#### **Program Semantics**

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2017-2018

Course 02 20 September 2017

#### Discuss several flavors of **concrete** semantics:

- independently from programming languages (transition systems)
- defined in a constructive way (as fixpoints)
- compare their expressive power (link by abstractions)

#### Plan:

- transition systems
- state semantics (forward and backward)
- trace semantics (finite and infinite)
- relational semantics
- state and trace properties

# **Transition systems**

## Transition systems: definition

Language-neutral formalism to discuss program semantics.

#### **Transition system:** $(\Sigma, \tau)$

- set of states Σ,
   (memory states, λ-terms, configurations, etc., generally infinite)
- transition relation  $\tau \subseteq \Sigma \times \Sigma$ .

 $(\Sigma, \tau)$  is a general form of small-step operational semantics.

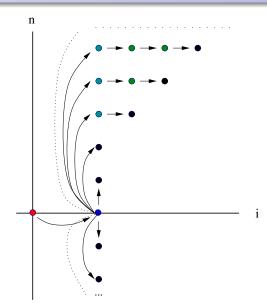
$$(\sigma, \sigma') \in \tau$$
 is noted  $\sigma \to \sigma'$ :

starting in state  $\sigma$ , after one execution step, we can go to state  $\sigma'$ .

# Transition system: example

$$\begin{split} i &\leftarrow 2; \\ n &\leftarrow [-\infty, +\infty]; \\ \text{while } i &< n \text{ do} \\ \text{if ? then} \\ i &\leftarrow i+1 \end{split}$$

$$\Sigma \stackrel{\mathrm{def}}{=} \{i, n\} \to \mathbb{Z}$$



## From programs to transition systems

**Example:** on a simple imperative language.

```
Language syntax
{}^{\ell}stat^{\ell} ::= {}^{\ell}X \leftarrow expr^{\ell} \qquad (assignment)
| {}^{\ell}if \ expr \bowtie 0 \ then \ {}^{\ell}stat^{\ell} \qquad (conditional)
| {}^{\ell}while \ {}^{\ell}expr \bowtie 0 \ do \ {}^{\ell}stat^{\ell} \qquad (loop)
| {}^{\ell}stat; {}^{\ell}stat^{\ell} \qquad (sequence)
```

- $X \in \mathbb{V}$ , where  $\mathbb{V}$  is a finite set of program variables,
- $\ell \in \mathcal{L}$  is a finite set of control labels,
- $\bowtie \in \{=, \leq, \ldots\}$ , the syntax of *expr* is left undefined. (see next course)

Program states:  $\Sigma \stackrel{\text{def}}{=} \mathcal{L} \times \mathcal{E}$  are composed of:

- a control state in L,
- a memory state in  $\mathcal{E} \stackrel{\text{def}}{=} \mathbb{V} \to \mathbb{R}$ .

#### From programs to transition systems

<u>Transitions:</u>  $\tau[\ell stat^{\ell'}] \subseteq \Sigma \times \Sigma$  is defined by induction on the syntax.

Assuming that expression semantics is given as  $\mathsf{E}[\![e]\!]: \mathcal{E} \to \mathcal{P}(\mathbb{R})$ . (see next course)

$$\begin{split} \tau [ ^{\ell 1} X \leftarrow e^{\ell 2} ] & \stackrel{\mathrm{def}}{=} \quad \left\{ \left( \ell 1, \rho \right) \rightarrow \left( \ell 2, \rho [X \mapsto v] \right) \, | \, \rho \in \mathcal{E}, \, v \in \mathbb{E} \llbracket \, e \, \rrbracket \, \rho \, \right\} \\ \tau [ ^{\ell 1} \text{if } e \bowtie 0 \text{ then } ^{\ell 2} s^{\ell 3} ] & \stackrel{\mathrm{def}}{=} \\ & \quad \left\{ \left( \ell 1, \rho \right) \rightarrow \left( \ell 2, \rho \right) \, | \, \rho \in \mathcal{E}, \, \exists v \in \mathbb{E} \llbracket \, e \, \rrbracket \, \rho \colon v \bowtie 0 \, \right\} \cup \\ & \quad \left\{ \left( \ell 1, \rho \right) \rightarrow \left( \ell 3, \rho \right) \, | \, \rho \in \mathcal{E}, \, \exists v \in \mathbb{E} \llbracket \, e \, \rrbracket \, \rho \colon v \bowtie 0 \, \right\} \cup \tau [ ^{\ell 2} s^{\ell 3} ] \end{split}$$

$$\tau [ ^{\ell 1} \text{while } ^{\ell 2} e \bowtie 0 \text{ do } ^{\ell 3} s^{\ell 4} ] & \stackrel{\mathrm{def}}{=} \\ & \quad \left\{ \left( \ell 1, \rho \right) \rightarrow \left( \ell 2, \rho \right) \, | \, \rho \in \mathcal{E} \, \right\} \cup \\ & \quad \left\{ \left( \ell 2, \rho \right) \rightarrow \left( \ell 3, \rho \right) \, | \, \rho \in \mathcal{E}, \, \exists v \in \mathbb{E} \llbracket \, e \, \rrbracket \, \rho \colon v \bowtie 0 \, \right\} \cup \tau [ ^{\ell 3} s^{\ell 2} ] \\ & \quad \left\{ \left( \ell 2, \rho \right) \rightarrow \left( \ell 4, \rho \right) \, | \, \rho \in \mathcal{E}, \, \exists v \in \mathbb{E} \llbracket \, e \, \rrbracket \, \rho \colon v \bowtie 0 \, \right\} \cup \tau [ ^{\ell 3} s^{\ell 2} ] \end{split}$$

## Initial, final, blocking states

#### Initial and final states:

Transition systems  $(\Sigma, \tau)$  are often enriched with:

- $\mathcal{I} \subseteq \Sigma$  a set of distinguished initial states,
- $\mathcal{F} \subseteq \Sigma$  a set of distinguished final states.

(e.g., limit observation to executions starting in an initial state and ending in a final state)

#### Blocking states $\mathcal{B}$ :

- states with no successor  $\mathcal{B} \stackrel{\text{def}}{=} \{ \sigma \mid \forall \sigma' \in \Sigma : \sigma \not\to \sigma' \},$
- model both correct program termination and program errors, (correct exit, program stuck, unhandled exception, etc.)
- often include (or equal) final states  $\mathcal{F}$ .

Note: we can always remove blocking states by completing  $\tau$ :

$$\tau' \stackrel{\text{def}}{=} \tau \cup \{ (\sigma, \sigma) \mid \sigma \in \mathcal{B} \}.$$
 (add self-loops)

#### **State semantics**

#### State operators

## Post-image, pre-image

Forward and backward images, in  $\mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ :

- successors: (forward, post-image)  $\underset{\tau}{\mathsf{post}_{\tau}}(S) \overset{\mathrm{def}}{=} \left\{ \left. \sigma' \, \right| \, \exists \sigma \in S \colon \sigma \to \sigma' \, \right\}$
- predecessors: (backward, pre-image)  $\operatorname{pre}_{\sigma}(S) \stackrel{\mathrm{def}}{=} \{ \sigma \mid \exists \sigma' \in S : \sigma \to \sigma' \} \}$

 $\begin{array}{l} \mathsf{post}_\tau \ \mathsf{and} \ \mathsf{pre}_\tau \ \mathsf{are} \ \mathsf{complete} \ \cup -\mathsf{morphisms} \ \mathsf{in} \ (\mathcal{P}(\Sigma),\subseteq,\cup,\cap,\emptyset,\Sigma). \\ (\mathsf{post}_\tau(\cup_{i\in I} S_i) = \cup_{i\in I} \ \mathsf{post}_\tau(S_i), \ \mathsf{pre}_\tau(\cup_{i\in I} S_i) = \cup_{i\in I} \ \mathsf{pre}_\tau(S_i)) \end{array}$ 

 $\mathsf{post}_\tau \ \mathsf{and} \ \mathsf{pre}_\tau \ \mathsf{are} \ \mathsf{strict}. \qquad (\mathsf{post}_\tau(\emptyset) = \mathsf{pre}_\tau(\emptyset) = \emptyset)$ 

## Dual images

#### Dual post-images and pre-images:

- $\widetilde{\operatorname{pre}}_{\tau}(S) \stackrel{\operatorname{def}}{=} \{ \sigma \mid \forall \sigma' : \sigma \to \sigma' \implies \sigma' \in S \}$ (states such that all successors satisfy S)
- $\operatorname{post}_{\tau}(S) \stackrel{\text{def}}{=} \{ \sigma' \mid \forall \sigma : \sigma \to \sigma' \implies \sigma \in S \}$ (states such that all predecessors satisfy S)

 $\widetilde{\mathrm{pre}}_{\tau}$  and  $\widetilde{\mathrm{post}}_{\tau}$  are complete  $\cap-$ morphisms and not strict.

post is not much used...

## Correspondences between images and dual images

We have the following correspondences:

$$\begin{array}{ll} \bullet \ \, \text{inverse:} & \operatorname{pre}_{\tau} = \operatorname{post}_{(\tau^{-1})} & \operatorname{post}_{\tau} = \operatorname{pre}_{(\tau^{-1})} \\ \\ & \widetilde{\operatorname{pre}}_{\tau} = \widetilde{\operatorname{post}}_{(\tau^{-1})} & \widetilde{\operatorname{post}}_{\tau} = \widetilde{\operatorname{pre}}_{(\tau^{-1})} \\ \\ & (\text{where } \tau^{-1} \stackrel{\operatorname{def}}{=} \{ \, (\sigma, \sigma') \, | \, (\sigma', \sigma) \in \tau \, \} ) \end{array}$$

Galois connections:

$$\begin{split} &(\mathcal{P}(\Sigma),\subseteq) \xleftarrow{\widetilde{\mathsf{pre}}_\tau} (\mathcal{P}(\Sigma),\subseteq) \text{ and } \\ &(\mathcal{P}(\Sigma),\subseteq) \xleftarrow{\widetilde{\mathsf{post}}_\tau} (\mathcal{P}(\Sigma),\subseteq). \end{split}$$

proof:

$$\mathsf{post}_\tau(A) \subseteq B \iff \{\,\sigma' \,|\, \exists \sigma \in A \colon \sigma \to \sigma'\,\} \subseteq B \iff (\forall \sigma \in A \colon \sigma \to \sigma' \implies \sigma' \in B) \iff (A \subseteq \{\,\sigma \,|\, \forall \sigma' \colon \sigma \to \sigma' \implies \sigma' \in B\,\}) \iff A \subseteq \widetilde{\mathsf{pre}}_\tau(B);$$
 other directions are similar.

#### Deterministic systems

#### Determinism:

- $(\Sigma, \tau)$  is deterministic if  $\forall \sigma \in \Sigma$ :  $|\operatorname{post}_{\tau}(\{\sigma\})| = 1$ , (every state has a single successor, no blocking state)
- most transition systems are non-deterministic.
   (e.g., effect of input X ← [0, 10], program termination)

#### We have the following correspondences:

- If  $\tau$  is deterministic then  $\operatorname{pre}_{\tau} = \widetilde{\operatorname{pre}}_{\tau}$  and  $\operatorname{post}_{\tau} = \widetilde{\operatorname{post}}_{\tau}$ .
- More generally:  $\forall S \colon \mathcal{B} \subseteq \widetilde{\mathsf{pre}}_{\tau}(S) \subseteq \mathsf{pre}_{\tau}(S) \cup \mathcal{B}$ . When  $\mathcal{B} = \emptyset$  (no blocking state) then  $\widetilde{\mathsf{pre}}_{\tau}(S) \subseteq \mathsf{pre}_{\tau}(S)$ .

#### post: reachability state semantics

#### Forward reachability

 $\mathcal{R}(\mathcal{I})$ : states reachable from  $\mathcal{I}$  in the transition system

$$\mathcal{R}(\mathcal{I}) \stackrel{\text{def}}{=} \{ \sigma \mid \exists n \geq 0, \sigma_0, \dots, \sigma_n : \sigma_0 \in \mathcal{I}, \sigma = \sigma_n, \forall i : \sigma_i \to \sigma_{i+1} \} \\
= \bigcup_{n \geq 0} \mathsf{post}_{\tau}^n(\mathcal{I})$$

(reachable  $\iff$  reachable from  $\mathcal{I}$  in n steps of  $\tau$  for some  $n \geq 0$ )

 $\mathcal{R}(\mathcal{I})$  can be expressed in fixpoint form:

$$\mathcal{R}(\mathcal{I}) = \mathsf{lfp} \,\, F_{\mathcal{R}} \,\, \mathsf{where} \,\, F_{\mathcal{R}}(S) \stackrel{\mathrm{def}}{=} \, \mathcal{I} \cup \mathsf{post}_{\tau}(S)$$

 $(F_{\mathcal{R}} \text{ shifts } S \text{ and adds back } \mathcal{I})$ 

Alternate characterization:  $\mathcal{R} = \mathsf{lfp}_{\mathcal{I}} \ G_{\mathcal{R}} \ \mathsf{where} \ G_{\mathcal{R}}(S) \stackrel{\mathrm{def}}{=} S \cup \mathsf{post}_{\tau}(S).$   $(G_{\mathcal{R}} \ \mathsf{shifts} \ S \ \mathsf{by} \ \tau \ \mathsf{and} \ \mathsf{accumulates} \ \mathsf{the} \ \mathsf{result} \ \mathsf{with} \ S)$ 

(proofs on next slide)

# Forward reachability: proof

proof: of 
$$\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$$
 where  $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$ 

 $(\mathcal{P}(\Sigma),\subseteq)$  is a CPO and post<sub>au</sub> is continuous, hence  $F_{\mathcal{R}}$  is continuous:  $F_{\mathcal{R}}(\cup_{i\in I}A_i)=\cup_{i\in I}F_{\mathcal{R}}(A_i)$ .

By Kleene's theorem, Ifp  $F_{\mathcal{R}} = \cup_{n \in \mathbb{N}} F_{\mathcal{R}}^n(\emptyset)$ .

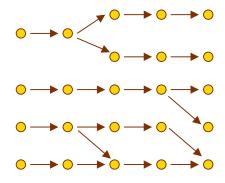
We prove by recurrence on n that:  $\forall n: F_{\mathcal{R}}^n(\emptyset) = \cup_{i < n} \operatorname{post}_{\tau}^i(\mathcal{I})$ . (states reachable in less than n steps)

- $F_{\mathcal{R}}^{0}(\emptyset) = \emptyset$
- assuming the property at n,

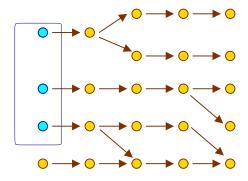
$$\begin{array}{lcl} F_{\mathcal{R}}^{n+1}(\emptyset) & = & F_{\mathcal{R}}(\bigcup_{i < n} \mathsf{post}_{\tau}^{i}(\mathcal{I})) \\ & = & \mathcal{I} \cup \mathsf{post}_{\tau}(\bigcup_{i < n} \mathsf{post}_{\tau}^{i}(\mathcal{I})) \\ & = & \mathcal{I} \cup \bigcup_{i < n} \mathsf{post}_{\tau}(\mathsf{post}_{\tau}^{i}(\mathcal{I})) \\ & = & \mathcal{I} \cup \bigcup_{1 \leq i < n+1} \mathsf{post}_{\tau}^{i}(\mathcal{I}) \\ & = & \bigcup_{i < n+1} \mathsf{post}_{\tau}^{i}(\mathcal{I}) \end{array}$$

Hence: Ifp  $F_{\mathcal{R}} = \bigcup_{n \in \mathbb{N}} F_{\mathcal{R}}^n(\emptyset) = \bigcup_{i \in \mathbb{N}} \mathsf{post}_{\tau}^i(\mathcal{I}) = \mathcal{R}(\mathcal{I}).$ 

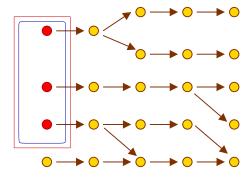
The proof is similar for the alternate form, given that  $\operatorname{lfp}_{\mathcal{I}} G_{\mathcal{R}} = \cup_{n \in \mathbb{N}} G_{\mathcal{R}}^n(\mathcal{I})$  and  $G_{\mathcal{R}}^n(\mathcal{I}) = F_{\mathcal{R}}^{n+1}(\emptyset) = \cup_{i \leq n} \operatorname{post}_{\mathcal{I}}^i(\mathcal{I})$ .



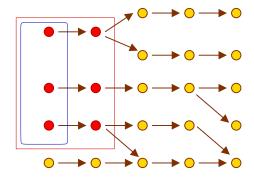
Transition system.



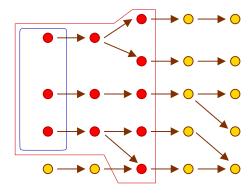
Initial states  $\mathcal{I}$ .



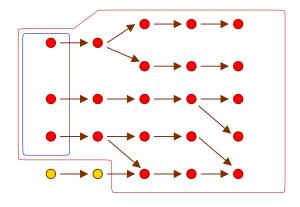
Iterate  $F^1_{\mathcal{R}}(\mathcal{I})$ .



Iterate  $F_{\mathcal{R}}^2(\mathcal{I})$ .



Iterate  $F_{\mathcal{R}}^3(\mathcal{I})$ .



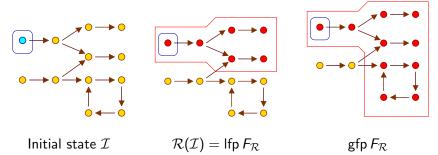
States reachable from  $\mathcal{I}$ :  $\mathcal{R}(\mathcal{I}) = F_{\mathcal{R}}^{5}(\mathcal{I})$ .

## Multiple forward fixpoints

Recall:  $\mathcal{R}(\mathcal{I}) = \mathsf{lfp}\,F_{\mathcal{R}}$  where  $F_{\mathcal{R}}(S) \stackrel{\mathsf{def}}{=} \mathcal{I} \cup \mathsf{post}_{\tau}(S)$ .

Note that  $F_R$  may have several fixpoints.

#### Example:



#### Exercise:

Compute all the fixpoints of  $G_{\mathcal{R}}(S) \stackrel{\text{def}}{=} S \cup \text{post}_{\tau}(S)$  on this example.

## Forward reachability: applications

• Infer the set of possible states at program end:  $\mathcal{R}(\mathcal{I}) \cap \mathcal{F}$ .

# example $\begin{array}{cccc} \bullet & i \leftarrow 0; \\ & \textbf{while} \ i < 100 \ \textbf{do} \\ & i \leftarrow i+1; \\ & j \leftarrow j+[0,1] \\ & \textbf{done} \ \bullet \\ \end{array}$

- initial states  $\mathcal{I}$ :  $j \in [0, 10]$  at control state •,
- final states F: any memory state at control state ●,
- $\Longrightarrow \mathcal{R}(\mathcal{I}) \cap \mathcal{F}$ : control at •, i = 100, and  $j \in [0, 110]$ .
- Prove the absence of run-time error:  $\mathcal{R}(\mathcal{I}) \cap \mathcal{B} \subseteq \mathcal{F}$ . (never block except when reaching the end of the program)

## Reachability as an equation system

By partitioning forward reachability wrt. control states, we retrieve the equation system form of program semantics.

#### **Control state partitioning**

We assume  $\Sigma \stackrel{\mathrm{def}}{=} \mathcal{L} \times \mathcal{E}$ ; note that:  $\mathcal{P}(\Sigma) \simeq \mathcal{L} \to \mathcal{P}(\mathcal{E})$ .

We have a Galois isomorphism:

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow{\frac{\gamma_{\mathcal{L}}}{\alpha_{\mathcal{L}}}} (\mathcal{L} \to \mathcal{P}(\mathcal{E}),\dot{\subseteq})$$

- $X \subseteq Y \stackrel{\text{def}}{\iff} \forall \ell \in \mathcal{L}: X(\ell) \subseteq Y(\ell)$
- $\alpha_{\mathcal{L}}(S) \stackrel{\text{def}}{=} \lambda \ell . \{ \rho \mid (\ell, \rho) \in S \}$
- $\gamma_{\mathcal{L}}(X) \stackrel{\text{def}}{=} \{ (\ell, \rho) | \ell \in \mathcal{L}, \rho \in X(\ell) \}$
- simply reorganize the states by control location!

Note that:  $\alpha_{\mathcal{L}} \circ \gamma_{\mathcal{L}} = \gamma_{\mathcal{L}} \circ \alpha_{\mathcal{L}} = id$ . (no abstraction)

## Forward reachability equation system example

#### <u>ldea:</u>

compute  $F_{eq} \stackrel{\text{def}}{=} \alpha_{\mathcal{L}} \circ F_{\mathcal{R}} \circ \gamma_{\mathcal{L}}$ , where  $F_{eq}$  operates in  $\mathcal{L} \to \mathcal{P}(\mathcal{E})$  we get an equation system  $\forall \ell \in \mathcal{L}: \mathcal{X}_{\ell} = F_{eq,\ell}(\mathcal{X}_1, \dots, \mathcal{X}_n)$ 

#### Example:

- initial states  $\mathcal{I} \stackrel{\text{def}}{=} \{ (\ell 1, \rho) | \rho \in \mathcal{I}_1 \}$  for some  $\mathcal{I}_1 \subseteq \mathcal{E}$ ,
- ullet C $[\![\cdot]\!]:\mathcal{P}(\mathcal{E}) o \mathcal{P}(\mathcal{E})$  model assignments and tests (see next slide).

We get the strongest invariant at each program point.

# Forward reachability equation system construction

We derive the equation system  $eq(^{\ell}stat^{\ell'})$  from the program syntax  $^{\ell}stat^{\ell'}$  by structural induction:

$$\begin{split} &eq({}^{\ell 1}X \leftarrow e^{\ell 2}) \stackrel{\mathrm{def}}{=} \big\{ \, \mathcal{X}_{\ell 2} = \mathsf{C} \big[\![\, X \leftarrow e \, \big]\!] \, \mathcal{X}_{\ell 1} \, \big\} \\ &eq({}^{\ell 1}\text{if } e \bowtie 0 \text{ then } {}^{\ell 2}s^{\ell 3}) \stackrel{\mathrm{def}}{=} \\ & \big\{ \, \mathcal{X}_{\ell 2} = \mathsf{C} \big[\![\, e \bowtie 0 \, \big]\!] \, \mathcal{X}_{\ell 1}, \, \mathcal{X}_{\ell 3} = \mathcal{X}_{\ell 3'} \cup \mathsf{C} \big[\![\, e \bowtie 0 \, \big]\!] \, \mathcal{X}_{\ell 1} \, \big\} \cup eq({}^{\ell 2}s^{\ell 3'}) \\ &eq({}^{\ell 1}\text{while } {}^{\ell 2}e \bowtie 0 \text{ do } {}^{\ell 3}s^{\ell 4}) \stackrel{\mathrm{def}}{=} \\ & \big\{ \, \mathcal{X}_{\ell 2} = \mathcal{X}_{\ell 1} \cup \mathcal{X}_{\ell 4'}, \, \mathcal{X}_{\ell 3} = \mathsf{C} \big[\![\, e \bowtie 0 \, \big]\!] \, \mathcal{X}_{\ell 2}, \, \mathcal{X}_{\ell 4} = \mathsf{C} \big[\![\, e \bowtie 0 \, \big]\!] \, \mathcal{X}_{\ell 2} \, \big\} \cup eq({}^{\ell 3}s^{\ell 4'}) \\ &eq({}^{\ell 1}s_1; {}^{\ell 2}s_2{}^{\ell 3}) \stackrel{\mathrm{def}}{=} eq({}^{\ell 1}s_1{}^{\ell 2}) \cup ({}^{\ell 2}s_2{}^{\ell 3}) \end{split}$$

where:

- $\mathcal{X}^{\ell 3'}$ ,  $\mathcal{X}^{\ell 4'}$  are fresh variables storing intermediate results
- $C[X \leftarrow e] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho[X \mapsto v] | \rho \in \mathcal{X}, v \in E[e] \rho \}$  $C[e \bowtie 0] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \in \mathcal{X} | \exists v \in E[\rho] \rho : v \bowtie 0 \}$

 $\cup$ -morphisms in a complete lattice  $\Longrightarrow$  a smallest solution exists

#### pre: co-reachability state semantics

#### Backward reachability

 $\mathcal{C}(\mathcal{F})$ : states co-reachable from  $\mathcal{F}$  in the transition system:

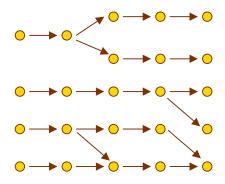
$$\mathcal{C}(\mathcal{F}) \stackrel{\text{def}}{=} \{ \sigma \mid \exists n \geq 0, \sigma_0, \dots, \sigma_n : \sigma = \sigma_0, \sigma_n \in \mathcal{F}, \forall i : \sigma_i \to \sigma_{i+1} \} \\
= \bigcup_{n \geq 0} \operatorname{pre}_{\tau}^n(\mathcal{F})$$

 $\mathcal{C}(\mathcal{F})$  can also be expressed in fixpoint form:

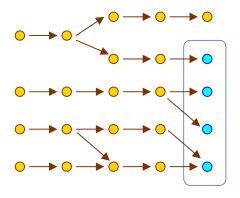
$$\mathcal{C}(\mathcal{F}) = \mathsf{lfp}\, F_{\mathcal{C}} \; \mathsf{where} \; F_{\mathcal{C}}(S) \stackrel{\mathrm{def}}{=} \; \mathcal{F} \cup \mathsf{pre}_{\tau}(S)$$

 $\underline{\mathsf{Alternate \ characterization:}}\ \mathcal{C}(\mathcal{F}) = \mathsf{lfp}_{\mathcal{F}}\ \mathsf{G}_{\mathcal{C}}\ \mathsf{where}\ \mathsf{G}_{\mathcal{C}}(S) = S \cup \mathsf{pre}_{\tau}(S)$ 

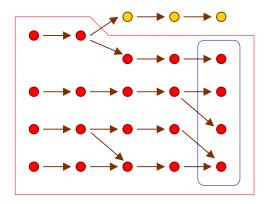
<u>Justification:</u>  $C(\mathcal{F})$  in  $\tau$  is exactly  $\mathcal{R}(\mathcal{F})$  in  $\tau^{-1}$ .



Transition system.



Final states  $\mathcal{F}$ .



States co-reachable from  $\mathcal{F}$ .

## Backward reachability: applications

•  $\mathcal{I} \cap \mathcal{C}(\mathcal{B} \setminus \mathcal{F})$ Initial states that have at least one erroneous execution.

#### program

•  $j \leftarrow 0$ ; while i > 0 do  $i \leftarrow i - 1$ ;  $j \leftarrow j + [0, 10]$ done •

- initial states  $\mathcal{I}$ :  $i \in [0, 100]$  at •
- final states F: any memory state at
- blocking states  $\mathcal{B}$ : final, or j > 200 at any location
- $\mathcal{I} \cap \mathcal{C}(\mathcal{B} \setminus \mathcal{F})$ : at •, i > 20
- $\mathcal{I} \cap (\Sigma \setminus \mathcal{C}(\mathcal{B}))$ Initial states that necessarily cause the program to loop.
- Iterate forward and backward analyses interactively
   abstract debugging [Bour93].

#### Backward reachability equation system

#### Principle:

As before, reorganize transitions by label  $\ell \in \mathcal{L}$ , to get an equation system on  $(\mathcal{X}_{\ell})_{\ell}$ , with  $\mathcal{X}_{\ell} \subseteq \mathcal{E}$ 

#### Example:

- final states  $\mathcal{F} \stackrel{\text{def}}{=} \{ (\ell 8, \rho) | \rho \in \mathcal{F}_8 \}$  for some  $\mathcal{F}_8 \subseteq \mathcal{E}$ ,
- $C[X \to e] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \mid \exists v \in E[e] \mid \rho : \rho[X \mapsto v] \in X \}.$



## Sufficient preconditions

 $\mathcal{S}(\mathcal{Y})$ : states with executions staying in  $\mathcal{Y}$ .

$$\begin{array}{l} \mathcal{S}(\mathcal{Y}) \stackrel{\text{def}}{=} \left\{ \sigma \mid \forall n \geq 0, \sigma_0, \dots, \sigma_n : \left( \sigma = \sigma_0 \wedge \forall i : \sigma_i \rightarrow \sigma_{i+1} \right) \implies \sigma_n \in \mathcal{Y} \right\} \\ = \bigcap_{n \geq 0} \ \widetilde{\mathsf{pre}}_{\tau}^n(\mathcal{Y}) \end{array}$$

 $\mathcal{S}(\mathcal{Y})$  can be expressed in fixpoint form:

$$S(\mathcal{Y}) = \operatorname{\mathsf{gfp}} F_{\mathcal{S}} \text{ where } F_{\mathcal{S}}(S) \stackrel{\text{def}}{=} \mathcal{Y} \cap \widetilde{\operatorname{\mathsf{pre}}}_{\tau}(S)$$

proof sketch: similar to that of  $\mathcal{R}(\mathcal{I})$ , in the dual.

 $F_{\mathcal{S}}$  is continuous in the dual CPO  $(\mathcal{P}(\Sigma),\supseteq)$ , because  $\widetilde{\mathsf{pre}}_{\tau}$  is:

 $F_{\mathcal{S}}(\cap_{i\in I}A_i)=\cap_{i\in I}F_{\mathcal{S}}(A_i).$ 

By Kleene's theorem in the dual, gfp  $F_S = \bigcap_{n \in \mathbb{N}} F_S^n(\Sigma)$ .

We would prove by recurrence that  $F_{\mathcal{S}}^n(\Sigma) = \bigcap_{i < n} \widetilde{\operatorname{pre}}_{\tau}^i(\mathcal{Y})$ .

# Sufficient preconditions and reachability

## Correspondence with reachability:

We have a Galois connection:

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow[\mathcal{R}]{\mathcal{S}} (\mathcal{P}(\Sigma),\subseteq)$$

- $\mathcal{R}(\mathcal{I}) \subseteq \mathcal{Y} \iff \mathcal{I} \subseteq \mathcal{S}(\mathcal{Y})$ definition of a Galois connection all executions from  $\mathcal{I}$  stay in  $\mathcal{Y}$  $\iff \mathcal{I}$  includes only sufficient pre-conditions for  $\mathcal{Y}$
- so  $S(Y) = \bigcup \{ X \mid \mathcal{R}(X) \subseteq \mathcal{Y} \}$ by Galois connection property  $S(\mathcal{Y})$  is the largest initial set whose reachability is in  $\mathcal{Y}$

We retrieve Dijkstra's weakest liberal preconditions.

(proof sketch on next slide)

# Sufficient preconditions and reachability (proof)

#### proof sketch:

Recall that  $\mathcal{R}(\mathcal{I}) = \mathsf{lfp}_{\mathcal{I}} G_{\mathcal{R}}$  where  $G_{\mathcal{R}}(S) = S \cup \mathsf{post}_{\pi}(S)$ . Likewise,  $S(\mathcal{Y}) = \operatorname{gfp}_{\mathcal{V}} G_{\mathcal{S}}$  where  $G_{\mathcal{S}}(S) = S \cap \widetilde{\operatorname{pre}}_{\tau}(S)$ .

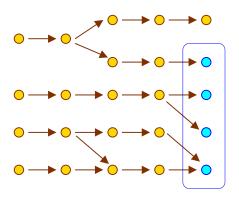
Recall the Galois connection  $(\mathcal{P}(\Sigma),\subseteq) \stackrel{\widehat{\mathsf{pre}}_{\tau}}{\longleftarrow} (\mathcal{P}(\Sigma),\subseteq)$ .

As a consequence  $(\mathcal{P}(\Sigma),\subseteq) \xrightarrow{G_{\mathcal{S}}} (\mathcal{P}(\Sigma),\subseteq)$ .

The Galois connection can be lifted to fixpoint operators:

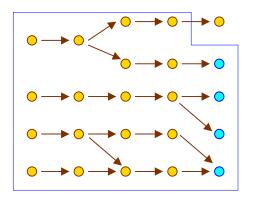
$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow{x \mapsto \mathsf{ffp}_x \ G_{\mathcal{S}}} (\mathcal{P}(\Sigma),\subseteq).$$

Exercise: complete the proof sketch.

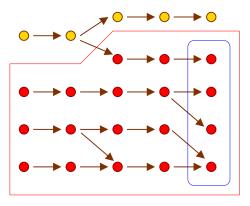


Final states  $\mathcal{F}$ .

Goal: when stopping, stop in  $\mathcal{F}$ .

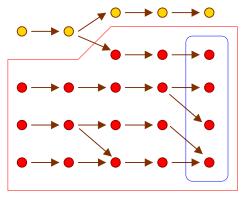


Goal: avoid stopping in a non-final state (i.e., error state) but passing through a non-blocking state is not (yet) an error  $\implies$  consider  $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$ .



Sufficient preconditions  $S(\mathcal{Y})$  to stop in  $\mathcal{F}$ .

(without forcing the program to stop at all)





Sufficient preconditions  $S(\mathcal{Y})$  to stop in  $\mathcal{F}$ .

(without forcing the program to stop at all)



Note:  $\mathcal{S}(\mathcal{Y}) \subset \mathcal{C}(\mathcal{F})$ 

# Sufficient preconditions: application

Initial states such that all executions are correct:

$$\mathcal{I}\cap\mathcal{S}(\mathcal{F}\cup(\Sigma\setminus\mathcal{B})).$$

(the only blocking states reachable from initial states are final states)

#### program

•  $i \leftarrow 0$ ; while i < 100 do  $i \leftarrow i + 1$ ;  $j \leftarrow j + [0, 1]$ done •

- ullet initial states  $\mathcal{I}$ :  $j \in [0, 10]$  at ullet
- final states F: any memory state at ●
- blocking states  $\mathcal{B}$ : final, or j > 105 at any location
- $\mathcal{I} \cap \mathcal{S}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$ : at •,  $j \in [0, 5]$  (note that  $\mathcal{I} \cap \mathcal{C}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$  gives  $\mathcal{I}$ )

Applications: infer contracts; optimize (hoist) tests; infer counter-examples.

## **Trace semantics**

## Traces and trace operations

# Sequences, traces

## <u>Trace</u>: sequence of elements from $\Sigma$

- $\epsilon$ : empty trace (unique)
- ullet  $\sigma$ : trace of length 1 (assimilated to a state)
- $\sigma_0, \ldots, \sigma_{n-1}$ : trace of length n
- $\sigma_0, \ldots, \sigma_n, \ldots$ : infinite trace (length  $\omega$ )

#### Trace sets:

- $\Sigma^n$ : the set of traces of length n
- $\Sigma^{\leq n} \stackrel{\text{def}}{=} \cup_{i \leq n} \Sigma^i$ : the set of traces of length at most n
- $\Sigma^* \stackrel{\text{def}}{=} \cup_{i \in \mathbb{N}} \Sigma^i$ : the set of finite traces
- $\Sigma^{\omega}$ : the set of infinite traces
- $\Sigma^{\infty} \stackrel{\text{def}}{=} \Sigma^* \cup \Sigma^{\omega}$ : the set of all traces

## Traces of a transition system

#### **Execution traces:**

Non-empty sequences of states linked by the transition relation  $\tau$ .

- can be finite (in  $\mathcal{P}(\Sigma^*)$ ) or infinite (in  $\mathcal{P}(\Sigma^{\omega})$ )
- can be anchored at initial states, or final states, or none

#### Atomic traces:

- $\mathcal{I}$ : initial states  $\simeq$  set of traces of length 1
- ullet  ${\cal F}$ : final states  $\simeq$  set of traces of length 1
- $\tau$ : transition relation  $\simeq$  set of traces of length 2  $(\{ \sigma, \sigma' \mid \sigma \to \sigma' \})$

(as 
$$\Sigma \simeq \Sigma^1$$
 and  $\Sigma \times \Sigma \simeq \Sigma^2$ )

## Trace operations

## Operations on traces:

- length:  $|t| \in \mathbb{N} \cup \{\omega\}$  of a trace  $t \in \Sigma^{\infty}$
- concatenation ·
  - $(\sigma_0, \ldots, \sigma_n) \cdot (\sigma'_0, \ldots) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_0, \ldots$  (append to a finite trace)
  - $ullet \ t \cdot t' \stackrel{\mathrm{def}}{=} t \ \mathrm{if} \ t \in \Sigma^\omega$  (append to an infinite trace does nothing)
  - $\bullet \ \epsilon \cdot t \stackrel{\text{def}}{=} t \cdot \epsilon \stackrel{\text{def}}{=} t \quad (\epsilon \text{ is neutral})$
- junction ^
  - $(\sigma_0, \ldots, \sigma_n)^{\frown}(\sigma'_0, \sigma'_1, \ldots) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_1, \ldots$  when  $\sigma_n = \sigma'_0$  undefined if  $\sigma_n \neq \sigma'_0$
  - $\epsilon \cap t$  and  $t \cap \epsilon$  are undefined
  - $t^{\frown}t' \stackrel{\text{def}}{=} t$ , if  $t \in \Sigma^{\omega}$

# Trace operations (cont.)

#### Extension to sets of traces:

- $A \cdot B \stackrel{\text{def}}{=} \{ a \cdot b \mid a \in A, b \in B \}$  $\{\epsilon\}$  is the neutral element for  $\cdot$
- $A \cap B \stackrel{\text{def}}{=} \{ a \cap b \mid a \in A, b \in B, a \cap b \text{ defined } \}$ \(\Sigma\) is the neutral element for \(\cap \)

Note:  $A^n \neq \{a^n \mid a \in A\}, A^{n} \neq \{a^{n} \mid a \in A\} \text{ when } |A| > 1$ 

## Finite prefix trace semantics

## Prefix trace semantics

 $\mathcal{T}_p(\mathcal{I})$ : partial, finite execution traces starting in  $\mathcal{I}$ .

$$\mathcal{T}_{p}(\mathcal{I}) \stackrel{\text{def}}{=} \{ \sigma_{0}, \dots, \sigma_{n} \mid n \geq 0, \sigma_{0} \in \mathcal{I}, \forall i : \sigma_{i} \to \sigma_{i+1} \} \\
= \bigcup_{n \geq 0} \mathcal{I}^{\frown}(\tau^{\frown n})$$

(traces of length n, for any n, starting in  $\mathcal{I}$  and following  $\tau$ )

 $\mathcal{T}_p(\mathcal{I})$  can be expressed in fixpoint form:

$$\mathcal{T}_p(\mathcal{I}) = \mathsf{lfp}\, F_p$$
 where  $F_p(T) \stackrel{\mathrm{def}}{=} \mathcal{I} \cup T ^{\frown} au$ 

 $(F_p$  appends a transition to each trace, and adds back  $\mathcal{I})$ 

(proof on next slide)

# Prefix trace semantics: proof

proof of: 
$$\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p \text{ where } F_p(T) = \mathcal{I} \cup T \cap \tau$$

Similar to the proof of  $\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$  where  $F_{\mathcal{R}}(S) \stackrel{\operatorname{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$ .

 $F_p$  is continuous in a CPO  $(\mathcal{P}(\Sigma^*),\subseteq)$ :

$$F_{p}(\cup_{i \in I} T_{i})$$

$$= \mathcal{I} \cup (\cup_{i \in I} T_{i}) \cap \tau$$

$$= \mathcal{I} \cup (\cup_{i \in I} T_{i} \cap \tau) = \cup_{i \in I} (\mathcal{I} \cup T_{i} \cap \tau)$$
hence (Kleene), Ifp  $F_{p} = \cup_{p > 0} F_{p}^{i}(\emptyset)$ 

We prove by recurrence on n that  $\forall n: F_n^n(\emptyset) = \bigcup_{i \le n} \mathcal{I} \cap \tau^{-i}$ :

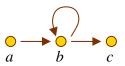
• 
$$F_p^0(\emptyset) = \emptyset$$
,

$$\begin{aligned} & F_{p}^{n+1}(\emptyset) \\ &= \mathcal{I} \cup F_{p}^{n}(\emptyset) \cap \tau \\ &= \mathcal{I} \cup (\cup_{i < n} \mathcal{I} \cap \tau^{-i}) \cap \tau \\ &= \mathcal{I} \cup \cup_{i < n} (\mathcal{I} \cap \tau^{-i}) \cap \tau \\ &= \mathcal{I} \cap \tau^{-0} \cup \cup_{i < n} (\mathcal{I} \cap \tau^{-i+1}) \\ &= \cup_{i < p+1} \mathcal{I} \cap \tau^{-i} \end{aligned}$$

Thus, Ifp 
$$F_p = \bigcup_{n \in \mathbb{N}} F_p^n(\emptyset) = \bigcup_{n \in \mathbb{N}} \bigcup_{i \le n} \mathcal{I}^{\frown} \tau^{\frown i} = \bigcup_{i \in \mathbb{N}} \mathcal{I}^{\frown} \tau^{\frown i}$$
.

Note: we also have  $\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp}_{\mathcal{T}} G_p$  where  $G_p(T) = T \cup T \cap \tau$ .

# Prefix trace semantics: graphical illustration



$$\mathcal{I} \stackrel{\text{def}}{=} \{a\}$$
$$\tau \stackrel{\text{def}}{=} \{(a,b),(b,b),(b,c)\}$$

 $\underline{\mathsf{lterates:}} \quad \mathcal{T}_p(\mathcal{I}) = \mathsf{lfp}\, F_p \text{ where } F_p(T) \stackrel{\mathrm{def}}{=} \mathcal{I} \cup T^{\frown} \tau.$ 

- $F_p^0(\emptyset) = \emptyset$
- $F_p^1(\emptyset) = \mathcal{I} = \{a\}$
- $F_p^2(\emptyset) = \{a, ab\}$
- $F_p^3(\emptyset) = \{a, ab, abb, abc\}$
- $F_p^n(\emptyset) = \{ a, ab^i, ab^jc \mid i \in [1, n-1], j \in [1, n-2] \}$
- $\mathcal{T}_p(\mathcal{I}) = \bigcup_{n>0} F_p^n(\emptyset) = \{ a, ab^i, ab^i c \mid i \geq 1 \}$

# Prefix trace semantics: expressive power

The prefix trace semantics is the collection of finite observations of program executions.

 $\implies$  Semantics of testing.

#### Limitations:

- no information on infinite executions, (we will add infinite traces later)
- can bound maximal execution time:  $\mathcal{T}_p(\mathcal{I}) \subseteq \Sigma^{\leq n}$  but cannot bound minimal execution time. (we will consider maximal traces later)

## Abstracting traces into states

<u>Idea:</u> view state semantics as abstractions of traces semantics.

We have a Galois embedding between finite traces and states:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\gamma_{\rho}} (\mathcal{P}(\Sigma),\subseteq)$$

- $\alpha_p(T) \stackrel{\text{def}}{=} \{ \sigma \in \Sigma \mid \exists \sigma_0, \dots, \sigma_n \in T : \sigma = \sigma_n \}$  (last state in traces in T)
- $\gamma_p(S) \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \in \Sigma^* \mid \sigma_n \in S \}$  (traces ending in a state in S)

(proof on next slide)

# Abstracting traces into states (proof)

 $\underline{\text{proof of:}} \hspace{0.5cm} (\alpha_p, \gamma_p) \text{ forms a Galois embedding}.$ 

Instead of the definition  $\alpha(c)\subseteq a\iff c\subseteq \gamma(a)$ , we use the alternate characterization of Galois connections:  $\alpha$  and  $\gamma$  are monotonic,  $\gamma\circ\alpha$  is extensive, and  $\alpha\circ\gamma$  is reductive.

Embedding means that, additionally,  $\alpha \circ \gamma = \mathit{id}$ .

- $\alpha_p$ ,  $\gamma_p$  are  $\cup$ -morphisms, hence monotonic
- $\begin{array}{ll}
  \bullet & (\gamma_{p} \circ \alpha_{p})(T) \\
  &= \{ \sigma_{0}, \dots, \sigma_{n} \mid \sigma_{n} \in \alpha_{p}(T) \} \\
  &= \{ \sigma_{0}, \dots, \sigma_{n} \mid \exists \sigma'_{0}, \dots, \sigma'_{m} \in T : \sigma_{n} = \sigma'_{m} \} \\
  &\supseteq T
  \end{array}$

## Abstracting prefix traces into reachability

#### Recall that:

- $\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p$  where  $F_p(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T \cap \tau$ ,
- $\mathcal{R}(\mathcal{I}) = \text{lfp } F_{\mathcal{R}} \text{ where } F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \text{post}_{\tau}(S)$ ,
- $(\mathcal{P}(\Sigma^*),\subseteq) \stackrel{\gamma_p}{\longleftarrow} (\mathcal{P}(\Sigma),\subseteq).$

We have:  $\alpha_p \circ F_p = F_R \circ \alpha_p$ ;

by fixpoint transfer, we get:  $\alpha_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{R}(\mathcal{I})$ .

(proof on next slide)

# Abstracting prefix traces into reachability (proof)

```
\frac{\text{proof:}}{(\alpha_{p} \circ F_{p})(T)} \text{ of } \alpha_{p} \circ F_{p} = F_{\mathcal{R}} \circ \alpha_{p} \\
(\alpha_{p} \circ F_{p})(T) \\
= \alpha_{p}(\mathcal{I} \cup T \cap \tau) \\
= \{\sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in \mathcal{I} \cup T \cap \tau : \sigma = \sigma_{n}\} \\
= \mathcal{I} \cup \{\sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in T \cap \tau : \sigma = \sigma_{n}\} \\
= \mathcal{I} \cup \{\sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in T : \sigma_{n} \to \sigma\} \\
= \mathcal{I} \cup \text{post}_{\tau}(\{\sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in T : \sigma = \sigma_{n}\}) \\
= \mathcal{I} \cup \text{post}_{\tau}(\alpha_{p}(T)) \\
= (F_{\mathcal{R}} \circ \alpha_{p})(T)
```

# Abstracting traces into states (example)

# $egin{aligned} \mathsf{program} \ j &\leftarrow 0; \ i &\leftarrow 0; \ \mathbf{while} \ i &< 100 \ \mathbf{do} \ i &\leftarrow i+1; \ j &\leftarrow j+[0,1] \ \mathbf{done} \end{aligned}$

- prefix trace semantics: i and j are increasing and  $0 \le j \le i \le 100$
- forward reachable state semantics: 0 < i < i < 100
- ⇒ the abstraction forgets the ordering of states.

## Prefix closure

## Prefix partial order: $\leq$ on $\Sigma^{\infty}$

$$x \leq y \iff \exists u \in \Sigma^{\infty} : x \cdot u = y$$

 $(\Sigma^{\infty}, \preceq)$  is a CPO, while  $(\Sigma^*, \preceq)$  is not complete.

Prefix closure: 
$$\rho_p : \mathcal{P}(\Sigma^{\infty}) \to \mathcal{P}(\Sigma^{\infty})$$

$$\rho_{p}(T) \stackrel{\text{def}}{=} \{ u \mid \exists t \in T : u \leq t, u \neq \epsilon \}$$

$$\rho_p$$
 is an upper closure operator on  $\mathcal{P}(\Sigma^{\infty} \setminus \{\epsilon\})$ .  
(monotonic, extensive  $T \subseteq \rho_p(T)$ , idempotent  $\rho_p \circ \rho_p = \rho_p$ )

The prefix trace semantics is closed by prefix:

$$\rho_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{T}_p(\mathcal{I}).$$

(note that  $\epsilon \notin \mathcal{T}_p(\mathcal{I})$ , which is why we disallowed  $\epsilon$  in  $\rho_p$ )

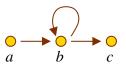
## Finite suffix trace semantics

## Suffix trace semantics

Similar results on the suffix trace semantics, going backwards from  $\mathcal{F}$ :

- $\mathcal{T}_s(\mathcal{F}) \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \mid n \geq 0, \sigma_n \in \mathcal{F}, \forall i : \sigma_i \rightarrow \sigma_{i+1} \}$  (traces following  $\tau$  and ending in a state in  $\mathcal{F}$ )
- $T_s(\mathcal{F}) = \bigcup_{n>0} \tau^{n} \mathcal{F}$
- $\mathcal{T}_s(\mathcal{F}) = \text{Ifp } F_s \text{ where } F_s(T) \stackrel{\text{def}}{=} \mathcal{F} \cup \tau \cap T$ ( $F_s$  prepends a transition to each trace, and adds back  $\mathcal{F}$ )
- $\alpha_s(\mathcal{T}_s(\mathcal{F})) = \mathcal{C}(\mathcal{F})$ where  $\alpha_s(\mathcal{T}) \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma_0, \dots, \sigma_n \in \mathcal{T} : \sigma = \sigma_0 \}$
- $\rho_s(\mathcal{T}_s(\mathcal{F})) = \mathcal{T}_s(\mathcal{F})$ where  $\rho_s(\mathcal{T}) \stackrel{\text{def}}{=} \{ u \mid \exists t \in \Sigma^{\infty} : t \cdot u \in \mathcal{T}, u \neq \epsilon \}$ (closed by suffix)

## Suffix trace semantics: graphical illustration



$$\mathcal{F} \stackrel{\mathrm{def}}{=} \{c\}$$
 $au \stackrel{\mathrm{def}}{=} \{(a,b),(b,b),(b,c)\}$ 

<u>Iterates:</u>  $\mathcal{T}_s(\mathcal{F}) = \operatorname{lfp} F_s$  where  $F_s(T) \stackrel{\text{def}}{=} \mathcal{F} \cup \tau \cap T$ .

- $F_s^0(\emptyset) = \emptyset$
- $F_s^1(\emptyset) = \mathcal{F} = \{c\}$
- $F_s^2(\emptyset) = \{c, bc\}$
- $F_s^3(\emptyset) = \{c, bc, bbc, abc\}$
- $F_s^n(\emptyset) = \{ c, b^i c, ab^j c \mid i \in [1, n-1], j \in [1, n-2] \}$
- $\mathcal{T}_s(\mathcal{F}) = \bigcup_{n \geq 0} F_s^n(\emptyset) = \{c, b^i c, ab^i c \mid i \geq 1\}$

## Finite partial trace semantics

## Finite partial trace semantics

## $\mathcal{T}$ : all finite partial finite execution traces.

(not necessarily starting in  $\mathcal I$  or ending in  $\mathcal F$ )

$$\mathcal{T} \stackrel{\text{def}}{=} \left\{ \sigma_0, \dots, \sigma_n \mid n \ge 0, \forall i : \sigma_i \to \sigma_{i+1} \right\} \\
= \bigcup_{n \ge 0} \Sigma^{\frown} \tau^{\frown n} \\
= \bigcup_{n \ge 0} \tau^{\frown n} \Sigma$$

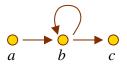
- $\mathcal{T} = \mathcal{T}_p(\Sigma)$ , hence  $\mathcal{T} = \operatorname{lfp} F_{p*}$  where  $F_{p*}(T) \stackrel{\text{def}}{=} \Sigma \cup T \cap \tau$  (prefix partial traces from any initial state)
- $T = T_s(\Sigma)$ , hence  $T = \text{Ifp } F_{s*}$  where  $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau \cap T$  (suffix partial traces to any final state)

• 
$$F_{p*}^n(\emptyset) = F_{s*}^n(\emptyset) = \bigcup_{i < n} \Sigma^{\frown} \tau^{\frown i} = \bigcup_{i < n} \tau^{\frown i \frown} \Sigma = \mathcal{T} \cap \Sigma^{< n}$$

• 
$$\mathcal{T}_p(\mathcal{I}) = \mathcal{T} \cap (\mathcal{I} \cdot \Sigma^*)$$
 (restricted initial states)

• 
$$\mathcal{T}_s(\mathcal{F}) = \mathcal{T} \cap (\Sigma^* \cdot \mathcal{F})$$
 (restricted final states)

# Partial trace semantics: graphical illustration



$$\tau \stackrel{\text{def}}{=} \{(a,b),(b,b),(b,c)\}$$

 $\underline{\mathsf{lterates:}} \quad \mathcal{T}(\Sigma) = \mathsf{lfp} \, F_{p*} \text{ where } F_{p*}(T) \stackrel{\mathrm{def}}{=} \Sigma \cup T \widehat{\phantom{T}} \tau.$ 

- $F_{p*}^0(\emptyset) = \emptyset$
- $F_{p*}^1(\emptyset) = \Sigma = \{a, b, c\}$
- $F_{p*}^2(\emptyset) = \{a, b, c, ab, bb, bc\}$
- $F_{p*}^3(\emptyset) = \{a, b, c, ab, bb, bc, abb, abc, bbb, bbc\}$
- $F_{p*}^n(\emptyset) = \{ ab^i, ab^jc, b^ic, b^k \mid i \in [0, n-1], j \in [1, n-2], k \in [1, n] \}$
- $\mathcal{T} = \bigcup_{n \geq 0} F_{p*}^n(\emptyset) = \{ ab^i, ab^jc, b^ic, b^j | i \geq 0, j > 1 \}$

(using  $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau \widehat{\phantom{T}}$ , we get the exact same iterates)

## Abstracting partial traces to prefix traces

**Idea:** anchor partial traces at initial states  $\mathcal{I}$ .

We have a Galois connection:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\alpha_{\mathcal{I}}} (\mathcal{P}(\Sigma^*),\subseteq)$$

- $\bullet \ \alpha_{\mathcal{I}}(\mathcal{T}) \stackrel{\mathrm{def}}{=} \ \mathcal{T} \cap (\mathcal{I} \cdot \Sigma^*)$  (keep only traces starting in  $\mathcal{I}$ )
- $\bullet \ \gamma_{\mathcal{I}}(T) \stackrel{\mathrm{def}}{=} \ T \cup ((\Sigma \setminus \mathcal{I}) \cdot \Sigma^*) \qquad \qquad (\mathsf{add} \ \mathsf{all} \ \mathsf{traces} \ \mathsf{not} \ \mathsf{starting} \ \mathsf{in} \ \mathcal{I})$

We then have:  $\mathcal{T}_p(\mathcal{I}) = \alpha_{\mathcal{I}}(\mathcal{T})$ .

(similarly 
$$\mathcal{T}_s(\mathcal{F}) = \alpha_{\mathcal{F}}(\mathcal{T})$$
 where  $\alpha_{\mathcal{F}}(\mathcal{T}) \stackrel{\mathrm{def}}{=} \mathcal{T} \cap (\Sigma^* \cdot \mathcal{F})$ )

(proof on next slide)

# Abstracting partial traces to prefix traces (proof)

## proof

 $\alpha_{\mathcal{I}}$  and  $\gamma_{\mathcal{I}}$  are monotonic.

$$(\alpha_{\mathcal{I}} \circ \gamma_{\mathcal{I}})(T) = (T \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^*) \cap \mathcal{I} \cdot \Sigma^*) = T \cap \mathcal{I} \cdot \Sigma^* \subseteq T.$$

$$(\gamma_{\mathcal{I}} \circ \alpha_{\mathcal{I}})(T) = (T \cap \mathcal{I} \cdot \Sigma^*) \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^* = T \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^* \supseteq T.$$
So, we have a Galois connection.

A direct proof of  $\mathcal{T}_p(\mathcal{I}) = \alpha_{\mathcal{I}}(\mathcal{T})$  is straightforward, by definition of  $\mathcal{T}_p$ ,  $\alpha_{\mathcal{I}}$ , and  $\mathcal{T}$ .

We can also retrieve the result by fixpoint transfer.

$$\mathcal{T} = \operatorname{lfp} F_{p*} \text{ where } F_{p*}(T) \stackrel{\text{def}}{=} \Sigma \cup T \widehat{\phantom{a}} \tau.$$

$$\mathcal{T}_p = \operatorname{lfp} F_p \text{ where } F_p(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T \widehat{\phantom{a}} \tau.$$

We have: 
$$(\alpha_{\mathcal{I}} \circ F_{p*})(T) = (\Sigma \cup T \cap \tau) \cap (\mathcal{I} \cdot \Sigma^*) = \mathcal{I} \cup ((T \cap \tau) \cap (\mathcal{I} \cdot \Sigma^*) = \mathcal{I} \cup ((T \cap \tau) \cap (\mathcal{I} \cdot \Sigma^*) \cap \tau) = (F_p \circ \alpha_{\mathcal{I}})(T).$$

## Maximal finite and infinite trace semantics

## Maximal traces

## $\underline{\mathsf{Maximal\ traces:}}\quad \mathcal{M}_\infty \in \mathcal{P}(\Sigma^\infty)$

- ullet sequences of states linked by the transition relation au,
- start in any state  $(\mathcal{I} = \Sigma)$ ,
- ullet either finite and stop in a blocking state  $(\mathcal{F} = \mathcal{B})$ ,
- or infinite.

maximal traces cannot be "extended" by adding a new transition in  $\tau$  at their end

$$\mathcal{M}_{\infty} \stackrel{\text{def}}{=} \left\{ \sigma_{0}, \dots, \sigma_{n} \in \Sigma^{*} \mid \sigma_{n} \in \mathcal{B}, \forall i < n: \sigma_{i} \to \sigma_{i+1} \right\} \cup \left\{ \sigma_{0}, \dots, \sigma_{n}, \dots \in \Sigma^{\omega} \mid \forall i < \omega: \sigma_{i} \to \sigma_{i+1} \right\}$$

(can be anchored at  $\mathcal I$  and  $\mathcal F$  as:  $\mathcal M_\infty \cap (\mathcal I \cdot \Sigma^\infty) \cap ((\Sigma^* \cdot \mathcal F) \cup \Sigma^\omega))$ 

# Partitioned fixpoint formulation of maximal traces

**Goal:** we look for a fixpoint characterization of  $\mathcal{M}_{\infty}$ .

We consider separately finite and infinite maximal traces.

• Finite traces: already done!

From the suffix partial trace semantics, recall:

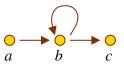
$$\mathcal{M}_{\infty} \cap \Sigma^* = \mathcal{T}_s(\mathcal{B}) = \operatorname{lfp} F_s$$
  
recall that  $F_s(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau \cap \mathcal{T}$  in  $(\mathcal{P}(\Sigma^*), \subseteq) \dots$ 

• Infinite traces:

Additionally, we will prove:  $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_s$  where  $G_s(T) \stackrel{\text{def}}{=} \tau \cap T$  in  $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$ .

(proof in following slides)

# Infinite trace semantics: graphical illustration



$$\mathcal{B} \stackrel{\text{def}}{=} \{c\}$$
  
 $\tau \stackrel{\text{def}}{=} \{(a,b),(b,b),(b,c)\}$ 

<u>Iterates:</u>  $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_s$  where  $G_s(T) \stackrel{\text{def}}{=} \tau^{\frown} T$ .

- $G_s^0(\Sigma^\omega) = \Sigma^\omega$
- $G^1_s(\Sigma^\omega) = ab\Sigma^\omega \cup bb\Sigma^\omega \cup bc\Sigma^\omega$
- $G_s^2(\Sigma^\omega) = abb\Sigma^\omega \cup bbb\Sigma^\omega \cup abc\Sigma^\omega \cup bbc\Sigma^\omega$
- $G_s^3(\Sigma^\omega) = abbb\Sigma^\omega \cup bbbb\Sigma^\omega \cup abbc\Sigma^\omega \cup bbbc\Sigma^\omega$
- $G_s^n(\Sigma^\omega) = \{ ab^n t, b^{n+1} t, ab^{n-1} ct, b^n ct \mid t \in \Sigma^\omega \}$
- $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \cap_{n \geq 0} G_s^n(\Sigma^{\omega}) = \{ab^{\omega}, b^{\omega}\}$

Course 02 Program Semantics Antoine Miné p. 63 / 109

# Infinite trace semantics: proof

$$\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{\mathsf{gfp}} \mathsf{G}_{\mathsf{s}}$$
 where  $\mathsf{G}_{\mathsf{s}}(T) \stackrel{\scriptscriptstyle\mathrm{def}}{=} \tau^{\frown} T$  in  $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$ 

#### proof:

$$G_s$$
 is continuous in  $(\mathcal{P}(\Sigma^{\omega}), \supseteq)$ :  $G_s(\cap_{i \in I} T_i) = \cap_{i \in I} G_s(T_i)$ .

By Kleene's theorem in the dual: gfp  $G_s = \bigcap_{n \in \mathbb{N}} G_s^n(\Sigma^\omega)$ .

We prove by recurrence on n that  $\forall n$ :  $G_s^n(\Sigma^\omega) = \tau^{-n} \Sigma^\omega$ :

$$ullet$$
  $G_s^0(\Sigma^\omega)=\Sigma^\omega= au^{-0}$   $\Sigma^\omega$  ,

$$\bullet \ \ G_s^{n+1}(\Sigma^{\omega}) = \tau^{\frown} G_s^n(\Sigma^{\omega}) = \tau^{\frown} (\tau^{\frown}{}^{n} \Sigma^{\omega}) = \tau^{\frown} (\tau^{\frown}{}^{n} \Sigma^{\omega}) = \tau^{\frown}{}^{n+1} \Sigma^{\omega}.$$

$$\begin{array}{ll} \mathsf{gfp} \; \mathsf{G_s} & = & \cap_{n \in \mathbb{N}} \, \tau^{\frown n \frown} \Sigma^{\omega} \\ & = & \left\{ \, \sigma_0, \ldots \in \Sigma^{\omega} \, \middle| \, \forall n \geq 0 \colon \sigma_0, \ldots, \sigma_{n-1} \in \tau^{\frown n} \, \right\} \\ & = & \left\{ \, \sigma_0, \ldots \in \Sigma^{\omega} \, \middle| \, \forall n \geq 0 \colon \forall i < n \colon \sigma_i \to \sigma_{i+1} \, \right\} \\ & = & \mathcal{M}_{\infty} \cap \Sigma^{\omega} \end{array}$$

Course 02 Program Semantics Antoine Miné p. 64 / 109

# Least fixpoint formulation of maximal traces

<u>Idea:</u> To get a least fixpoint formulation for whole  $\mathcal{M}_{\infty}$ , merge finite and infinite maximal trace least fixpoint forms.

### Fixpoint fusion

```
\mathcal{M}_{\infty} \cap \Sigma^* is best defined on (\Sigma^*, \subseteq, \cup, \cap, \emptyset, \Sigma^*). \mathcal{M}_{\infty} \cap \Sigma^{\omega} is best defined on (\Sigma^{\omega}, \supseteq, \cap, \cup, \Sigma^{\omega}, \emptyset), the dual lattice (we transform the greatest fixpoint into a least fixpoint!)
```

We mix them into a new complete lattice  $(\Sigma^{\infty}, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ :

- $A \sqsubseteq B \iff (A \cap \Sigma^*) \subseteq (B \cap \Sigma^*) \land (A \cap \Sigma^{\omega}) \supseteq (B \cap \Sigma^{\omega})$
- $A \sqcup B \stackrel{\text{def}}{=} ((A \cap \Sigma^*) \cup (B \cap \Sigma^*)) \cup ((A \cap \Sigma^\omega) \cap (B \cap \Sigma^\omega))$
- $A \sqcap B \stackrel{\text{def}}{=} ((A \cap \Sigma^*) \cap (B \cap \Sigma^*)) \cup ((A \cap \Sigma^\omega) \cup (B \cap \Sigma^\omega))$
- $\perp \stackrel{\text{def}}{=} \Sigma^{\omega}$
- $\bullet \ \top \stackrel{\text{def}}{=} \Sigma^*$

In this lattice,  $\mathcal{M}_{\infty} = \text{Ifp } F_s \text{ where } F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau \cap T$ .

# Fixpoint fusion theorem

### **Theorem:** fixpoint fusion

```
If X_1 = \operatorname{lfp} F_1 in (\mathcal{P}(\mathcal{D}_1), \sqsubseteq_1) and X_2 = \operatorname{lfp} F_2 in (\mathcal{P}(\mathcal{D}_2), \sqsubseteq_2) and \mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset, then X_1 \cup X_2 = \operatorname{lfp} F in (\mathcal{P}(\mathcal{D}_1 \cup \mathcal{D}_2), \sqsubseteq) where:
```

- $\bullet \ F(X) \stackrel{\text{def}}{=} F_1(X \cap \mathcal{D}_1) \cup F_2(X \cap \mathcal{D}_2),$
- $\bullet \ A \sqsubseteq B \iff (A \cap \mathcal{D}_1) \sqsubseteq_1 (B \cap \mathcal{D}_1) \wedge (A \cap \mathcal{D}_2) \sqsubseteq_2 (B \cap \mathcal{D}_2).$

#### proof:

We have:

 $F(X_1 \cup X_2) = F_1((X_1 \cup X_2) \cap \mathcal{D}_1) \cup F_2((X_1 \cup X_2) \cap \mathcal{D}_2) = F_1(X_1) \cup F_2(X_2) = X_1 \cup X_2$ , hence  $X_1 \cup X_2$  is a fixpoint of F.

Let Y be a fixpoint. Then  $Y=F(Y)=F_1(Y\cap \mathcal{D}_1)\cup F_2(Y\cap \mathcal{D}_2)$ , hence,  $Y\cap \mathcal{D}_1=F_1(Y\cap \mathcal{D}_1)$  and  $Y\cap \mathcal{D}_1$  is a fixpoint of  $F_1$ . Thus,  $X_1\sqsubseteq_1 Y\cap \mathcal{D}_1$ . Likewise,  $X_2\sqsubseteq_2 Y\cap \mathcal{D}_2$ . We deduce that  $X=X_1\cup X_2\sqsubseteq (Y\cap \mathcal{D}_1)\cup (Y\cap \mathcal{D}_2)=Y$ , and so, X is F's least fixpoint.

<u>note:</u> we also have  $gfp F = gfp F_1 \cup gfp F_2$ .

Course 02 Program Semantics Antoine Miné p. 66 / 109

# Least fixpoint formulation of maximal traces (proof)

We are now ready to finish the proof that  $\mathcal{M}_{\infty} = \mathsf{lfp} \ F_s$  where  $F_s(T) \stackrel{\mathsf{def}}{=} \mathcal{B} \cup \tau ^{\frown} T$ 

#### proof:

We have:

- $\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{lfp} F_s$  in  $(\mathcal{P}(\Sigma^*), \subseteq)$ ,
- $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \text{Ifp } G_s \text{ in } (\mathcal{P}(\Sigma^{\omega}), \supseteq) \text{ where } G_s(T) \stackrel{\text{def}}{=} \tau^{\frown} T$ ,
- in  $\mathcal{P}(\Sigma^{\infty})$ , we have  $F_s(A) = (F_s(A) \cap \Sigma^*) \cup (F_s(A) \cap \Sigma^{\omega}) = F_s(A \cap \Sigma^*) \cup G_s(A \cap \Sigma^{\omega}).$

So, by fixpoint fusion in  $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ , we have:

$$\mathcal{M}_{\infty} = (\mathcal{M}_{\infty} \cap \Sigma^*) \cup (\mathcal{M}_{\infty} \cap \Sigma^{\omega}) = \mathsf{lfp}\, F_s.$$

<u>Note:</u> a greatest fixpoint formulation in  $(\Sigma^{\infty}, \subseteq)$  also exists!

Course 02 Program Semantics Antoine Miné p. 67 / 109

### Abstracting maximal traces into partial traces

Course 02 Program Semantics Antoine Miné p. 68 / 109

## Finite and infinite partial trace semantics

<u>Idea:</u> complete the partial traces  $\mathcal T$  with infinite traces.

 $\mathcal{T}_{\infty}$ : all finite and infinite sequences of states linked by the transition relation  $\tau$ :

$$\mathcal{T}_{\infty} \stackrel{\text{def}}{=} \left\{ \sigma_{0}, \dots, \sigma_{n} \in \Sigma^{*} \mid \forall i < n : \sigma_{i} \to \sigma_{i+1} \right\} \cup \left\{ \sigma_{0}, \dots, \sigma_{n}, \dots \in \Sigma^{\omega} \mid \forall i < \omega : \sigma_{i} \to \sigma_{i+1} \right\}$$

(partial finite traces do not necessarily end in a blocking state)

Fixpoint form similar to  $\mathcal{M}_{\infty}$ :

$$\mathcal{T}_{\infty} = \mathsf{lfp}\, F_{s*} \; \mathsf{in} \; (\mathcal{P}(\Sigma^{\infty}), \sqsubseteq) \; \mathsf{where} \; F_{s*}(T) \stackrel{\mathsf{def}}{=} \; \Sigma \cup \tau^{\frown} T,$$

proof: similar to the proof of  $\mathcal{M}_{\infty} = \operatorname{lfp} F_s$ .

Course 02 Program Semantics Antoine Miné p. 69 / 109

### Finite trace abstraction

Finite partial traces  $\mathcal{T}$  are an abstraction of all partial traces  $\mathcal{T}_{\infty}$ .

We have a Galois embedding:

$$(\mathcal{P}(\Sigma^{\infty}),\sqsubseteq) \stackrel{\gamma_*}{\longleftarrow_{\alpha_*}} (\mathcal{P}(\Sigma^*),\subseteq)$$

•  $\sqsubseteq$  is the fused ordering on  $\Sigma^* \cup \Sigma^{\omega}$ :

$$A \sqsubseteq B \iff (A \cap \Sigma^*) \subseteq (B \cap \Sigma^*) \land (A \cap \Sigma^{\omega}) \supseteq (B \cap \Sigma^{\omega})$$

- $\alpha_*(T) \stackrel{\text{def}}{=} T \cap \Sigma^*$  (remove infinite traces)
- $\gamma_*(T) \stackrel{\text{def}}{=} T$  (embedding)
- $\mathcal{T} = \alpha_*(\mathcal{T}_{\infty})$

(proof on next slide)

# Finite trace abstraction (proof)

#### proof:

We have Galois embedding because:

- $\bullet$   $\alpha_*$  and  $\gamma_*$  are monotonic,
- given  $T \subseteq \Sigma^*$ , we have  $(\alpha_* \circ \gamma_*)(T) = T \cap \Sigma^* = T$ ,
- $(\gamma_* \circ \alpha_*)(T) = T \cap \Sigma^* \supseteq T$ , as we only remove infinite traces.

Recall that  $\mathcal{T}_{\infty} = \operatorname{lfp} F_{s*}$  in  $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$  and  $\mathcal{T} = \operatorname{lfp} F_{s*}$  in  $(\mathcal{P}(\Sigma^{*}), \subseteq)$ , where  $F_{s*}(\mathcal{T}) \stackrel{\mathrm{def}}{=} \Sigma \cup \mathcal{T} \cap \tau$ .

As  $\alpha_* \circ F_{s*} = F_{s*} \circ \alpha_*$  and  $\alpha_*(\emptyset) = \emptyset$ , we can apply the fixpoint transfer theorem to get  $\alpha_*(\mathcal{T}_{\infty}) = \mathcal{T}$ .

Course 02 Program Semantics Antoine Miné p. 71 / 109

### Prefix abstraction

<u>Idea:</u> complete maximal traces by adding (non-empty) prefixes.

We have a Galois connection:

$$(\mathcal{P}(\Sigma^{\infty}\setminus\{\epsilon\}),\subseteq) \xrightarrow{\gamma_{\preceq}} (\mathcal{P}(\Sigma^{\infty}\setminus\{\epsilon\}),\subseteq)$$

•  $\alpha_{\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \setminus \{\epsilon\} \mid \exists u \in T : t \preceq u \}$  (set of all non-empty prefixes of traces in T)

•

$$\gamma_{\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \setminus \{\epsilon\} \, | \, \forall u \in \Sigma^{\infty} \setminus \{\epsilon\} \colon u \preceq t \implies u \in T \}$$
 (traces with non-empty prefixes in  $T$ )

#### proof:

 $\alpha_{\prec}$  and  $\gamma_{\prec}$  are monotonic.

$$(\alpha_{\preceq} \circ \gamma_{\preceq})(T) = \{ t \in T \mid \rho_p(t) \subseteq T \} \subseteq T \pmod{prefix-closed trace sets}.$$

$$(\gamma_{\preceq} \circ \alpha_{\preceq})(T) = \rho_p(T) \supseteq T.$$

Course 02 Program Semantics Antoine Miné p. 72 / 109

# Abstraction from maximal traces to partial traces

# Finite and infinite partial traces $\mathcal{T}_{\infty}$ are an abstraction of maximal traces $\mathcal{M}_{\infty}$ : $\mathcal{T}_{\infty} = \alpha_{\preceq}(\mathcal{M}_{\infty})$ .

#### proof:

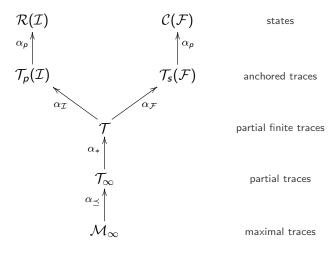
Firstly,  $\mathcal{T}_{\infty}$  and  $\alpha_{\preceq}(\mathcal{M}_{\infty})$  coincide on infinite traces. Indeed,  $\mathcal{T}_{\infty} \cap \Sigma^{\omega} = \mathcal{M}_{\infty} \cap \Sigma^{\omega}$  and  $\alpha_{\preceq}$  does not add infinite traces, so:  $\mathcal{T}_{\infty} \cap \Sigma^{\omega} = \alpha_{\preceq}(\mathcal{M}_{\infty}) \cap \Sigma^{\omega}$ .

We now prove that they also coincide on finite traces. Assume  $\sigma_0,\ldots,\sigma_n\in\alpha_{\preceq}(\mathcal{M}_{\infty})$ , then  $\forall i< n:\sigma_i\to\sigma_{i+1}$ , so,  $\sigma_0,\ldots,\sigma_n\in\mathcal{T}_{\infty}$ . Assume  $\sigma_0,\ldots,\sigma_n\in\mathcal{T}_{\infty}$ , then it can be completed into a maximal trace, either finite or infinite, and so,  $\sigma_0,\ldots,\sigma_n\in\alpha_{\prec}(\mathcal{M}_{\infty})$ .

Note: no fixpoint transfer applies here.

Course 02 Program Semantics Antoine Miné p. 73 / 109

# (Partial) hierarchy of semantics



Course 02 Program Semantics Antoine Miné p. 74 / 109

### **Relational semantics**

Course 02 Program Semantics Antoine Miné p. 75 / 109

## Big-step semantics

Course 02 Program Semantics Antoine Miné p. 76 / 109

# Finite big-step semantics

Pairs of states linked by a sequence of transitions in  $\tau$ .

$$\mathcal{BS} \stackrel{\text{def}}{=} \{ (\sigma_0, \sigma_n) \in \Sigma \times \Sigma \mid n \geq 0, \exists \sigma_1, \dots, \sigma_{n-1} : \forall i < n : \sigma_i \to \sigma_{i+1} \}$$

(symmetric and transitive closure of au)

### Fixpoint form:

$$\mathcal{BS} = \mathsf{lfp}\, F_B$$
 where  $F_B(R) \stackrel{\text{def}}{=} id \cup \{ (\sigma, \sigma'') \mid \exists \sigma' \colon (\sigma, \sigma') \in R, \sigma' \to \sigma'' \}.$ 

Course 02 Program Semantics Antoine Miné p. 77 / 109

### Relational abstraction

Relational abstraction: allows skipping intermediate steps.

We have a Galois embedding:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\gamma_{io}} (\mathcal{P}(\Sigma\times\Sigma),\subseteq)$$

- $\alpha_{io}(T) \stackrel{\text{def}}{=} \{ (\sigma, \sigma') \mid \exists \sigma_0, \dots, \sigma_n \in T : \sigma = \sigma_0, \sigma' = \sigma_n \}$  (first and last state of a trace in T)
- $\gamma_{io}(R) \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \in \Sigma^* \mid \exists (\sigma, \sigma') \in R : \sigma = \sigma_0, \sigma' = \sigma_n \}$  (traces respecting the first and last states from R)

#### proof sketch:

 $\gamma_{io}$  and  $\alpha_{io}$  are monotonic.  $(\gamma_{io} \circ \alpha_{io})(T) = \{ \sigma_0, \dots, \sigma_n \mid \exists \sigma'_0, \dots, \sigma'_m \in T : \sigma_0 = \sigma'_0, \sigma_n = \sigma'_m \}.$   $(\alpha_{io} \circ \gamma_{io})(R) = R.$ 

Course 02 Program Semantics Antoine Miné p. 78 / 109

## Finite big-step semantics as an abstraction

The finite big-step semantics is an abstraction of the finite trace semantics:  $\mathcal{BS} = \alpha_{io}(\mathcal{T})$ .

```
proof sketch: by fixpoint transfer.
```

```
We have \mathcal{T} = \operatorname{lfp} F_{p*} where F_{p*}(T) \stackrel{\operatorname{def}}{=} \Sigma \cup T \cap \tau.

Moreover, F_B(R) \stackrel{\operatorname{def}}{=} id \cup \{ (\sigma, \sigma'') | \exists \sigma' : (\sigma, \sigma') \in R, \sigma' \to \sigma'' \}.

Then, \alpha_{io} \circ F_{p*} = F_B \circ \alpha_{io} because \alpha_{io}(\Sigma) = id and \alpha_{io}(T \cap \tau) = \{ (\sigma, \sigma'') | \exists \sigma' : (\sigma, \sigma') \in \alpha_{io}(T) \wedge \sigma' \to \sigma'' \}.

By fixpoint transfer: \alpha_{io}(T) = \operatorname{lfp} F_B.
```

We have a similar result using  $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau \cap T$  and

$$F'_B(R) \stackrel{\mathrm{def}}{=} id \cup \{ (\sigma, \sigma'') \mid \exists \sigma' : (\sigma', \sigma'') \in R \land \sigma \to \sigma' \}.$$

Course 02 Program Semantics Antoine Miné p. 79 / 109

# Finite big-step semantics (example)

# program $i \leftarrow [0, +\infty];$

 $i \leftarrow [0, +\infty];$ while i > 0 do  $i \leftarrow i - [0, 1];$ done

Finite big-step semantics  $\mathcal{BS}$ :  $\{(\rho, \rho') | 0 \le \rho'(i) \le \rho(i) \}$ .

Course 02 Program Semantics Antoine Miné p. 80 / 109

### Relational denotational semantics

Course 02 Program Semantics Antoine Miné p. 81 / 109

# Denotational semantics (in relation form)

In the denotational semantics, we forget all the intermediate steps and only keep the input / output relation:

- $(\sigma, \sigma') \in \Sigma \times \mathcal{B}$ : finite execution starting in  $\sigma$ , stopping in  $\sigma'$ ,
- $(\sigma, \circlearrowleft)$ : non-terminating execution starting in  $\sigma$ .

 $(\neq \text{big-step semantics: we no longer include } (\sigma, \sigma') \text{ if } \sigma' \text{ is not blocking!})$ 

Construction by abstraction: of the maximal trace semantics  $\mathcal{M}_{\infty}$ .

$$(\mathcal{P}(\Sigma^{\infty}),\subseteq) \xrightarrow{\frac{\gamma_d}{\alpha_d}} (\mathcal{P}(\Sigma \times (\Sigma \cup \{\circlearrowleft\})),\subseteq)$$

- $\alpha_d(T) \stackrel{\text{def}}{=} \alpha_{io}(T \cap \Sigma^*) \cup \{ (\sigma, \circlearrowleft) \mid \exists t \in \Sigma^\omega : \sigma \cdot t \in T \}$
- $\gamma_d(R) \stackrel{\text{def}}{=} \gamma_{io}(R \cap (\Sigma \times \Sigma)) \cup \{ \sigma \cdot t \mid (\sigma, \circlearrowleft) \in R, t \in \Sigma^{\omega} \}$  (extension of  $(\alpha_{io}, \gamma_{io})$  to infinite traces)

The denotational semantics is  $\mathcal{DS} \stackrel{\text{def}}{=} \alpha_d(\mathcal{M}_{\infty})$ .

Course 02 Program Semantics Antoine Miné p. 82 / 109

# Denotational fixpoint semantics

<u>Idea:</u> as  $\mathcal{M}_{\infty}$ , separate terminating and non-terminating behaviors, and use a fixpoint fusion theorem.

```
We have: \mathcal{DS} = \mathsf{lfp}\,F_d
in (\mathcal{P}(\Sigma \times (\Sigma \cup \{\circlearrowleft\})), \sqsubseteq^*, \sqcup^*, \sqcap^*, \bot^*, \top^*), where
```

- $\perp^* \stackrel{\text{def}}{=} \{ (\sigma, \circlearrowleft) \mid \sigma \in \Sigma \}$
- $\top^* \stackrel{\text{def}}{=} \{ (\sigma, \sigma') | \sigma, \sigma' \in \Sigma \}$
- $A \sqsubseteq^* B \iff ((A \cap \top^*) \subseteq (B \cap \top^*)) \wedge ((A \cap \bot^*) \supseteq (B \cap \bot^*))$
- $\bullet \ A \sqcup^* B \stackrel{\mathrm{def}}{=} ((A \cap \top^*) \cup (B \cap \top^*)) \cup ((A \cap \bot^*) \cap (B \cap \bot^*))$
- $\bullet \ A \sqcap^* B \stackrel{\mathrm{def}}{=} ((A \cap \top^*) \cap (B \cap \top^*)) \cup ((A \cap \bot^*) \cup (B \cap \bot^*))$
- $F_d(R) \stackrel{\text{def}}{=} \{ (\sigma, \sigma) | \sigma \in \mathcal{B} \} \cup \{ (\sigma, \sigma'') | \exists \sigma' : \sigma \to \sigma' \land (\sigma', \sigma'') \in R \}$

Course 02 Program Semantics Antoine Miné p. 83 / 109

# Denotational fixpoint semantics (proof)

#### proof:

We cannot use directly a fixpoint transfer on  $\mathcal{M}_{\infty} = \operatorname{lfp} F_s$  in  $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$  because our Galois connection  $(\alpha_d, \gamma_d)$  uses the  $\subseteq$  order, not  $\sqsubseteq$ ! Instead, we use fixpoint transfer separately on finite and infinite executions, and then apply fixpoint fusion.

Recall that 
$$\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{lfp} F_s$$
 in  $(\mathcal{P}(\Sigma^*), \subseteq)$  where  $F_s(T) \stackrel{\operatorname{def}}{=} \mathcal{B} \cup \tau \cap T$  and  $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_s$  in  $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$  where  $G_s(T) \stackrel{\operatorname{def}}{=} \cup \tau \cap T$ . For finite execution, we have  $\alpha_d \circ F_s = F_d \circ \alpha_d$  in  $\mathcal{P}(\Sigma^*) \to \mathcal{P}(\Sigma \times \Sigma)$ . We can apply directly fixpoint transfer and get that:  $\mathcal{DS} \cap (\Sigma \times \Sigma) = \operatorname{lfp} F_d$ .

(proof continued on next slide)

Course 02 Program Semantics Antoine Miné p. 84 / 109

# Denotational fixpoint semantics (proof cont.)

<u>proof (continued):</u> proof sketch for infinite executions

We have 
$$\alpha_d \circ G_s = G_d \circ \alpha_d$$
 in  $\mathcal{P}(\Sigma^\omega) \to \mathcal{P}(\Sigma \times \{\circlearrowleft\})$ , where  $G_d(R) \stackrel{\mathrm{def}}{=} \{ (\sigma, \sigma'') \mid \exists \sigma' \colon \sigma \to \sigma' \land (\sigma', \sigma'') \in R \}.$ 

A candidate proof would be to apply a fixpoint transfer theorem to

 $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_{s}$ , in the dual, replacing Ifp with gfp, and  $\cup$  with  $\cap$ .

However, the proof of the theorem, which required  $\alpha$  to be continous, would require  $\alpha$ 

to be co-continuous in the dual, i.e.,  $\alpha_d(\cap_{i \in I} S_i) = \cap_{i \in I} \alpha_d(S_i)$ . This does not hold. Consider for example:  $I = \mathbb{N}$  and  $S_i = \{a^n b^\omega \mid n > i\}$ 

This does not hold. Consider for example:  $I = \mathbb{N}$  and  $S_i = \{a^n b^\omega \mid n > i\}$ :

 $\cap_{i\in\mathbb{N}} S_i = \emptyset$ , but  $\forall i: \alpha_d(S_i) = \{(a, \circlearrowleft)\}.$ 

We use instead a fixpoint transfer based on Tarksi's theorem.

We have gfp  $G_s = \bigcup \{ X \mid X \subseteq G_s(X) \}.$ 

Thus,  $\alpha_d(\mathsf{gfp}\,G_s) = \alpha_d(\cup \{X \mid X \subseteq G_s(X)\}) = \cup \{\alpha_d(X) \mid X \subseteq G_s(X)\}$  as  $\alpha_d$  is a complete  $\cup$  morphism. The proof is finished by noting that the commutation  $\alpha_d \circ G_s = G_d \circ \alpha_d$  and the Galois embedding  $(\alpha_d, \gamma_d)$  imply that  $\{\alpha_d(X) \mid X \subseteq G_s(X)\} = \{\alpha_d(X) \mid \alpha_d(X) \subseteq G_d(\alpha_d(X))\} = \{Y \mid Y \subseteq G_d(Y)\}.$ 

(the complete proof can be found in [Cous02])

Course 02 Program Semantics Antoine Miné p. 85 / 109

# Denotational semantics (example)

### program

$$i \leftarrow [0, +\infty];$$
  
while  $i > 0$  do  
 $i \leftarrow i - [0, 1];$   
done

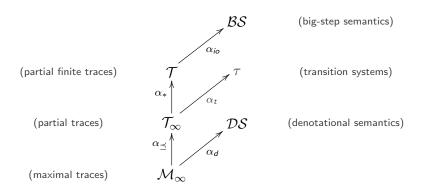
#### Denotational semantics $\mathcal{DS}$ :

$$\{(\rho, \rho') | \rho(i) \ge 0 \land \rho'(i) = 0\} \cup \{(\rho, \circlearrowleft) | \rho(i) \ge 0\}.$$

(quite different from the big-step semantics)

Course 02 Program Semantics Antoine Miné p. 86 / 109

# Another part of the hierarchy of semantics



### See [Cou82] for more semantics in this diagram.

Note: we show transition systems as an abstraction of the partial trace semantics this is left as exercise (see assignment).

Course 02 Program Semantics Antoine Miné p. 87 / 109

## **Properties and proofs**

Course 02 Program Semantics Antoine Miné p. 88 / 109

## State properties

Course 02 Program Semantics Antoine Miné p. 89 / 109

# State properties

```
State property: P \in \mathcal{P}(\Sigma).
```

Verification problem:  $\mathcal{R}(\mathcal{I}) \subseteq P$ .

(all the states reachable from  $\mathcal{I}$  are in P)

### Examples:

- absence of blocking:  $P \stackrel{\text{def}}{=} \Sigma \setminus \mathcal{B}$ ,
- the variables remain in a safe range,
- dangerous program locations cannot be reached.

Course 02 Program Semantics Antoine Miné p. 90 / 109

# Invariance proof method

### **Invariance proof method:** find an inductive invariant $I \subseteq \Sigma$

- I ⊆ I
   (contains initial states)
- $\forall \sigma \in I : \sigma \to \sigma' \implies \sigma' \in I$  (invariant by program transition)

that implies the desired property:  $I \subseteq P$ .

Link with the state semantics  $\mathcal{R}(\mathcal{I})$ :

Given 
$$F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \mathsf{post}_{\tau}(S)$$
, we have  $F_{\mathcal{R}}(I) \subseteq I$   $\Longrightarrow I$  is a post-fixpoint of  $F_{\mathcal{R}}$ .

Recall that 
$$\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$$
  
 $\Longrightarrow \mathcal{R}(\mathcal{I})$  is the tightest inductive invariant.

Course 02 Program Semantics Antoine Miné p. 91 / 109

# Link with Hoare logic

### **Hoare logic:** proof method where we

- ullet annotate program points with local sate invariants in  $\mathcal{P}(\Sigma)$
- use logic rules to prove their correctness

$$\frac{\{P\}\operatorname{stat}_1\{R\}\quad \{R\}\operatorname{stat}_2\{Q\}}{\{P[e/X]\}X\leftarrow e\,\{P\}} \qquad \frac{\{P\}\operatorname{stat}_1;\operatorname{stat}_2\{Q\}}{\{P\}\operatorname{stat}_1;\operatorname{stat}_2\{Q\}} \\ \frac{\{P\wedge b\}\operatorname{stat}\{Q\}\quad P\wedge \neg b\Rightarrow Q}{\{P\}\operatorname{if} b\operatorname{ then} \operatorname{stat}\{Q\}} \qquad \frac{\{P\wedge b\}\operatorname{stat}\{P\}}{\{P\}\operatorname{while} b\operatorname{ do} \operatorname{stat}\{P\wedge \neg b\}} \\ \frac{\{P\}\operatorname{stat}\{Q\}\quad P'\Rightarrow P\quad Q\Rightarrow Q'}{\{P'\}\operatorname{stat}\{Q'\}}$$

### Link with the state semantics $\mathcal{R}(\mathcal{I})$ :

Recall the equation system  $\forall \ell \in \mathcal{L} \colon \mathcal{X}_{\ell} = F_{eq,\ell}(\mathcal{X}_1, \dots, \mathcal{X}_n)$  obtained by partitioning reachability  $F_{\mathcal{R}}$  by control point  $(\mathcal{P}(\Sigma), \subseteq) \xrightarrow{\langle \mathcal{T}_{\mathcal{L}} \rangle} (\mathcal{L} \to \mathcal{P}(\mathcal{E}), \subseteq)$ .

- any post-fixpoint of  $F_{eq}$  gives valid Hoare triples
- Ifp  $F_{eq}$  gives the tightest Hoare triples

Course 02 Program Semantics Antoine Miné p. 92 / 109

# Trace properties

Course 02 Program Semantics Antoine Miné p. 93 / 109

# Trace properties

### Trace property: $P \in \mathcal{P}(\Sigma^{\infty})$

Verification problem:  $\mathcal{M}_{\infty}$  ∩  $(\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$ 

(or, equivalently, as  $\mathcal{M}_{\infty} \subseteq P'$  where  $P' \stackrel{\text{def}}{=} P \cup ((\Sigma \setminus \mathcal{I}) \cdot \Sigma^{\infty})$ )

### Examples:

- termination:  $P \stackrel{\text{def}}{=} \Sigma^*$ .
- non-termination:  $P \stackrel{\text{def}}{=} \Sigma^{\omega}$ ,
- any state property  $S \subseteq \Sigma$ :  $P \stackrel{\text{def}}{=} S^{\infty}$ ,
- maximal execution time:  $P \stackrel{\text{def}}{=} \Sigma^{\leq k}$ ,
- minimal execution time:  $P \stackrel{\text{def}}{=} \Sigma^{\geq k}$
- ordering, e.g.:  $P \stackrel{\text{def}}{=} (\Sigma \setminus \{b\})^* \cdot a \cdot \Sigma^* \cdot b \cdot \Sigma^{\infty}$ . (a and b occur, and a occurs before b)

Course 02 Program Semantics Antoine Miné p. 94 / 109

# Safety properties

### <u>Idea:</u> a safety property P models that "nothing bad ever occurs"

- P is provable by exhaustive testing; (observe the prefix trace semantics: T<sub>P</sub>(I) ⊆ P)
- *P* is disprovable by finding a single finite execution not in *P*.

### Examples:

- any state property:  $P \stackrel{\text{def}}{=} S^{\infty}$  for  $S \subseteq \Sigma$ ,
- ordering:  $P \stackrel{\text{def}}{=} \Sigma^{\infty} \setminus ((\Sigma \setminus \{a\})^* \cdot b \cdot \Sigma^{\infty})$ , (no b can appear without an a before, but we can have only a, or neither a nor b) (not a state property)
- but termination  $P \stackrel{\text{def}}{=} \Sigma^*$  is not a safety property. (disproving requires exhibiting an *infinite* execution)

Course 02 Program Semantics Antoine Miné p. 95 / 109

# Definition of safety properties

**Reminder:** finite prefix abstraction (simplified to allow  $\epsilon$ )

$$(\mathcal{P}(\Sigma^{\infty}),\subseteq) \xrightarrow{\alpha_{*\preceq}} (\mathcal{P}(\Sigma^{*}),\subseteq)$$

- $\bullet \ \alpha_{*\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^* \mid \exists u \in T : t \preceq u \}$
- $\bullet \ \gamma_{*\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \mid \forall u \in \Sigma^* : u \preceq t \implies u \in T \}$

The associated upper closure  $\rho_{*\preceq} \stackrel{\text{def}}{=} \gamma_{\preceq} \circ \alpha_{\preceq}$  is:  $\rho_{*\preceq} = \lim \circ \rho_p$  where:

- $\bullet \ \rho_p(T) \stackrel{\text{def}}{=} \{ u \in \Sigma^{\infty} \mid \exists t \in T : u \leq t \},\$
- $\lim(T) \stackrel{\text{def}}{=} T \cup \{ t \in \Sigma^{\omega} \mid \forall u \in \Sigma^* : u \leq t \implies u \in T \}.$

**<u>Definition:</u>**  $P \in \mathcal{P}(\Sigma^{\infty})$  is a safety property if  $P = \rho_{*\prec}(P)$ .

Course 02 Program Semantics Antoine Miné p. 96 / 109

# Definition of safety properties (examples)

**<u>Definition:</u>**  $P \subseteq \mathcal{P}(\Sigma^{\infty})$  is a safety property if  $P = \rho_{*\preceq}(P)$ .

### Examples and counter-examples:

• state property  $P \stackrel{\text{def}}{=} S^{\infty}$  for  $S \subseteq \Sigma$ :

$$\rho_p(S^\infty) = \lim(S^\infty) = S^\infty \Longrightarrow \text{safety};$$

• termination  $P \stackrel{\text{def}}{=} \Sigma^*$ :

$$\rho_p(\Sigma^*) = \Sigma^*$$
, but  $\lim(\Sigma^*) = \Sigma^{\infty} \neq \Sigma^* \Longrightarrow$  not safety;

• even number of steps  $P \stackrel{\text{def}}{=} (\Sigma^2)^{\infty}$ :

$$\rho_p((\Sigma^2)^\infty) = \Sigma^\infty \neq (\Sigma^2)^\infty \Longrightarrow$$
 not safety.

Course 02 Program Semantics Antoine Miné p. 97 / 109

# Proving safety properties

### **Invariance proof method:** find an inductive invariant *I*

- set of finite traces  $I \subseteq \Sigma^*$
- $\mathcal{I} \subseteq I$  (contains traces reduced to an initial state)
- $\forall \sigma_0, \dots, \sigma_n \in I : \sigma_n \to \sigma_{n+1} \implies \sigma_0, \dots, \sigma_n, \sigma_{n+1} \in I$  (invariant by program transition)

and implies the desired property:  $I \subseteq P$ .

### Link with the finite prefix trace semantics $\mathcal{T}_p(\mathcal{I})$ :

An inductive invariant is a post-fixpoint of  $F_p$ :  $F_p(I) \subseteq I$  where  $F_p(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T \cap \tau$ .

$$\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p$$
 is the tightest inductive invariant.

Course 02 Program Semantics Antoine Miné p. 98 / 109

# Correctness of the invariant method for safety

#### **Soundness:**

if P is a safety property and an inductive invariant I exists then:  $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$ 

#### proof:

Using the Galois connection between  $\mathcal{M}_{\infty}$  and  $\mathcal{T}$ , we get:

$$\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq \rho_{* \preceq}(\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty})) = \gamma_{* \preceq}(\alpha_{* \preceq}(\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}))) = \gamma_{* \prec}(\alpha_{* \prec}(\mathcal{M}_{\infty}) \cap (\mathcal{I} \cdot \Sigma^{*})) = \gamma_{* \prec}(\mathcal{T} \cap (\mathcal{I} \cdot \Sigma^{*})) = \gamma_{* \prec}(\mathcal{T}_{\rho}(\mathcal{I})).$$

Using the link between invariants and the finite prefix trace semantics, we have:  $\mathcal{T}_{\mathcal{P}}(\mathcal{I}) \subseteq I \subseteq \mathcal{P}$ .

As 
$$P$$
 is a safety property,  $P = \gamma_{*\preceq}(P)$ , so,  $\gamma_{*\preceq}(\mathcal{T}_p(\mathcal{I})) \subseteq \gamma_{*\preceq}(P) = P$ , and so,  $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$ .

### Completeness: an inductive invariant always exists

proof:  $\mathcal{T}_p(\mathcal{I})$  provides an inductive invariant.

Course 02 Program Semantics Antoine Miné p. 99 / 109

# Disproving safety properties

#### **Proof method:**

A safety property P can be disproved by constructing a finite prefix of execution that does not satisfy the property:

$$\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \not\subseteq P \implies \exists t \in \mathcal{T}_{p}(\mathcal{I}): t \notin P$$

#### proof:

By contradiction, assume that no such trace exists, i.e.,  $\mathcal{T}_p(\mathcal{I}) \subseteq P$ .

We proved in the previous slide that this implies  $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$ .

### Examples:

- disproving a state property  $P \stackrel{\text{def}}{=} S^{\infty}$ :  $\Rightarrow$  find a partial execution containing a state in  $\Sigma \setminus S$ ;
- disproving an order property  $P \stackrel{\text{def}}{=} \Sigma^{\infty} \setminus ((\Sigma \setminus \{a\})^* \cdot b \cdot \Sigma^{\infty})$  $\Rightarrow$  find a partial execution where b appears and not a.

# Liveness properties

### **Idea:** liveness property $P \in \mathcal{P}(\Sigma^{\infty})$

Liveness properties model that "something good eventually occurs"

- P cannot be proved by testing
   (if nothing good happens in a prefix execution,
   it can still happen in the rest of the execution)
- ullet disproving P requires exhibiting an infinite execution not in P

### Examples:

- termination:  $P \stackrel{\text{def}}{=} \Sigma^*$ ,
- inevitability:  $P \stackrel{\text{def}}{=} \Sigma^* \cdot a \cdot \Sigma^{\infty}$ , (a eventually occurs in all executions)
- state properties are not liveness properties.

Course 02 Program Semantics Antoine Miné p. 101 / 109

# Definition of liveness properties

**<u>Definition:</u>**  $P \in \mathcal{P}(\Sigma^{\infty})$  is a liveness property if  $\rho_{*\preceq}(P) = \Sigma^{\infty}$ .

### Examples and counter-examples:

• termination  $P \stackrel{\text{def}}{=} \Sigma^*$ :

$$\rho_p(\Sigma^*) = \Sigma^*$$
 and  $\lim(\Sigma^*) = \Sigma^{\infty} \Longrightarrow$  liveness;

• inevitability:  $P \stackrel{\text{def}}{=} \Sigma^* \cdot a \cdot \Sigma^{\infty}$ 

$$\rho_p(P) = P \cup \Sigma^*$$
 and  $\lim(P \cup \Sigma^*) = \Sigma^{\infty} \Longrightarrow$  liveness;

• state property  $P \stackrel{\text{def}}{=} S^{\infty}$  for  $S \subseteq \Sigma$ :

$$\rho_p(S^{\infty}) = \lim(S^{\infty}) = S^{\infty} \neq \Sigma^{\infty} \text{ if } S \neq \Sigma \Longrightarrow \text{ not liveness;}$$

• maximal execution time  $P \stackrel{\text{def}}{=} \Sigma^{\leq k}$ :

$$\rho_p(\Sigma^{\leq k}) = \lim(\Sigma^{\leq k}) = \Sigma^{\leq k} \neq \Sigma^{\infty} \Longrightarrow \text{not liveness};$$

• the only property which is both safety and liveness is  $\Sigma^{\infty}$ .

Course 02 Program Semantics Antoine Miné p. 102 / 109

# Proving liveness properties

### Variance proof method: (informal definition)

Find a decreasing quantity until something good happens.

### Example: termination proof

- find  $f: \Sigma \to \mathcal{S}$  where  $(\mathcal{S}, \sqsubseteq)$  is well-ordered; (f is called a "ranking function")
- $\sigma \in \mathcal{B} \implies \mathbf{f} = \min \mathcal{S}$ ;
- $\sigma \to \sigma' \implies f(\sigma') \sqsubset f(\sigma)$ .

(f counts the number of steps remaining before termination)

Course 02 Program Semantics Antoine Miné p. 103 / 109

# Disproving liveness properties

### Property:

If P is a liveness property, then  $\forall t \in \Sigma^* : \exists u \in P : t \leq u$ .

#### proof:

```
By definition of liveness, \rho_{*\preceq}(P) = \Sigma^{\infty}, so t \in \rho_{*\preceq}(P) = \lim(\alpha_p(P)). As t \in \Sigma^* and \lim only adds infinite traces, t \in \alpha_p(P).
```

By definition of  $\alpha_p$ ,  $\exists u \in P : t \leq u$ .

### Consequence:

• liveness cannot be disproved by testing.

Course 02 Program Semantics Antoine Miné p. 104 / 109

# Trace topology

### A topology on a set can be defined as:

- either a family of open sets (closed under union)
- or family of closed sets (closed under intersection)

### **Trace topology:** on sets of traces in $\Sigma^{\infty}$

- the closed sets are:  $\mathcal{C} \stackrel{\text{def}}{=} \{ P \in \mathcal{P}(\Sigma^{\infty}) | P \text{ is a safety property } \}$
- the open sets can be derived as  $\mathcal{O} \stackrel{\text{def}}{=} \{ \Sigma^{\infty} \setminus c \, | \, c \in \mathcal{C} \}$

### Topological closure: $\rho: \mathcal{P}(X) \to \mathcal{P}(X)$

- $\rho(x) \stackrel{\text{def}}{=} \cap \{ c \in \mathcal{C} \mid x \subseteq c \}$  (upper closure operator in  $(\mathcal{P}(X), \subseteq)$ )
- on our trace topology,  $\rho = \rho_{* \preceq}$ .

#### Dense sets:

- $x \subseteq X$  is dense if  $\rho(x) = X$ ;
- on our trace topology, dense sets are liveness properties.

Course 02 Program Semantics Antoine Miné p. 105 / 109

# Decomposition theorem

### **Theorem:** decomposition on a topological space

Any set  $x \subseteq X$  is the intersection of a closed set and a dense set.

#### proof:

We have  $x = \rho(x) \cap (x \cup (X \setminus \rho(x)))$ . Indeed:  $\rho(x) \cap (x \cup (X \setminus \rho(x))) = (\rho(x) \cap x) \cup (\rho(x) \cap (X \setminus \rho(x))) = \rho(x) \cap x = x \text{ as } x \subseteq \rho(x)$ .

- $\rho(x)$  is closed
- $x \cup (X \setminus \rho(x))$  is dense because:  $\rho(x \cup (X \setminus \rho(x))) \supseteq \rho(x) \cup \rho(X \setminus \rho(x))$   $\supseteq \rho(x) \cup (X \setminus \rho(x))$ = X

### Consequence: on trace properties

Every trace property is the conjunction of a safety property and a liveness property.

proving a trace property can be decomposed into a soundness proof and a liveness proof

Course 02 Program Semantics Antoine Miné p. 106 / 109

# Beyond trace properties

### Some verification problems cannot be expressed as $\mathcal{M}_{\infty} \subseteq P$

### Examples:

Program equivalence

Do two programs  $(\Sigma, \tau_1)$  and  $(\Sigma, \tau_2)$  have the exact same executions? i.e.,  $\mathcal{M}_{\infty}[\tau_1] = \mathcal{M}_{\infty}[\tau_2]$ 

Non-interference

Does changing the initial value of X change its final value?

$$\forall \sigma_0, \dots, \sigma_n \in \mathcal{M}_\infty \colon \forall \sigma_0' \colon \sigma_0 \equiv \sigma_0' \implies \\ \exists \sigma_0', \dots, \sigma_m' \in \mathcal{M}_\infty \colon \sigma_m' \equiv \sigma_m \\ \text{where } (\ell, \rho) \equiv (\ell', \rho') \iff \ell = \ell' \land \forall V \neq X \colon \rho(V) = \rho'(V)$$

### New verification problem: $\mathcal{M}_{\infty} \in H$ where $H \in \mathcal{P}(\mathcal{P}(\Sigma^{\infty}))$

- generalizes trace properties:  $\mathcal{M}_{\infty} \subseteq P$  reduces to  $\mathcal{M}_{\infty} \in \mathcal{P}(P)$ ;
- program equivalence is  $\mathcal{M}_{\infty}[\tau_1] \in {\mathcal{M}_{\infty}[\tau_2]}$ ; etc.

Reading assignment: hyperproperties.

# **Bibliography**

Course 02 Program Semantics Antoine Miné p. 108 / 109

# Bibliography

[Bour93] **F. Bourdoncle**. Abstract debugging of higher-order imperative languages. In PLDI, 46-55, ACM Press, 1993.

[Cous02] **P. Cousot**. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. In Theoretical Comp. Sc., 277(1–2):47–103.

[Plot81] **G. Plotkin**. The origins of structural operational semantics. In J. of Logic and Algebraic Prog., 60:60-61, 1981.

Course 02 Program Semantics Antoine Miné p. 109 / 109