.g., } \mathbb{C}[\![V \leftarrow V + 1]\!] \neq \mathbb{C}[\![V \leftarrow V + 1]\!] \circ \mathbb{C}[\![V \leftarrow [-\infty, +\infty]]\!]) \\ \rho \in \mathbb{C}[\![V_j \leftarrow e]\!] R \iff \exists \rho' \in R : \rho = \rho'[V_j \mapsto \sum_i \alpha_i \rho'(V_i) + \beta] \\ \iff \exists \rho' \in R : \rho[V_j \mapsto (\rho(V_j) - \sum_{i \neq j} \alpha_i \rho'(V_i) - \beta)/\alpha_j] = \rho' \\ \iff \rho[V_i \mapsto (\rho(V_j) - \sum_{i \neq j} \alpha_i \rho(V_i) - \beta)/\alpha_j] \in R \\ \end{array}$$

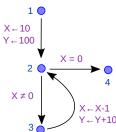
⇒ reduces the assignment to a substitution by the inverse expression

Analysis example

No infinite increasing chain: we can iterate without widening.

Forward analysis example:





ℓ	$\mathcal{X}^{\sharp 0}_{\ell}$	$\mathcal{X}_{\ell}^{\sharp 1}$	$\mathcal{X}_{\ell}^{\sharp 2}$	$\mathcal{X}_{\ell}^{\sharp 3}$	$\mathcal{X}_{\ell}^{\sharp 4}$
1	_#	⊤#	#	⊤ ♯	#
2	⊥#	(10, 100)	(10, 100)	10X + Y = 200	10X + Y = 200
3	⊥#	`#	(10, 100)	(10, 100)	10X + Y = 200
4	⊥#	\perp^{\sharp}	` ⊥♯ ´	`#	(0, 200)

Note in particular:

$$\mathcal{X}_{2}^{\sharp 3} = \{(10, 100)\} \cup^{\sharp} \{(9, 110)\} = \{(X, Y) \mid 10X + Y = 200\}$$

Backward affine equality operators

Backward assignments:

$$\overleftarrow{C}^{\sharp} \llbracket V_j \leftarrow [-\infty, +\infty] \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}) \stackrel{\text{def}}{=} \mathcal{X}^{\sharp} \cap^{\sharp} (C^{\sharp} \llbracket V_j \leftarrow [-\infty, +\infty] \rrbracket \mathcal{R}^{\sharp})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_j \leftarrow \sum_i \alpha_i V_i + \beta \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}) \stackrel{\text{def}}{=}$$

$$\mathcal{X}^{\sharp} \cap^{\sharp} (\mathcal{R}^{\sharp} \text{ where } V_j \text{ is replaced with } (\sum_i \alpha_i V_i + \beta))$$
(reduces to a substitution by the (non-inverted) expression)
$$\overleftarrow{C}^{\sharp} \llbracket V_j \leftarrow e \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}) \stackrel{\text{def}}{=} \overleftarrow{C}^{\sharp} \llbracket V_j \leftarrow [-\infty, +\infty] \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp})$$
for other assignments

Remarks:

• $C^{\sharp} \llbracket V_j \leftarrow \sum_i \alpha_i V_i + \beta \rrbracket$ and $C^{\sharp} \llbracket V_j \leftarrow [-\infty, +\infty] \rrbracket$ are exact

Constraint-only equality domain

In fact [Karr76] does not use the generator representation.

(rationale: few constraints but many generators in practice)

We need to redefine two operators: forgetting and union.

•
$$C^{\sharp}[V_j \leftarrow [-\infty, +\infty]]$$

Idea:

We have to remove all the occurrences of V_j but reduce the number of equations by only one

Algorithm:

Pick the row $\langle \vec{M}_i, C_i \rangle$ such that $M_{ij} \neq 0$ and i maximal. Use it to eliminate all non-0 occurrences of V_j in \mathbf{M} . (i maximal $\implies \mathbf{M}$ stays in row echelon form)

Then remove the row $\langle \vec{M}_i, C_i \rangle$.

e.g. forgetting Z:
$$\begin{cases} X + Z = 10 \\ Y + Z = 7 \end{cases} \implies \begin{cases} X - Y = 3 \end{cases}$$

The operator is exact.

Constraint-only equality domain (cont.)

• $\langle \mathbf{M}, \vec{C} \rangle \cup^{\sharp} \langle \mathbf{N}, \vec{D} \rangle$

<u>Idea:</u> unify columns 1 to n in $\langle \mathbf{M}, \vec{C} \rangle$ and $\langle \mathbf{N}, \vec{D} \rangle$ using row operations.

Algorithm sketch:

Assume that we have unified columns 1 to k to get $\begin{pmatrix} \mathbf{R} \\ \mathbf{0} \end{pmatrix}$, arguments are in row echelon form, and we have to unify at column k+1: ${}^t(\vec{0}\ 1\ \vec{0})$ with ${}^t(\vec{\beta}\ 0\ \vec{0})$

$$\begin{pmatrix} \mathbf{R} \ \vec{0} \ \mathbf{M}_{1} \\ \vec{0} \ \mathbf{1} \ \vec{M}_{2} \\ \mathbf{0} \ \vec{0} \ \mathbf{M}_{3} \end{pmatrix}, \begin{pmatrix} \mathbf{R} \ \vec{\beta} \ \mathbf{N}_{1} \\ \vec{0} \ \mathbf{0} \ \vec{N}_{2} \\ \mathbf{0} \ \vec{0} \ \mathbf{N}_{3} \end{pmatrix} \Longrightarrow \begin{pmatrix} \mathbf{R} \ \vec{\beta} \ \mathbf{M}_{1}' \\ \vec{0} \ \mathbf{0} \ \vec{0} \\ \mathbf{0} \ \vec{0} \ \mathbf{M}_{3} \end{pmatrix}, \begin{pmatrix} \mathbf{R} \ \vec{\beta} \ \mathbf{N}_{1} \\ \vec{0} \ \mathbf{0} \ \vec{N}_{2} \\ \mathbf{0} \ \vec{0} \ \mathbf{N}_{3} \end{pmatrix}$$

Use the row $(\vec{0} \ 1 \ \vec{M_2})$ to create $\vec{\beta}$ in the left argument

Then remove the row $(\vec{0} \ 1 \ \vec{M_2})$

The right argument is unchanged

 \implies we have now unified columns 1 to k+1

Unifying ${}^t(\vec{\alpha}\ 0\ \vec{0})$ and ${}^t(\vec{0}\ 1\ \vec{0})$ is similar

Unifying ${}^t(\vec{\alpha}\ 0\ \vec{0})$ and ${}^t(\vec{\beta}\ 0\ \vec{0})$ is a bit more complicated... see [Karr76] No other case possible as we are in row echelon form

A note on integers

Suppose now that $\mathbb{I} = \mathbb{Z}$.

- $\mathbb Z$ is not closed under affine operations: $(x/y) \times y \neq x$,
- Gaussian reduction implemented in $\mathbb Z$ is unsound.

(e.g. unsound normalization $2X + Y = 19 \not\Longrightarrow X = 9$, by truncation)

One possible solution:

- ullet keep a representation using matrices with coefficients in \mathbb{Q} ,
- keep all abstract operators as in Q,
- change the concretization into: $\gamma_{\mathbb{Z}}(\mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \gamma(\mathcal{X}^{\sharp}) \cap \mathbb{Z}^{n}$.

With respect to $\gamma_{\mathbb{Z}}$, the operators are **no longer best** / **exact**.

Example: where \mathcal{X}^{\sharp} is the equation Y = 2X

- $(C[X \leftarrow 0] \circ \gamma_{\mathbb{Z}})X^{\sharp} = \{(X, Y) \mid X = 0, Y \text{ is even }\}$
- ⇒ The analysis forgets the "intergerness" of variables.

The congruence equality domain

Another possible solution: use a more expressive domain.

We look for invariants of the form:
$$\bigwedge_{j} \left(\sum_{i=1}^{n} m_{ij} V_{i} \equiv c_{j} \left[k_{j} \right] \right).$$

Algorithms:

- there exists minimal forms (but not unique),
 computed using an extension of Euclide's algorithm,
- there is a dual representation: $\{ \mathbf{G} \times \vec{\lambda} + \vec{O} \mid \vec{\lambda} \in \mathbb{Z}^m \}$, and passage algorithms,
- see [Gran91].

Polyhedron domain

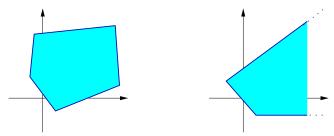
The polyhedron domain

Here again, $\mathbb{I} \in {\mathbb{Q}, \mathbb{R}}$.

We look for invariants of the form:
$$\bigwedge_{j} \left(\sum_{i=1}^{n} \alpha_{ij} V_{i} \geq \beta_{j} \right)$$
.

We use the polyhedron domain proposed by [Cous78]:

$$\mathcal{D}^{\sharp} \stackrel{\text{def}}{=} \{ \text{closed convex polyhedra of } \mathbb{V} \to \mathbb{I} \}$$



Note: polyhedra need not be bounded (\neq polytopes).

Double description of polyhedra

Polyhedra have dual representations (Weyl–Minkowski Theorem). (see [Schr86])

Constraint representation

```
\langle \mathbf{M}, \vec{C} \rangle with \mathbf{M} \in \mathbb{I}^{m \times n} and \vec{C} \in \mathbb{I}^m represents: \gamma(\langle \mathbf{M}, \vec{C} \rangle) \stackrel{\text{def}}{=} \{ \vec{V} \mid \mathbf{M} \times \vec{V} \geq \vec{C} \}
```

We will also often use a constraint set notation $\{\sum_i \alpha_{ij} V_i \geq \beta_j \}$.

Generator representation

[P, R] where

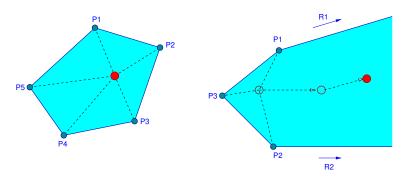
- $\mathbf{P} \in \mathbb{I}^{n \times p}$ is a set of p points: $\vec{P}_1, \dots, \vec{P}_p$
- $\mathbf{R} \in \mathbb{I}^{n \times r}$ is a set of r rays: $\vec{R}_1, \dots, \vec{R}_r$

$$\gamma([\mathsf{P},\mathsf{R}]) \, \stackrel{\mathrm{def}}{=} \, \left\{ \left(\textstyle \sum_{j=1}^{p} \alpha_j \vec{P}_j \right) + \left(\textstyle \sum_{j=1}^{r} \beta_j \vec{R}_j \right) \, | \, \forall j,\alpha_j,\beta_j \geq 0, \, \textstyle \sum_{j=1}^{p} \alpha_j = 1 \right\}$$

Double description of polyhedra (cont.)

Generator representation examples:

$$\gamma([\mathbf{P},\mathbf{R}]) \stackrel{\text{def}}{=} \{ \left(\sum_{j=1}^{p} \alpha_{j} \vec{P}_{j} \right) + \left(\sum_{j=1}^{r} \beta_{j} \vec{R}_{j} \right) | \forall j, \alpha_{j}, \beta_{j} \geq 0 : \sum_{j=1}^{p} \alpha_{j} = 1 \}$$



- the points define a bounded convex hull
- the rays allow unbounded polyhedra

Origin of duality

$\underline{\text{Dual}} \quad A^* \stackrel{\text{def}}{=} \left\{ \vec{x} \in \mathbb{I}^n \mid \forall \vec{a} \in A, \ \vec{a} \cdot \vec{x} \leq 0 \right. \right\}$

- $\{\vec{a}\}^*$ and $\{\lambda \vec{r} | \lambda \ge 0\}^*$ are half-spaces,
- $(A \cup B)^* = A^* \cap B^*$,
- if A is convex, closed, and $\vec{0} \in A$, then $A^{**} = A$.

Duality on polyhedral cones:

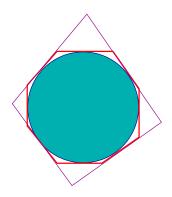
Cone:
$$C = \{ \vec{V} \mid \mathbf{M} \times \vec{V} \geq \vec{0} \}$$
 or $C = \{ \sum_{j=1}^{r} \beta_j \vec{R}_j | \forall j, \beta_j \geq 0 \}$ (polyhedron with no vertex, except $\vec{0}$)

- C* is also a polyhedral cone,
- $C^{**} = C$.
- a ray of C corresponds to a constraint of C*,
- a constraint of C corresponds to a ray of C*.

Extension to polyhedra: by homogenisation to polyhedral cones:

$$\begin{array}{c} \textbf{C(P)} \stackrel{\text{def}}{=} \{ \ \lambda \vec{V} \mid \lambda \geq 0, \ (V_1, \dots, V_n) \in \gamma(P), \ V_{n+1} = 1 \ \} \subseteq \mathbb{I}^{n+1} \\ \text{(polyhedron in } \mathbb{I}^n \simeq \text{polyhedral cone in } \mathbb{I}^{n+1}) \end{array}$$

Polyhedra representations



- No best abstraction α (e.g., a disc has infinitely many polyhedral over-approximations, but no best one)
- No memory bound on the representations

Polyhedra representations

Minimal representations

- A constraint / generator system is minimal if no constraint / generator can be omitted without changing the concretization
- Minimal representations are not unique
- No memory bound even on minimal representations

Example: three different constraint representations for a point

(a)

(b)

(non mimimal)

(minimal)

(minimal)

• (a)
$$y + x \ge 0, y - x \ge 0, y \le 0, y \ge -5$$

• (b)
$$y + x \ge 0, y - x \ge 0, y \le 0$$

• (c)
$$x < 0, x > 0, y < 0, y > 0$$

Chernikova's algorithm

Algorithm by [Cher68], improved by [LeVe92] to switch from a constraint system to an equivalent generator system

Why? most operators are easier on one representation

Notes:

- By duality, we can use the same algorithm to switch from generators to constraints
- The minimal generator system can be exponential in the original constraint system (e.g., hypercube: 2n constraints, 2ⁿ vertices)
- Equality constraints and lines (pairs of opposed rays) may be handled separately and more efficiently

Chernikova's algorithm (cont.)

Algorithm: incrementally add constraints one by one

Start with:
$$\left\{ \begin{array}{l} \mathbf{P}_0 = \{ \ (0, \dots, 0) \ \} \\ \mathbf{R}_0 = \{ \ \vec{x}_i, \ -\vec{x}_i \ | \ 1 \leq i \leq n \ \} \end{array} \right. \quad \text{(origin)}$$

For each constraint $\vec{M}_k \cdot \vec{V} \ge C_k \in \langle M, \vec{C} \rangle$, update $[P_{k-1}, R_{k-1}]$ to $[P_k, R_k]$.

Start with $P_k = R_k = \emptyset$,

- for any $\vec{P} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{P} \ge C_k$, add \vec{P} to \mathbf{P}_k
- for any $\vec{R} \in \mathbf{R}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{R} \geq 0$, add \vec{R} to \mathbf{R}_k
- for any $\vec{P}, \vec{Q} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{P} > C_k$ and $\vec{M}_k \cdot \vec{Q} < C_k$, add to \mathbf{P}_k : $\vec{O} \stackrel{\text{def}}{=} \frac{C_k \vec{M}_k \cdot \vec{Q}}{\vec{M}_k \cdot \vec{P} \vec{M}_k \cdot \vec{Q}} \vec{P} \frac{C_k \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{P} \vec{M}_k \cdot \vec{Q}} \vec{Q}$

i.e., move Q towards P along [Q, P] until it saturates the constraint

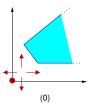
Chernikova's algorithm (cont.)

• for any $\vec{R}, \vec{S} \in \mathbf{R}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{R} > 0$ and $\vec{M}_k \cdot \vec{S} < 0$, add to \mathbf{R}_k : $\vec{O} \stackrel{\mathrm{def}}{=} (\vec{M}_k \cdot \vec{S}) \vec{R} - (\vec{M}_k \cdot \vec{R}) \vec{S}$ i.e., rotate S towards R until it is parallel to the constraint

• for any $\vec{P} \in \mathbf{P}_{k-1}$, $\vec{R} \in \mathbf{R}_{k-1}$ s.t. either $\vec{M}_k \cdot \vec{P} > C_k$ and $\vec{M}_k \cdot \vec{R} < 0$, or $\vec{M}_k \cdot \vec{P} < C_k$ and $\vec{M}_k \cdot \vec{R} > 0$ add to \mathbf{P}_k : $\vec{O} \stackrel{\mathrm{def}}{=} \vec{P} + \frac{C_k - \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{R}} \vec{R}$

Chernikova's algorithm example

Example:

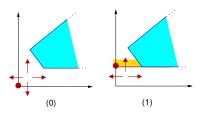


$$\mathbf{P}_0 = \{(0,0)\}$$

$$\mathbf{R}_0 = \{(1,0), (-1,0), (0,1), (0,-1)\}$$

Chernikova's algorithm example

Example:

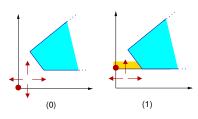


$$\begin{array}{ccc} \textbf{P}_0 = \{(0,0)\} \\ \textbf{Y} \geq 1 & \textbf{P}_1 = \{(0,1)\} \end{array}$$

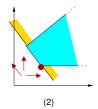
$$\begin{aligned} & \textbf{R}_0 = \{(1,0),\, (-1,0),\, (0,1),\, (0,-1)\} \\ & \textbf{R}_1 = \{(1,0),\, (-1,0),\, (0,1)\} \end{aligned}$$

Chernikova's algorithm example

Example:



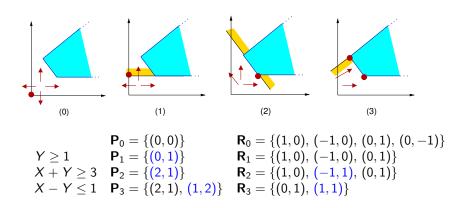
$$\begin{array}{ccc} & \textbf{P}_0 = \{(0,0)\} \\ Y \geq 1 & \textbf{P}_1 = \{(0,1)\} \\ X + Y \geq 3 & \textbf{P}_2 = \{(2,1)\} \end{array}$$



$$\begin{aligned} & \textbf{R}_0 = \{(1,0),\, (-1,0),\, (0,1),\, (0,-1)\} \\ & \textbf{R}_1 = \{(1,0),\, (-1,0),\, (0,1)\} \\ & \textbf{R}_2 = \{(1,0),\, (-1,1),\, (0,1)\} \end{aligned}$$

Chernikova's algorithm example

Example:



Redundancy removal

<u>Goal</u>: only introduce non-redundant points and rays during Chernikova's algorithm

<u>Definitions</u> (for rays in polyhedral cones)

Given
$$C = \{ \vec{V} \mid \mathbf{M} \times \vec{V} \ge \vec{0} \} = \{ \mathbf{R} \times \vec{\beta} \mid \vec{\beta} \ge \vec{0} \}.$$

- \vec{R} saturates $\vec{M}_k \cdot \vec{V} \ge 0 \iff \vec{M}_k \cdot \vec{R} = 0$
- $S(\vec{R},C) \stackrel{\text{def}}{=} \{ k \mid \vec{M}_k \cdot \vec{R} = 0 \}.$

Theorem:

assume C has no line $(\not\exists \vec{L} \neq \vec{0} \text{ s.t. } \forall \alpha, \, \alpha \vec{L} \in C)$ \vec{R} is non-redundant w.r.t. $\mathbf{R} \iff \not\exists \vec{R_i} \in \mathbf{R}, \, S(\vec{R}, C) \subseteq S(\vec{R_i}, C)$

- $S(\vec{R_i}, C)$, $\vec{R_i} \in \mathbf{R}$ is maintained during Chernikova's algorithm in a saturation matrix
- extension possible to polyhedra and lines
- various improvements exist [LeVe92]

Operators on polyhedra

Given $\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \perp^{\sharp}$, we define:

$$\mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \qquad \stackrel{\mathrm{def}}{\Longleftrightarrow} \qquad \left\{ \begin{array}{l} \forall \vec{P} \in \mathbf{P}_{\mathcal{X}^{\sharp}}, \; \mathbf{M}_{\mathcal{Y}^{\sharp}} \times \vec{P} \; \geq \; \vec{C}_{\mathcal{Y}^{\sharp}} \\ \forall \vec{R} \in \mathbf{R}_{\mathcal{X}^{\sharp}}, \; \mathbf{M}_{\mathcal{Y}^{\sharp}} \times \vec{R} \; \geq \; \vec{0} \end{array} \right.$$

(every generator of \mathcal{X}^{\sharp} must satisfy every constraint in \mathcal{Y}^{\sharp})

$$\mathcal{X}^{\sharp} = ^{\sharp} \mathcal{Y}^{\sharp} \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \mathcal{X}^{\sharp} \subseteq ^{\sharp} \mathcal{Y}^{\sharp} \quad \mathsf{and} \quad \mathcal{Y}^{\sharp} \subseteq ^{\sharp} \mathcal{X}^{\sharp}$$

$$\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \left\langle \left[\begin{array}{c} \mathbf{M}_{\mathcal{X}^{\sharp}} \\ \mathbf{M}_{\mathcal{Y}^{\sharp}} \end{array} \right], \left[\begin{array}{c} \vec{C}_{\mathcal{X}^{\sharp}} \\ \vec{C}_{\mathcal{Y}^{\sharp}} \end{array} \right] \right\rangle$$

(set union of sets of constraints)

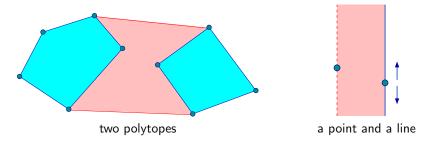
Remarks:

• \subseteq^{\sharp} , $=^{\sharp}$ and \cap^{\sharp} are exact.

Operators on polyhedra: join

$$\underline{\text{Join:}} \quad \mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \left[\left[\mathbf{P}_{\mathcal{X}^{\sharp}} \ \mathbf{P}_{\mathcal{Y}^{\sharp}} \right], \left[\mathbf{R}_{\mathcal{X}^{\sharp}} \ \mathbf{R}_{\mathcal{Y}^{\sharp}} \right] \right] \quad \text{(join generator sets)}$$

Examples:



 \cup^{\sharp} is optimal:

we get the topological closure of the convex hull of $\gamma(\mathcal{X}^\sharp) \cup \gamma(\mathcal{Y}^\sharp)$

Forward operators: affine tests

$$\mathbf{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} V_{i} + \beta \geq 0 \rrbracket \, \mathcal{X}^{\sharp} \stackrel{\mathrm{def}}{=} \, \left\langle \left[\begin{array}{c} \mathbf{M}_{\mathcal{X}^{\sharp}} \\ \alpha_{1} \cdots \alpha_{n} \end{array} \right], \left[\begin{array}{c} \vec{C}_{\mathcal{X}^{\sharp}} \\ -\beta \end{array} \right] \right\rangle$$

$$\begin{array}{c}
\mathbb{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} V_{i} + \beta = 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \\
(\mathbb{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} V_{i} + \beta \geq 0 \rrbracket \circ \mathbb{C}^{\sharp} \llbracket \sum_{i} (-\alpha_{i}) V_{i} - \beta \geq 0 \rrbracket) \mathcal{X}^{\sharp}
\end{array}$$

These test operators are exact.

Forward operators: forget

$$\mathsf{C}^{\sharp} \llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket \mathcal{X}^{\sharp} \stackrel{\mathrm{def}}{=} \llbracket \mathsf{P}_{\mathcal{X}^{\sharp}}, \llbracket \mathsf{R}_{\mathcal{X}^{\sharp}} \ \vec{x}_{j} \ (-\vec{x}_{j}) \rrbracket \rrbracket$$

This operator is exact.

It is also a sound abstraction for any assignment.

Forward operators: affine assignments

$$\begin{array}{l}
\mathbf{C}^{\sharp} \llbracket V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i} + \beta \rrbracket \mathcal{X}^{\sharp} \stackrel{\mathrm{def}}{=} \\
\text{if } \alpha_{j} = 0, \left(\mathbf{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} V_{i} - V_{j} + \beta = 0 \rrbracket \circ \mathbf{C}^{\sharp} \llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket \right) \mathcal{X}^{\sharp} \\
\text{if } \alpha_{j} \neq 0, \langle \mathbf{M}, \vec{C} \rangle \text{ where } V_{j} \text{ is replaced with } \frac{1}{\alpha_{j}} (V_{j} - \sum_{i \neq j} \alpha_{i} V_{i} - \beta)
\end{array}$$

Examples:

$$X \leftarrow X + Y$$

$$X \leftarrow Y$$

Affine assignments are exact.

They could also be defined on generator systems.

Backward assignments:

$$\overleftarrow{C}^{\sharp} \llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}) \stackrel{\text{def}}{=} \mathcal{X}^{\sharp} \cap^{\sharp} (C^{\sharp} \llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket \mathcal{R}^{\sharp})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i} + \beta \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}) \stackrel{\text{def}}{=}$$

$$\mathcal{X}^{\sharp} \cap^{\sharp} (\mathcal{R}^{\sharp} \text{ where } V_{j} \text{ is replaced with } (\sum_{i} \alpha_{i} V_{i} + \beta))$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j} \leftarrow e \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}) \stackrel{\text{def}}{=} \overleftarrow{C}^{\sharp} \llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp})$$
for other assignments

Note: identical to the case of linear equalities.

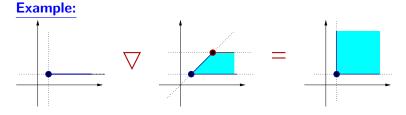
Polyhedra widening

 \mathcal{D}^\sharp has strictly increasing infinite chains \Longrightarrow we need a widening

Definition:

Take
$$\mathcal{X}^{\sharp}$$
 and \mathcal{Y}^{\sharp} in minimal constraint-set form $\mathcal{X}^{\sharp} \vee \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \{c \in \mathcal{X}^{\sharp} | \mathcal{Y}^{\sharp} \subseteq^{\sharp} \{c\}\}$

We suppress any unstable constraint $c \in \mathcal{X}^{\sharp}$, i.e., $\mathcal{Y}^{\sharp} \not\subseteq^{\sharp} \{c\}$



Polyhedra widening

 \mathcal{D}^\sharp has strictly increasing infinite chains \Longrightarrow we need a widening

Definition:

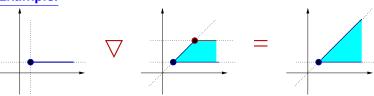
Take \mathcal{X}^{\sharp} and \mathcal{Y}^{\sharp} in minimal constraint-set form

$$\mathcal{X}^{\sharp} \lor \mathcal{Y}^{\sharp} \stackrel{\mathrm{def}}{=} \left\{ c \in \mathcal{X}^{\sharp} \middle| \mathcal{Y}^{\sharp} \subseteq^{\sharp} \left\{ c \right\} \right\} \ \cup \left\{ c \in \mathcal{Y}^{\sharp} \middle| \exists c' \in \mathcal{X}^{\sharp} \colon \mathcal{X}^{\sharp} =^{\sharp} \left(\mathcal{X}^{\sharp} \setminus c' \right) \cup \left\{ c \right\} \right\}$$

We suppress any unstable constraint $c \in \mathcal{X}^{\sharp}$, i.e., $\mathcal{Y}^{\sharp} \not\subseteq^{\sharp} \{c\}$

We also keep constraints $c \in \mathcal{Y}^{\sharp}$ equivalent to those in \mathcal{X}^{\sharp} , i.e., when $\exists c' \in \mathcal{X}^{\sharp} \colon \mathcal{X}^{\sharp} = ^{\sharp} (\mathcal{X}^{\sharp} \setminus c') \cup \{c\}$

Example:



Example analysis

Example program

```
X \leftarrow 2; I \leftarrow 0; while • I < 10 do if [0,1] = 0 then X \leftarrow X + 2 else X \leftarrow X - 3 fi; I \leftarrow I + 1 done •
```

Loop invariant:

Increasing iterations with widening at • give:

$$\begin{array}{lll} \mathcal{X}_{1}^{\sharp} &=& \{X=2,I=0\} \\ \mathcal{X}_{2}^{\sharp} &=& \{X=2,I=0\} \; \forall \; (\{X=2,I=0\} \cup^{\sharp} \; \{X\in[-1,4],\; I=1\}) \\ &=& \{X=2,I=0\} \; \forall \; \{I\in[0,1],\; 2-3I\leq X\leq 2I+2\} \\ &=& \{I\geq0,\; 2-3I\leq X\leq 2I+2\} \end{array}$$

Decreasing iterations (to find $I \leq 10$):

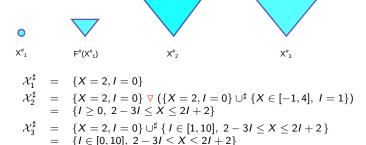
$$\begin{array}{rcl} \mathcal{X}_{3}^{\sharp} & = & \{X=2, I=0\} \cup^{\sharp} \{I \in [1,10], \ 2-3I \leq X \leq 2I+2\} \\ & = & \{I \in [0,10], \ 2-3I \leq X \leq 2I+2\} \end{array}$$

We find, at the end of the loop \blacklozenge : $I = 10 \land X \in [-28, 22]$.

Example analysis (illustration)

Example program

```
X \leftarrow 2; I \leftarrow 0; while • I < 10 do if [0,1] = 0 then X \leftarrow X + 2 else X \leftarrow X - 3 fi; I \leftarrow I + 1 done •
```



Other polyhedra widenings

Widening with thresholds:

Given a finite set T of constraints, we add to $\mathcal{X}^{\sharp} \triangledown \mathcal{Y}^{\sharp}$ all the constraints from T satisfied by both \mathcal{X}^{\sharp} and \mathcal{Y}^{\sharp} .

Delayed widening:

We replace $\mathcal{X}^{\sharp} \triangledown \mathcal{Y}^{\sharp}$ with $\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp}$ a finite number of times (this works for any widening and abstract domain).

See also [Bagn03].

Strict inequalities

The polyhedron domain can be extended to allow strict constraints: $\{ \vec{V} \mid \mathbf{M} \times \vec{V} \geq \vec{C} \text{ and } \mathbf{M}' \times \vec{V} > \vec{C}' \}$

Idea:

A non-closed polyhedron on \mathbb{V} is represented as a closed polyhedron P on $\mathbb{V}' \stackrel{\text{def}}{=} \mathbb{V} \cup \{V_{\epsilon}\}$.

$$\begin{array}{lll} \alpha_1 V_1 + \cdots + \alpha_n V_n + \mathbf{0} V_\epsilon \geq 0 & \text{represents} & \alpha_1 V_1 + \cdots + \alpha_n V_n \geq 0 \\ \alpha_1 V_1 + \cdots + \alpha_n V_n - \mathbf{c} V_\epsilon \geq 0, \ c > 0 & \text{represents} & \alpha_1 V_1 + \cdots + \alpha_n V_n > 0 \end{array}$$

P represents the non necessarily closed polyhedron:

$$\gamma_{\epsilon}(P) \stackrel{\text{def}}{=} \{ (V_1, \ldots, V_n) \mid \exists V_{\epsilon} > 0, \ (V_1, \ldots, V_n, V_{\epsilon}) \in \gamma(P) \}.$$

Notes:

- The minimal form needs some adaptation [Bagn02].
- Chernikova's algorithm, \cap^{\sharp} , \cup^{\sharp} , $C^{\sharp}[\![c]\!]$, and $C^{\sharp}[\![c]\!]$ can be easily reused.

Integer polyhedra

How can we deal with $\mathbb{I} = \mathbb{Z}$?

Issue: integer linear programming is difficult.

Example: satsfiability of conjunctions of linear constraints:

- polynomial cost in Q,
- NP-complete cost in \mathbb{Z} .

Possible solutions:

- Use some complete integer algorithms.
 (e.g. Presburger arithmetics)
 Costly, and we do not have any abstract domain structure.
- Keep \mathbb{Q} —polyhedra as representation, and change the concretization into: $\gamma_{\mathbb{Z}}(\mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \gamma(\mathcal{X}^{\sharp}) \cap \mathbb{Z}^{n}$. However, operators are no longer exact / optimal.

Weakly relational domains

Zone domain

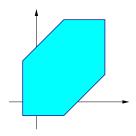
The zone domain

Here, $\mathbb{I} \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$.

We look for invariants of the form:

$$\bigwedge V_i - V_j \le c \text{ or } \pm V_i \le c, \quad c \in \mathbb{I}$$

A subset of \mathbb{I}^n bounded by such constraints is called a **zone**.



[Mine01a]

Machine representation

A potential constraint has the form: $V_j - V_i \le c$.

Potential graph: directed, weighted graph \mathcal{G}

- nodes are labelled with variables in V,
- we add an arc with weight c from V_i to V_j for each constraint $V_j V_i \le c$.

Difference Bound Matrix (DBM)

Adjacency matrix \mathbf{m} of \mathcal{G} :

- **m** is square, with size $n \times n$, and elements in $\mathbb{I} \cup \{+\infty\}$,
- $m_{ij} = c < +\infty$ denotes the constraint $V_j V_i \le c$,
- $m_{ij} = +\infty$ if there is no upper bound on $V_j V_i$.

Concretization:

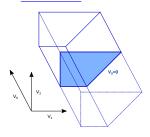
$$\gamma(\mathbf{m}) \stackrel{\text{def}}{=} \{ (v_1, \dots, v_n) \in \mathbb{I}^n \mid \forall i, j, \ v_i - v_i \leq m_{ij} \}.$$

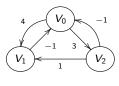
Machine representation (cont.)

Unary constraints add a constant null variable V_0 .

- **m** has size $(n+1) \times (n+1)$;
- $V_i \le c$ is denoted as $V_i V_0 \le c$, i.e., $m_{i0} = c$;
- $V_i \ge c$ is denoted as $V_0 V_i \le -c$, i.e., $m_{0i} = -c$;
- γ is now: $\gamma_0(\mathbf{m}) \stackrel{\text{def}}{=} \{ (v_1, \dots, v_n) \mid (0, v_1, \dots, v_n) \in \gamma(\mathbf{m}) \}.$

Example:





	V_0	V_1	V_2
V_0	$+\infty$	4	3
V_1	-1	$+\infty$	$+\infty$
V_2	-1	1	$+\infty$

The DBM lattice

 \mathcal{D}^{\sharp} contains all DBMs, plus \perp^{\sharp} .

 \leq on $\mathbb{I} \cup \{+\infty\}$ is extended point-wisely.

If $\mathbf{m}, \mathbf{n} \neq \perp^{\sharp}$:

$$\mathbf{m} \subseteq^{\sharp} \mathbf{n} \qquad \stackrel{\text{def}}{\Longleftrightarrow} \qquad \forall i, j, \ m_{ij} \leq n_{ij}$$

$$\mathbf{m} =^{\sharp} \mathbf{n} \qquad \stackrel{\text{def}}{\Longleftrightarrow} \qquad \forall i, j, \ m_{ij} = n_{ij}$$

$$\left[\mathbf{m} \cap^{\sharp} \mathbf{n}\right]_{ij} \qquad \stackrel{\text{def}}{=} \qquad \min(m_{ij}, n_{ij})$$

$$\left[\mathbf{m} \cup^{\sharp} \mathbf{n}\right]_{ij} \qquad \stackrel{\text{def}}{=} \qquad \max(m_{ij}, n_{ij})$$

$$\left[\uparrow^{\sharp}\right]_{ij} \qquad \stackrel{\text{def}}{=} \qquad +\infty$$

 $(\mathcal{D}^{\sharp},\subseteq^{\sharp},\cup^{\sharp},\cap^{\sharp},\perp^{\sharp},\top^{\sharp})$ is a lattice.

Remarks:

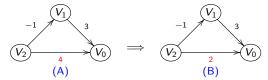
- \mathcal{D}^{\sharp} is complete if \leq is ($\mathbb{I} = \mathbb{R}$ or \mathbb{Z} , but not \mathbb{Q}),
- $\mathbf{m} \subseteq^{\sharp} \mathbf{n} \Longrightarrow \gamma_0(\mathbf{m}) \subseteq \gamma_0(\mathbf{n})$, but not the converse,
- $\mathbf{m} = {}^{\sharp} \mathbf{n} \Longrightarrow \gamma_0(\mathbf{m}) = \gamma_0(\mathbf{n})$, but not the converse.

Normal form, equality and inclusion testing

Issue: how can we compare $\gamma_0(\mathbf{m})$ and $\gamma_0(\mathbf{n})$?

Idea: find a normal form by propagating/tightening constraints.

$$\left\{ \begin{array}{l} V_0 - V_1 \leq 3 \\ V_1 - V_2 \leq -1 \\ V_0 - V_2 \leq {\color{red} 4} \end{array} \right. \qquad \left\{ \begin{array}{l} V_0 - V_1 \leq 3 \\ V_1 - V_2 \leq -1 \\ V_0 - V_2 \leq {\color{red} 2} \end{array} \right.$$



shortest-path closure m* Definition:

$$m_{ij}^* \stackrel{\text{def}}{=} \min_{\substack{N \ (i=i,\ldots,i_N=i)}} \sum_{k=1}^{N-1} m_{i_k i_{k+1}}$$

Exists only when **m** has no cycle with strictly negative weight.

Floyd-Warshall algorithm

Properties:

- $\gamma_0(\mathbf{m}) = \emptyset \iff \mathcal{G}$ has a cycle with strictly negative weight.
- if $\gamma_0(\mathbf{m}) \neq \emptyset$, the shortest-path graph \mathbf{m}^* is a normal form: $\mathbf{m}^* = \min_{\subseteq^{\sharp}} \left\{ \mathbf{n} \mid \gamma_0(\mathbf{m}) = \gamma_0(\mathbf{n}) \right\}$
- If $\gamma_0(\mathbf{m}), \gamma_0(\mathbf{n}) \neq \emptyset$, then
 - $\gamma_0(\mathbf{m}) = \gamma_0(\mathbf{n}) \iff \mathbf{m}^* = \mathbf{n}^*$,
 - $\gamma_0(\mathbf{m}) \subseteq \gamma_0(\mathbf{n}) \iff \mathbf{m}^* \subseteq^{\sharp} \mathbf{n}$.

Floyd-Warshall algorithm

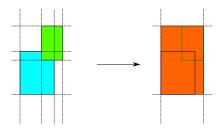
$$\begin{cases}
 m_{ij}^0 & \stackrel{\text{def}}{=} & m_{ij} \\
 m_{ij}^{k+1} & \stackrel{\text{def}}{=} & \min(m_{ij}^k, m_{ik}^k + m_{kj}^k)
\end{cases}$$

- If $\gamma_0(\mathbf{m}) \neq \emptyset$, then $\mathbf{m}^* = \mathbf{m}^{n+1}$, (normal form)
- $\gamma_0(\mathbf{m}) = \emptyset \iff \exists i, \ m_{ii}^{n+1} < 0,$ (emptiness testing)
- \mathbf{m}^{n+1} can be computed in $\mathcal{O}(n^3)$ time.

Abstract operators

Abstract join: naïve version \cup^{\sharp} (element-wise max)

∪[#] is a sound abstraction of ∪
 but γ₀(m ∪[#] n) is not necessarily the smallest zone containing γ₀(m) and γ₀(n)!



The union of two zones with \cup^{\sharp} is no more precise in the zone domain than in the interval domain!

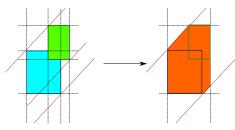
Abstract join: precise version: \cup^{\sharp} after closure

• $(\mathbf{m}^*) \cup^{\sharp} (\mathbf{n}^*)$ is however optimal

we have:
$$(\mathbf{m}^*) \cup^{\sharp} (\mathbf{n}^*) = \min_{\subseteq^{\sharp}} \ \{ \ \mathbf{o} \mid \gamma_0(\mathbf{o}) \supseteq \gamma_0(\mathbf{m}) \cup \gamma_0(\mathbf{n}) \ \}$$

which implies:

$$\gamma_0((\mathbf{m}^*) \cup^{\sharp} (\mathbf{n}^*)) = \min_{\subseteq} \{ \gamma_0(\mathbf{o}) \mid \gamma_0(\mathbf{o}) \supseteq \gamma_0(\mathbf{m}) \cup \gamma_0(\mathbf{n}) \}$$



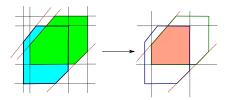
after closure, new constraints $c \leq X - Y \leq d$ give an increase in precision

• $(\mathbf{m}^*) \cup^{\sharp} (\mathbf{n}^*)$ is always closed.

Abstract intersection ∩[‡]: element-wise min

• \cap^{\sharp} is an exact abstraction of \cap (zones are closed under intersection):

$$\gamma_0(\mathbf{m}\cap^\sharp\mathbf{n})=\gamma_0(\mathbf{m})\cap\gamma_0(\mathbf{n})$$



• $(\mathbf{m}^*) \cap^{\sharp} (\mathbf{n}^*)$ is not necessarily closed...

Remark

The set of closed matrices, with \bot^{\sharp} , and the operations \subseteq^{\sharp} , \cup^{\sharp} , $\lambda m, n.(m \cap^{\sharp} n)^*$ is a sub-lattice, where γ_0 is injective.

We can define:

$$\begin{bmatrix} \mathsf{C}^{\sharp} \llbracket \, V_{j_0} - V_{i_0} \leq c \, \rrbracket \, \mathbf{m} \end{bmatrix}_{ij} \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} \min(m_{ij},c) & \text{if } (i,j) = (i_0,j_0), \\ m_{ij} & \text{otherwise.} \end{array} \right.$$

$$\mathsf{C}^{\sharp} \llbracket \, V_{j_0} - V_{i_0} = [a,b] \, \rrbracket \, \mathbf{m} \stackrel{\mathrm{def}}{=} \left(\mathsf{C}^{\sharp} \llbracket \, V_{j_0} - V_{i_0} \leq b \, \rrbracket \circ \mathsf{C}^{\sharp} \llbracket \, V_{i_0} - V_{j_0} \leq -a \, \rrbracket \, \right) \mathbf{m}$$

$$\begin{bmatrix} \mathsf{C}^{\sharp} \llbracket \, V_{j_0} \leftarrow [-\infty,+\infty] \, \rrbracket \, \mathbf{m} \end{bmatrix}_{ij} \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} +\infty & \text{if } i=j_0 \text{ or } j=j_0, \\ m_{ij}^* & \text{otherwise.} \end{array} \right.$$

$$\left(\text{not optimal on non-closed arguments} \right)$$

$$\mathsf{C}^{\sharp} \llbracket \, V_{j_0} \leftarrow V_{i_0} + [a,b] \, \rrbracket \, \mathbf{m} \stackrel{\mathrm{def}}{=} \left(\mathsf{C}^{\sharp} \llbracket \, V_{j_0} \leftarrow [-\infty,+\infty] \, \rrbracket \, \right) \mathbf{m} \quad \text{if } i_0 \neq j_0$$

$$\begin{bmatrix} \mathsf{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + \llbracket a, b \rrbracket \rrbracket \mathbf{m} \end{bmatrix}_{ij} \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{ll} m_{ij} - a & \text{if } i = j_0 \text{ and } j \neq j_0 \\ m_{ij} + b & \text{if } i \neq j_0 \text{ and } j = j_0 \\ m_{ij} & \text{otherwise.} \end{array} \right.$$

 $(i_0 \neq j_0; V_{i_0}$ can be replaced with 0 by setting $i_0 = 0)$

These transfer functions are exact.

Backward assignment:

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow [-\infty, +\infty] \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket V_{j_0} \leftarrow [-\infty, +\infty] \rrbracket \mathbf{r})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [a, b] \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [-b, -a] \rrbracket \mathbf{r})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [a, b] \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [-b, -a] \rrbracket \mathbf{r})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [a, b] \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [-b, -a] \rrbracket \mathbf{r})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [a, b] \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [-b, -a] \rrbracket \mathbf{r})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [a, b] \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [-b, -a] \rrbracket \mathbf{r})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [a, b] \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [-b, -a] \rrbracket \mathbf{r})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [a, b] \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [-b, -a] \rrbracket \mathbf{r})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [a, b] \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [-b, -a] \rrbracket \mathbf{r})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} \leftarrow V_{j_0} + [a, b] \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [-b, -a] \rrbracket \mathbf{r})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} \leftarrow V_{j_0} + [a, b] \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [-b, -a] \rrbracket \mathbf{r})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} \leftarrow V_{j_0} + [a, b] \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\text{def}}{=} \mathbf{m} \cap^{\sharp} (C^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0} + [-b, -a] \rrbracket \mathbf{r})$$

$$\overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{j_0$$

<u>Issue:</u> given an arbitrary linear assignment $V_{j_0} \leftarrow a_0 + \sum_k a_k \times V_k$

- there is no exact abstraction, in general;
- the best abstraction $\alpha \circ \mathbb{C}[\![c]\!] \circ \gamma$ is costly to compute. (e.g. convert to a polyhedron and back, with exponential cost)

Possible solution:

Given a (more general) assignment $e = [a_0, b_0] + \sum_k [a_k, b_k] \times V_k$

we define an approximate operator as follows:

where $\mathsf{E}^\sharp \llbracket e \rrbracket \mathsf{m}$ evaluates e using interval arithmetics with $V_k \in [-m_{k0}^*, m_{0k}^*]$.

Quadratic total cost (plus the cost of closure).

Example:

Argument

We have a good trade-off between cost and precision.

The same idea can be used for tests and backward assignments.

Widening and narrowing

The zone domain has both strictly increasing and decreasing infinite chains.

Widening ∇

$$[\mathbf{m} \triangledown \mathbf{n}]_{ij} \stackrel{\text{def}}{=} \left\{ egin{array}{ll} m_{ij} & \text{if } n_{ij} \leq m_{ij} \\ +\infty & \text{otherwise} \end{array} \right.$$

Unstable constraints are deleted.

Narrowing \triangle

$$[\mathbf{m} \triangle \mathbf{n}]_{ij} \stackrel{\text{def}}{=} \left\{ egin{array}{ll} n_{ij} & \text{if } m_{ij} = +\infty \\ m_{ij} & \text{otherwise} \end{array} \right.$$

Only $+\infty$ bounds are refined.

Remarks:

- We can construct widenings with thresholds.
- ∇ (resp. △) can be seen as a point-wise extension of an interval widening (resp. narrowing).

Interaction between closure and widening

Widening ∇ and closure * cannot always be mixed safely:

- $\mathbf{m}_{i+1} \stackrel{\text{def}}{=} \mathbf{m}_i \ \nabla \left(\mathbf{n}_i^* \right)$ OK
- $\mathbf{m}_{i+1} \stackrel{\text{def}}{=} (\mathbf{m}_i^*) \nabla \mathbf{n}_i$ wrong!
- $\mathbf{m}_{i+1} \stackrel{\text{def}}{=} (\mathbf{m}_i \nabla \mathbf{n}_i)^*$ wrong

otherwise the sequence (\mathbf{m}_i) may be infinite!

Example:

iter.	X	Y	X - Y
0	0	[-1, 1]	[-1, 1]
1	[-2, 2]	[-1, 1]	[-1, 1]
2	[-2, 2]	[-3, 3]	[-1,1]
$2j \\ 2j + 1$	[-2j, 2j] [-2j - 2, 2j + 2]	[-2j-1,2j+1] [-2j-1,2j+1]	$egin{array}{c} \dots \ [-1,1] \ [-1,1] \end{array}$

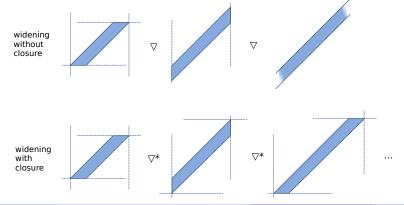
Applying the closure after the widening at \bullet prevents convergence. Without the closure, we would find in finite time $X - Y \in [-1, 1]$.

Note: this situation also occurs in reduced products.

(here, \mathcal{D}^{\sharp} \simeq reduced product of $n \times n$ intervals, $* \simeq$ reduction)

Interaction between closure and widening (illustration)

iter.	X	Y	X - Y
0	0	[-1,1]	[-1, 1]
1	[-2, 2]	[-1, 1]	[-1, 1]
2	[-2, 2]	[-3,3]	[-1,1]
2 <i>j</i>	[-2j,2j]	[-2j-1,2j+1]	$\lfloor \lfloor -1, 1 \rfloor$
2j + 1	[-2j-2,2j+2]	[-2j-1,2j+1]	[-1, 1]



Octagon domain

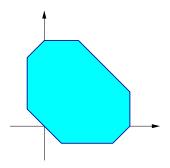
The octagon domain

Now, $\mathbb{I} \in {\mathbb{Q}, \mathbb{R}}$.

We look for invariants of the form: $\bigwedge \pm V_i \pm V_j \le c$, $c \in \mathbb{I}$

A subset of \mathbb{I}^n defined by such constraints is called an octagon.

It is a generalisation of zones (more symmetric).



[Mine01b]

Machine representation

<u>Idea:</u> use a variable change to get back to potential constraints.

Let
$$\mathbb{V}' \stackrel{\text{def}}{=} \{V'_1, \dots, V'_{2n}\}.$$

the constra	aint:	is	enco	ded as	5:
$V_i - V_j \leq c$	$(i \neq j)$	$V'_{2i-1} - V'_{2i-1} \le$	С	and	$V_{2i}' - V_{2i}' \leq c$
$V_i + V_j \leq c$	$(i \neq j)$	$V'_{2i-1} - V'_{2i} \leq$	С	and	$V'_{2i-1} - V'_{2i} \le c$
$-V_i-V_j \leq c$	$(i \neq j)$	$V'_{2i} - V'_{2i-1} \leq$	С	and	$V'_{2i} - V'_{2i-1} \le c$
$V_i \leq c$		$V'_{2i-1} - V'_{2i} \leq$	2 <i>c</i>		,
$V_i \ge c$		$V'_{2i} - V'_{2i-1} \leq -$	-2 <i>c</i>		

We use a matrix \mathbf{m} of size $(2n) \times (2n)$ with elements in $\mathbb{I} \cup \{+\infty\}$ and $\gamma_{\pm}(\mathbf{m}) \stackrel{\text{def}}{=} \{ (v_1, \dots, v_n) \mid (v_1, -v_1, \dots, v_n, -v_n) \in \gamma(\mathbf{m}) \}.$

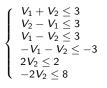
Note:

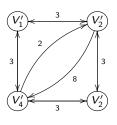
Two distinct \mathbf{m} elements can represent the same constraint on \mathbb{V} .

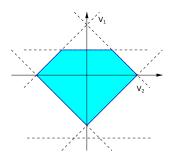
To avoid this, we impose that $\forall i, j, m_{ii} = m_{\bar{i}\bar{i}}$ where $\bar{i} = i \oplus 1$.

Machine representation (cont.)

Example:







Lattice

Constructed by point-wise extension of \leq on $\mathbb{I} \cup \{+\infty\}$.

Algorithms

\mathbf{m}^* is not a normal form for γ_{\pm} .

Idea use two local transformations instead of one:

$$\left\{ \begin{array}{l} V_i' - V_k' \leq c \\ V_k' - V_j' \leq d \end{array} \right. \Longrightarrow V_i' - V_j' \leq c + d \\ \text{and} \\ \left\{ \begin{array}{l} V_i' - V_{\bar{i}}' \leq c \\ V_j' - V_j' \leq d \end{array} \right. \Longrightarrow V_i' - V_j' \leq (c+d)/2$$

Modified Floyd-Warshall algorithm

$$\mathbf{m}^{\bullet} \stackrel{\mathrm{def}}{=} S(\mathbf{m}^{2n+1})$$

$$\text{where:} \qquad (A) \begin{cases} \mathbf{m}^{1} \stackrel{\mathrm{def}}{=} \mathbf{m} \\ [\mathbf{m}^{k+1}]_{ij} \stackrel{\mathrm{def}}{=} \min(n_{ij}, n_{ik} + n_{kj}), \ 1 \leq k \leq 2n \end{cases}$$

$$(B) \quad [S(\mathbf{n})]_{ij} \stackrel{\mathrm{def}}{=} \min(n_{ij}, (n_{i\bar{\imath}} + n_{\bar{\jmath}j})/2)$$

Course 04

Algorithms (cont.)

Applications

- $\gamma_{\pm}(\mathbf{m}) = \emptyset \iff \exists i, \ \mathbf{m}_{ii}^{\bullet} < 0,$
- if $\gamma_{\pm}(\mathbf{m}) \neq \emptyset$, \mathbf{m}^{\bullet} is a normal form: $\mathbf{m}^{\bullet} = \min_{\mathbb{C}^{\sharp}} \{ \mathbf{n} \mid \gamma_{\pm}(\mathbf{n}) = \gamma_{\pm}(\mathbf{m}) \},$
- $(\mathbf{m}^{\bullet}) \cup^{\sharp} (\mathbf{n}^{\bullet})$ is the best abstraction for the set-union $\gamma_{\pm}(\mathbf{m}) \cup \gamma_{\pm}(\mathbf{n})$.

Widening and narrowing

- The zone widening and narrowing can be used on octagons.
- The widened iterates should not be closed. (prevents convergence)

Abstract transfer functions are similar to the case of the zone domain.

Analysis example

Rate limiter

```
\begin{array}{lll} Y \leftarrow \text{O; while} & \bullet \text{ 1=1 do} \\ & \text{X} \leftarrow \text{[-128,128]; D} \leftarrow \text{[0,16];} \\ & \text{S} \leftarrow \text{Y; Y} \leftarrow \text{X; R} \leftarrow \text{X} - \text{S;} \\ & \text{if R} \leq \text{-D then Y} \leftarrow \text{S} - \text{D fi;} \\ & \text{if R} \geq \text{D then Y} \leftarrow \text{S} + \text{D fi} \\ & \text{done} \end{array}
```

X: input signal
Y: output signal
S: last output
R: delta Y - S
D: max. allowed for |R|

Analysis using:

- the octagon domain,
- an abstract operator for $V_{j_0} \leftarrow [a_0, b_0] + \sum_k [a_k, b_k] \times V_k$ similar to the one we defined on zones,
- a widening with thresholds T.

Result: we prove that |Y| is bounded by: min $\{t \in T \mid t \ge 144\}$.

<u>Note:</u> the polyhedron domain would find $|Y| \le 128$ and does not require thresholds, but it is more costly.

Summary

Summary of numerical domains

domain	invariants	memory cost	time cost (per operation)	
intervals	$V \in [\ell, h]$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	
linear equalities	$\sum_{i} \alpha_{i} V_{i} = \beta_{i}$	$\mathcal{O}(n ^2)$	$\mathcal{O}(n ^3)$	
zones	$V_i - V_j \leq c$	$\mathcal{O}(n ^2)$	$\mathcal{O}(n ^3)$	
polyhedra	$\sum_{i} \alpha_{i} V_{i} \geq \beta_{i}$	unbounded, exponential in practice		

- abstract domains provide trade-offs between cost and precision
- relational invariants are often necessary even to prove non-relational properties
- an abstract domain is defined by the choice of:
 - some properties of interest and operators (semantic part)
 - data-structures and algorithms (algorithmic part)
- an analysis mixes two kinds of approximations:
 - static approximations (choice of abstract properties)
 - dynamic approximations (widening)

Bibliography

Bibliography

- [Anco10] **C. Ancourt, F. Coelho & F. Irigoin**. *A modular static analysis approach to affine loop invariants detection*. In Proc. NSAD'10, ENTCS, Elsevier, 2010.
- [Bagn02] R. Bagnara, E. Ricci, E. Zaffanella & P. M. Hill. Possibly not closed convex polyhedra and the Parma Polyhedra Library. In Proc. SAS'02, LNCS 2477, 213–229, Springer, 2002.
- [Bagn03] **R. Bagnara, P. Hill, E. Ricci, E. Zaffanella**. *Precise widening operators for convex polyhedra*. In Proc. SAS'03, LNCS 2694, 337-354, Springer, 2003.
- [Bagn08] R. Bagnara, P. M. Hill & E. Zaffanella. An improved tight closure algorithm for integer octagonal constraints. In Proc. VMCAI'08, LNCS 4905, 8–21, Springer, 2008.
- [Beno96] **F. Benoy & A. King**. *Inferring argument size relationships with CLP(R)*. In In Proc. of LOPSTR'96, LNCS 1207, 204–223. Springer, 1996.

Bibliography (cont.)

- [Cher68] **N. V. Chernikova**. Algorithm for discovering the set of all the solutions of a linear programming problem. In U.S.S.R. Comput. Math. and Math. Phys., 8(6):282–293, 1968.
- [Cous78] **P. Cousot & N. Halbwachs**. Automatic discovery of linear restraints among variables of a program. In Proc. POPL'78, 84–96, ACM, 1978.
- [Gran91] **P. Granger**. Static analysis of linear congruence equalities among variables of a program. In Proc. TAPSOFT'91, LNCS 49, 169–192. Springer, 1991.
- [Jean09] **B. Jeannet & A. Miné**. Apron: A library of numerical abstract domains for static analysis. In Proc. CAV'09, LNCS 5643, 661–667, Springer, 2009, http://apron.cri.ensmp.fr/library.

Bibliography (cont.)

[Karr76] **M. Karr**. Affine relationships among variables of a program. In Acta Informatica, 6:133–151, 1976.

[LeVe92] **H. Le Verge**. A note on Chernikova's algorithm. In Research Report 1662, INRIA Rocquencourt, 1992.

[Mine01a] **A. Miné**. A new numerical abstract domain based on difference-bound matrices. In Proc. PADO II, LNCS 2053, 155–172, Springer, 2001.

[Mine01b] **A. Miné**. *The octagon abstract domain*. In Proc. AST'01, 310–319, IEEE, 2001.

[Schr86] **A. Schrijver**. Theory of linear and integer programming. In John Wiley & Sons, Inc., 1986.