Symbolic Abstract Domains 3/3

Laurent Mauborgne

École Normale Supérieure

Interprétation abstraite, MPRI 2-6, année 2007-2008

Lesson Plan

Thirs Session

Finite Sets of Symbols

Graphs and Infinity

Sets of Trees

- 5 Numeric Domains to Help Symbolic Domains
- 6 Disjunctions
- Trace Properties Criteria

Graphs and Infinity

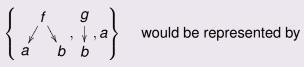
- Classic Representations for Infinite Sets of Symbols
- Incremental Maximal Sharing
- Relations
- Sets of Trees
 - First Approximation: tree skeletons
 - Adding Links: the Tree Schemata
 - In Practice

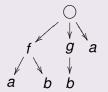
Introduction of a choice node

Set of trees = tree

Just add a root with special label, and children the elements of the set.

Example





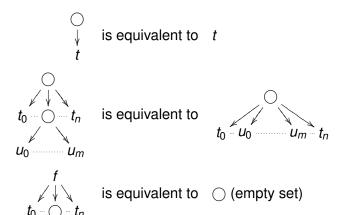
Efficient representation of trees \Rightarrow Efficient representation of sets of trees (?)

Unicity of the Skeleton

To have a maximal sharing representation:

- we must obtain unicity of the skeleton;
- Valid skeleton = regular tree and restrictions;
- not all sets of trees can be represented by a skeleton.

Obvious Restrictions



Conventional Restriction

Last problem: ordering the children of a choice node

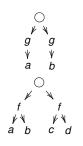
- Solution: total ordering on trees
- Too expensive ⇒ partial ordering = ordering over labels

So ordering of the children of a choice node = ordering on the labels of their roots.

Simplifications

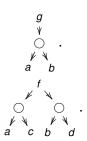
- Skeleton = first approximation;
- We want efficient;
- Simplification: share commun prefixes
- → All subtrees of a choice node have a different root label.
- ⇒ the unicity problem is solved!

Simplification Examples



will be represented by

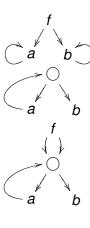
will be approximated by



Expressive Power of Tree Skeletons

- Represent infinite trees too ⇒ greatest fixpoint semantics;
- *i.e.* a tree skeleton represents the set of all finite and infinite trees we can form by going through the skeleton.
- If we limited to finite trees, same expressive power as deterministic top down tree automata;
- Advantage: incremental sharing.

Examples of Skeletons



represents the tree $f(a^{\omega}, b^{\omega})$.

represents the set $a^*b \cup a^{\omega}$.

represents the set of trees $f(a^*b, a^*b) \cup f(a^{\omega}, a^*b) \cup f(a^*b, a^{\omega}) \cup f(a^{\omega}, a^{\omega})$. The sets of left and right children are shared.

Usage of Tree Skeletons

- Tree skeletons are simple and efficient;
- Can be used as an abstract domain to over-approximate sets of trees;
- Intersection of 2 skeletons is representable by a skeleton, but not union;
- There exists a best approximation for finite union, and a widening for infinite union;
- First approximation for more expressive tree schemata.

Graphs and Infinity

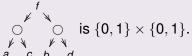
- Classic Representations for Infinite Sets of Symbols
- Incremental Maximal Sharing
- Relations
- Sets of Trees
 - First Approximation: tree skeletons
 - Adding Links: the Tree Schemata
 - In Practice

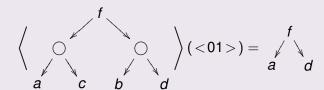
The Choice Space

- Choice space of a skeleton = set of choice possibilities;
- Skeleton = function : choice space → trees.

Example

The choice space of the skeleton





The Links

- To refine skeletons, just forbid some elements of the choice space;
- A subset of a cartesian product is a relation;
- ⇒ We force a relation on the choices of the skeleton.

The links of the schema represent that relation.

Links are Local

- Relation decomposed in independant parts: to gain memory;
- Local links: the schemata are more incremental;
- Link = relation and choices attached to a given link
- Notion of entry in the relations.

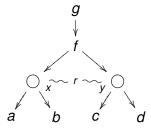
Tree Schema Example

$$\left\{\begin{array}{cccc} g & g & g \\ \psi & \psi & \psi \\ f & f & f & f \\ \psi & \psi & \psi & \psi \\ a & c & a & d & b & d \end{array}\right\}.$$

The best skeleton to approximate it is:

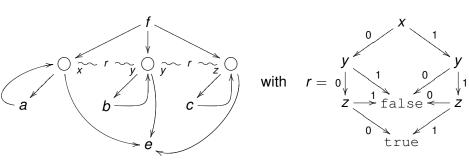
Tree Schema Example (2)

The corresponding tree schama would be



where r is the relation true when x is 0 or x and y are 1.

An Example that Cannot be Represented by a Tree Automaton



Note that r is the equality relation

Represents $\{f(a^ne, b^ne, c^ne) \mid n \in \mathbb{N}\}$

Tree Schemata Semantics By Pseudo-decision Process

Principle

- Decision to know if a tree ∈ schema
- Go through the tree and the schema in parallel
- Each link is associated with a stack of partially evaluated relations

Pseudo-algorithm

- Each label of the children must correspond
- In the choice nodes, a choice must correspond to the current label in the tree
- The choice is possible iff first partially evaluated relation not evaluated on that entry allows that choice.
- If yes, partial evaluation of that relation
- If necessary, stack a new relation for the link

Graphs and Infinity

- Classic Representations for Infinite Sets of Symbols
- Incremental Maximal Sharing
- Relations
- Sets of Trees
 - First Approximation: tree skeletons
 - Adding Links: the Tree Schemata
 - In Practice

Properties

- Union and intersection of two schemata are representable by a tree schema:
- Inclusion is decidable:
- Projection of a schema is representable by a schema.

Sharing

- No unicity, except for ()
- But unicity of the underlying skeleton
- Depending on the choice for relations, sharing of links may be possible.

Sketch Ideas for the Algorithms

Principle stages of the algorithms

- First, fast algorithm on underlying skeletons
- If necessecary, relations are extended
- Algorithm on relations

Precision/speed trade-off

Choice of the class of relations

- Nothing (= just skeletons)
- Equalities
- Finite relations
- ω-deterministic
- Büchi...

The Framework (reminder)

Static Analysis by Abstract Interpretation

$$P \longrightarrow \text{behavior} (= I \rightarrow L, L \text{ language})$$

Collecting $P \longrightarrow \wp(I \rightarrow L)$

Formal Languages $P \longrightarrow I \rightarrow \wp(L)$

Fixpoint of F, definied by meta-language

Meta-language

$$e ::= \mathcal{X} \mid \{T' : T_1 \in e_1, \dots, T_n \in e_n\} \mid e_1 \cup e_2$$

 $\mathcal{X} \in \mathcal{V} \ T' \in \mathcal{H}(F \cup v)$, v variable and T' of finite variability $T_i \in \mathcal{H}(F \cup v)$ quelconques

intersection
$$\{x: x \in e_1, x \in e_2\}$$

projection
$$\left\{ x : \begin{subarray}{c} f \\ y \in e \end{subarray} \right\}$$

Expressive Power

Limitations

$$\mathcal{X} = \left\{ \begin{array}{c} f \\ \bigvee_{x_0 \dots x_{n-1}} : (x_i \in e_i)_{i < n} \end{array} \right\}$$

Expressible cases

$$\mathcal{X} = \left\{ \begin{array}{c} f \\ \not \downarrow \ \\ x \quad y \end{array} \right\}$$

$$\mathcal{X} = \left\{ \mathbf{X} : \underset{\mathbf{X} \ \mathbf{y}}{\text{if } \mathbf{X}} \in \mathcal{X} \right\}$$

Example: Weak Fairness (1/5)

Parallel programme:

$$X = \text{true}; [while } X \text{ do skip}] X = \text{false}[$$

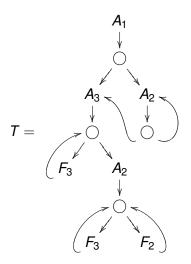
The positions in the program are:

$$A_1 ||A_2||A_3||$$

with F_2 and F_3 the ends of A_2 and A_3 .

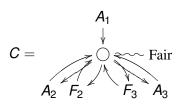
Example: Weak Fairness (2/5)

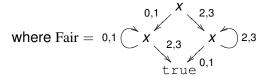
Interleaving trace semantics:



Example: Weak Fairness (3/5)

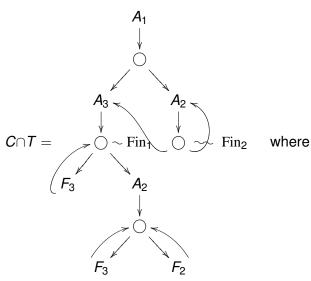
Controler forcing equity:





Example: Weak Fairness (4/5)

Controler is introduced by intersection:



$$Fin_2 = 0 x 1$$
true

Example: Weak Fairness (5/5)

Now, we can prove the the program always terminates, under weak fairness assumption, by showing the inclusion of $C \cap T$ into

$$F = A_2 F_2 A_1 F_3 A_3 \qquad \text{where} \quad \text{Term} = 1.3 \times 1.3 \times$$

Part III

- Numeric Domains to Help Symbolic Domains
 - Numeric Domains and Sets of Words
 - Tree Schemata with Counters
- Oisjunctions
 - Disjunctive Completion
 - Based on Value Cases
 - Implementation Issues
- Trace Properties Criteria
 - Presentation
 - Examples
 - The Abstract Domain Construction

- Numeric Domains to Help Symbolic Domains
 - Numeric Domains and Sets of Words
 - Tree Schemata with Counters
- 6 Disjunctions
- Trace Properties Criteria

Numeric Domains to Help for Symbolic Properties

- What Makes Symbolic Properties Hard?
 - Lack of structures
 - In some cases, hierarchy, . . .
 - Generic remedy: try to discover some structure on the fly
- Extract numbers from symbolic properties
 - Then represent numbers with abstract domains (relational or not)
 - Maybe a structure can emerge?
 - Widenings on the numbers
- Two main paths:
 - Approximate symbolic properties by numeric values
 - Introduce counters in representations

Approximating Words by Numbers

Approximation Principle

- A word will be represented by a vector of numbers
- So a vector of numbers represents a set of words
- To make use of numerical abstract domains: limit the size of the vectors

$$\mathcal{P}(A^*) \stackrel{\gamma}{\underset{\alpha}{\longrightarrow}} \mathcal{P}(\mathcal{N}^k)$$

- Example: length of the words
- Example: Parikh vector
 - word represented by number of occurrence of each letter

aabaab
$$\longrightarrow$$
 $\langle 4,2 \rangle$

- Approximation of free algebra
- Can give nice results with relational numerical domains

Word Automata with Counters

Definition of Counter Automata

- Automata (Q, δ) with a finite set of counters $\{x_1, \dots, x_k\}$
- Transition function: $\delta \subset Q \times \Phi \times Q$, where Φ is the set of Presburger formulae over $\{x_1, x'_1, \dots x_k, x'_k\}$
- ullet $q,q'\in \mathcal{Q}$ and v,v' valuation of variables, $(q,v)\longrightarrow (q',v')$ iff
 - $\exists (q, \phi, q') \in \delta$
 - and a substitution of σ of the variables in ϕ , valid for ϕ
 - such that $\sigma(x_i) = v(x_i), \, \sigma(x_i') = v'(x_i), \, \text{when } \sigma \text{ defined}$
 - otherwise $v(x_i) = v'(x_i)$
- Can define word automata that counts the number of times we take an edge
- With restriction, quite a litterature on model checking with counter automata (because Presburger formulae can be represented as automata)

Mixing Symbolic and Numeric Properties

- Numeric Domains to Help Symbolic Domains
 - Numeric Domains and Sets of Words
 - Tree Schemata with Counters
- Disjunctions
- Trace Properties Criteria

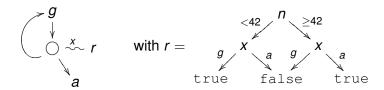
First Step: Introducing New Variables

- Tree schemata ⇒ natural decomposition into tree structure + relations.
- Relation: easy to add new variables

New variables

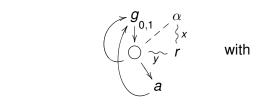
- So far, variable = choice nodes
- But sole constraint is variable over a finite domain
- Inifite domain? \Rightarrow finite partition of the domain ($x \le 42$, x > 42) will do!

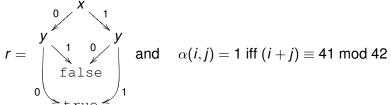
Second Step: Counters in the Skeletons



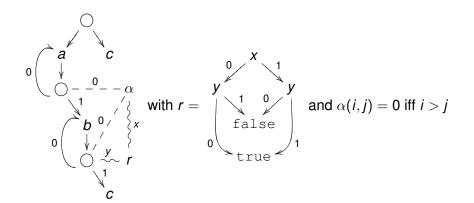
- Only usefull count: time spent in loops
- Counters: count the number of times we go through a choice node
- Counter domain: a partitioning function of N
- Decidability kept: just operations on partitions
- Interest: memory gain and widening help
- Drawback: more possibilies of redundancies

Example with counter

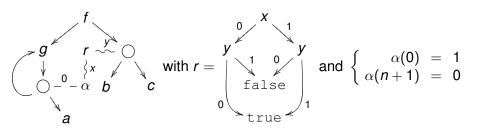


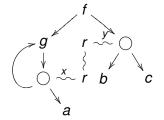


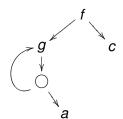
Example with counter (2)



Counters Cannot be Used Everywhere As for Links







Applications for Counters

- Variables coming from systems to analyse (hybrid representation)
- Automatic detection of loops (creation of counters during iteration)
- Widening by numerical analysis of the counters
- Exact acceleration in some cases

Mixing Symbolic and Numeric Properties

- 5 Numeric Domains to Help Symbolic Domains
- 6 Disjunctions
 - Disjunctive Completion
 - Based on Value Cases
 - Implementation Issues
- Trace Properties Criteria

A Simple Example Mixing Symbolic and Numeric Properties

Example

x = x / sign;
assert(x>=0);

With set of interval arrays

- $b \in \{0\}$ and $x \le 0$, or $b \in \{1\}$ and x > 0
- $b \in \{1\}$ and x > 0 and $sign \in \{1\}$
- $b \in \{0\}$ and $x \le 0$ and $sign \in \{-1\}$
- $b \in \{1\}$ and x > 0 and $sign \in \{1\}$, or $b \in \{0\}$ and $x \le 0$ and $sign \in \{-1\}$
- x > 0 and $sign \in \{1\}$, or $x \ge 0$ and $sign \in \{-1\}$
- Approximations due to convexity ⇒ use disjunctions?
- Approximations due to non relational domains ⇒ use disjunctions or relational domains?

Approximations

- Common approximations, necessary to scale up:
 - Cartesian (intervals, congruences, ...)
 - Convexity (intervals, polyhedra, octagons, Karr...)
- Where they approximate
 - Unions
 - And some transfer functions, only if there is more than one concrete state

A Natural Solution

Let's use disjunctions

Disjunctive Completion

There is a theoretical definition for a domain precise on unions

Definition

Let A a Moore family on S (defining a closure operator ρ_A , or a Galois connection), the *disjunctive completion* of A is

$$\inf_{\subseteq}^{\mathcal{A}} \lambda \mathcal{X} \bullet \textit{Moore} \left(\mathcal{X} \cup \left\{ \left. \bigcup_{P \in \mathcal{S}} \rho_{\mathcal{X}}(P) \right| \right. \left. \rho_{\mathcal{X}} \left(\bigcup_{P \in \mathcal{S}} \rho_{\mathcal{X}}(P) \right) \neq \bigcup_{P \in \mathcal{S}} \rho_{\mathcal{X}}(P) \right\} \right)$$

- It is a constructive definition, and it can be approximated

Disjunctive Completion in Practice

- Works with infinite domains (with widening)
- But not easy to tune the cost
- Widening is a complex matter
- Not always easy to reuse existing domains
- Often, big memory cost (especially with relational domains)
- And computation cost (normal forms?)

For big programs analysis

Too costly (both implementation and usage)

Semantic Disjunction

- No systematic disjunction
- ⇒ Question: when do we perform disjunctions?
 - 2 principles

Semantic Criteria

- Identify where precision is needed
 - via a first analysis
 - or dynamically
- perform unions (lose precision) when leaving critical parts

Reuse Abstract Domains

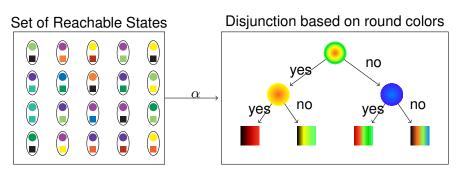
- Forget normalization
- Use abstract domains as parameters

Mixing Symbolic and Numeric Properties

- 5 Numeric Domains to Help Symbolic Domains
- 6 Disjunctions
 - Disjunctive Completion
 - Based on Value Cases
 - Implementation Issues
- Trace Properties Criteria

Disjunctions Based on Value Cases

- Disjunction criterion: finite number of disjoint cases covering the space of values of an expression
- Representation: Decision tree
 - Internal nodes = cases
 - leaves = abstract elements of parameter domain



Back to the Simple Example

Example

• x = x / sign; •
assert(x>=0);

With Disjunction Based on b

- if $b \in \{1\}$ then x > 0 else $x \le 0$
- $b \in \{1\}$ and x > 0 and $sign \in \{1\}$
- $b \in \{0\}$ and $x \le 0$ and $sign \in \{-1\}$
- if $b \in \{1\}$ then x > 0 and $sign \in \{1\}$, else $x \le 0$ and $sign \in \{-1\}$
- if b then x > 0 and $sign \in \{1\}$, else $x \ge 0$ and $sign \in \{-1\}$

A More Complex Example

Example

```
while(1) {
  b = [0, 1]; \bullet
  if(b^b') {
    if(b) t = 20;
    else t = 10;
• } else {
 if(t>0) t--;
    if (b) x = t/20;
    else x = t/10;
b' = b;
```

At the beginning, all variables are initialized to 0

Show that x < 1

Disjunctions Based on b and b'

```
egin{array}{c} b & \downarrow^1 \ b' & 0 \downarrow \ t \in \{20\} \ b & 0 \downarrow \ b' & 0 \downarrow \ t \in \{0\} \end{array}
```

Mixing Symbolic and Numeric Properties

- 5 Numeric Domains to Help Symbolic Domains
- 6 Disjunctions
 - Disjunctive Completion
 - Based on Value Cases
 - Implementation Issues
- Trace Properties Criteria

Implementation Problems

- Testing if shared costly ⇒ opportunistic sharing
- Still exponential cost

Solution

- Keep only needed disjunctions
- Group variables in packs

Local Packs Strategy

- Assumption: the invariants needed to prove the code are local
- Identify expressions that are well represented by a domain
- Aggregate locally
- This is the strategy for octagon packs in ASTRÉE
- But not enough for boolean disjunctions...

Global Packs Strategy

- Identify expressions that are well represented by a domain, but put them in tentative packs
 - b = (x>0)
 - if(b) x=...
- Aggregate according to variable dependence, with a limiter
- Validate tentative packs by expressions where we know the domain can give some precision
 - if(b) read(x)
- Possibility to add dynamically some unvalidated tentative packs

Pack Creation Example

Example

```
while(1) {
  b = [0,1];
  if(b^b') {
   if(b) t = 20;
    else t = 10;
  } else {
    if(t>0) t--;
    if (b) x = t/20;
    else x = t/10;
 b' = b;
```

- Creation of the tentative pack (b, t)
- Validation of the tentative pack (b, t)
- Aggregation of b' to the pack (b, t)
- The final pack is (b, b', t)

Results

Inside ASTRÉE, on industrial size embedded codes

Program	test 1		test 2		test 3	
Code size (LOCs)	69 997		273 803		485 663	
♯ of Packs	78		737		1 313	
# variables in Packs	247		2 2 6 8		3 672	
Average Pack size	3.84		4.15		4.15	
Iterations	146	150	146	146	158	158
Analysis time (min.)	133	149	398	414	717	758
Memory peak (Mb)	672	676	1 396	1 404	1 733	1803
Alarms	560	549	5214	5 189	7 497	7 4 6 4

Value Based Disjunctions are not Satisfying

- Too costly if we use the entire abstract domains at the leaves
- Keeps unnecessary relations in that case
- Not used on expressions in ASTRÉE (just variables)
 - Relational informations may be kept too long

Mixing Symbolic and Numeric Properties

- 5 Numeric Domains to Help Symbolic Domains
- 6 Disjunctions
- Trace Properties Criteria
 - Presentation
 - Examples
 - The Abstract Domain Construction

Towards Trace Properties as Disjunction Criteria

- In avionic code, one big loop, but a boolean variable tells if in initialization mode
- Behavior quite different in initialization and permanent modes
- Union of the two behaviors loses information
- But using the boolean as a disjunction criterion is too costly
- initialization = first 24 loop turns
- ⇒ unroll the loop

Loop Unrolling

Compute the fixpoint of the loop after *k* iterations

⇒ Same as disjunctions based on number of iteration!

Example of Array Initialization

Example

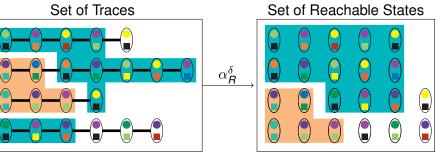
```
i = 0;
while(i < n) •{
   t[i] = i; •
   i++; •
}</pre>
```

With Loop Unrolling

- $i \in \{0\}$
- $t[0] \in \{0\}$
- $i \in \{1\}$
- No union, because we unroll the loop: after one iteration, i is exactly 1
- Strong update $t[1] \in \{1\}$
- Even if the loop not fully unrolled, first k values are kept precise
- And the rest is more precise
- Requires to accumulate the false guards

Trace Discrimination

- Add a structure before doing reachability
- Set of Traces S -> Function $E \rightarrow \mathcal{P}(S)$ -> Function $E \rightarrow S^{\sharp}$



- If size of E is 1, same as classical reachability
- Thm: More precise if the function is a partition
- Thm: The finer the partition, the more precise

Mixing Symbolic and Numeric Properties

- 5 Numeric Domains to Help Symbolic Domains
- 6 Disjunctions
- Trace Properties Criteria
 - Presentation
 - Examples
 - The Abstract Domain Construction

Examples of Trace Discrimination I

Final Control State

- In fact, very common
- Consists in keeping one set of states for each control state

Example

```
x = 1;
if (x>0) y = 1/x;
x = -1;
if (x<0) y = 1/x;
```


Examples of Trace Discrimination II

Control Flow

- Partition traces according to the history of choices
- ×2 partition for each test
- Partition not finite for loops
- Really too costly!

Merging

- To make control flow partition tractable
- Keep local discrimination only: discriminate according to bounded past

Application to First Example

Example

```
if (x>0) sign = 1;• else sign = -1;•
```

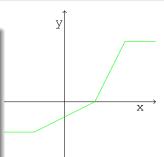
- x = x / sign;
- assert (x>0);•

With Intervals and Trace Discrimination

- x > 0 and $sign \in \{1\}$
- x < 0 and $sign \in \{-1\}$
- x > 0 and $sign \in \{1\}$, or x < 0 and $sign \in \{-1\}$
- x > 0 and $sign \in \{1\}$, or x > 0 and $sign \in \{-1\}$
- Then we merge traces: x > 0 and $sign \in [-1, 1]$

A More Realistic Example

Example float[] tc = { 0; 0.5; 2; 0}; float[] tx = { 0; -1; 1; 2}; float[] ty = {-1; -0.5; -1; 2}; int i = 0; ewhile (i<3 && x>tx[i+1]) i++; ey=tc[i]*(x-tx[i])+ty[i]; example float[] tc = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2; 0}; example float[] tx = { 0; 0.5; 2}; example float[] tx = { 0; 0.5; 2



- Intervals: $i \in \{0\}$ and $x \in [-2,2]$ $i \in \{1\}$ and $x \in [-1,2]$ $i \in [0,1]$ and $x \in [-2,2]$ $i \in [1,2]$ and $x \in [-1,2]$ Fixpoint: $i \in [0,3]$ and $x \in [-2,2]$ While output: $i \in [0,2]$ and $x \in [-2,2]$ $i \in [0,2]$ and $x \in [-2,2]$ and x
- Trace discrimination: $i \in \{0\}$ and $x \in [-2, 2]$ Loop 1: $i \in \{1\}$ and $x \in [-1, 2]$
 - Input iteration 0: $i \in \{0\}$ and $x \in [-2, 2]$
 - Input iteration 1: $i \in \{1\}$ and $x \in [-1, 2]$

Examples of Trace Discrimination III

Value Based

- Partition traces according to the values of an expression at a certain point
- But can be very costly! (less than value case disjunction)

Example

- With intervals:
 - $x \in [-10, 10]$
 - $x \in [-510, 510]$
- Partitioning traces according to r:
 - $x \in [-10, 10]$
 - for each r, $x \in [-10, 10]$

79 / 96

Mixing Symbolic and Numeric Properties

- Trace Properties Criteria

 - The Abstract Domain Construction

Trace Discrimination Abstract Domain

Elements of the domain

Covering × Value on covering

- Possibility to
 - start from finest covering,
 - approximate covering (getting coarser)
 - widen the covering
 - then narrow them to get more precise results
 - ⇒ much more precise than precomputing the discrimination
- Widening: $(\delta_0, S_0^{\sharp}) \nabla (\delta_1, S_1^{\sharp})$
 - compute $\delta = \delta_0 \nabla_{\Re} \delta_1$
 - then widen approximation of S_0^{\sharp} and S_1^{\sharp} on δ

Implementation issues

Implemented in the ASTRÉE analyzer

- Because of the industrial constraints
 - not the full trace discrimination domain is implemented
 - mechanisms to make it local
 - first inclusion of partitioning directives
 - then automatizing of the directives inclusions.

Partition Creation

Every time we have a guard

- If partitions
 - traces where test is true
 - traces where test is false
- While loop partitions (at most N)
 - traces that went out of the loop at iteration k
 - traces that staid in the loop more than N iterations
- Integer values partitions
 - traces where expression have different values
 - if more than V values, no partition

Partition Deletion

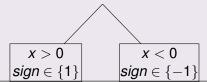
- Function return points
 - only those partitions created in the function are merged
- End of loops
 - only those partitions created in the function are merged
- Merge directives
 - either all partitions
 - or the last created

Abstract Values

- Traces are partitioned according to control point and partition directives
- At each control point, previous partition directives define a tree
 - Leaf = Underlying domain (e.g. intervals)
 - Node = Partition creation
 - One child / element in the partition

Example

if
$$(x>0)$$
 sign = 1;
else sign = -1;



Abstract Transfer Functions

- Partition creation
 - Replace each leaf by a node with children the result of the guard
- Partition deletion
 - If merge all, replace the tree by the union of its leaves
 - Otherwise, replace terminal nodes by union of their children
- Other (non-partition related) functions
 - Replace each leaf by the result of the transfer function

Automatic Partitioning Directive Insertions

- Sources of imprecision of ASTRÉE where analyzed
- Trace partitioning was tested by manual inclusion of directives
- Then automated:
 - Partition divisions by integer if not too big
 - Partition computation of array indexes

Discrimination Strategies

Principle: looking for an identified source of imprecision

Array Access

- Array Access
 ≃ multiple cases at once
- Critical if two subexpressions share an index

Integer Division

- Loss of precision if dividend and divisor share a variable
- But beware of the cost!

Then discriminate computation of identified variable

- if last assign inside a while, discriminate it
- otherwize discriminate the values

Experimental Results

Inside ASTRÉE, on industrial size embedded codes

Program	test 1		test 2		test 3	
Code size (LOCs)	69 997		273 803		485 663	
Partition Directives	1 037		3 684		5 886	
Iterations	150	78	146	80	158	77
Analysis time (min.)	149	99	414	459	758	726
Memory peak (Mb)	679	694	1 404	1 460	1 803	2 2 4 0
Alarms	406	0	5 189	2	7 464	0

Part IV

Conclusion

Domains Presented

Finite Case

Relation \equiv Logical formula \equiv Boolean function

- Possibly exact techniques
 - Formulae + SAT
 - BDDs
- With an a priori approximation
 - Cartesian approximation
 - Kleene logics (TVLA)

Domains Presented

Infinite case

Infinite case: graphs, trees and infinitary relations

 $graph \equiv infinite tree$

decision tree \equiv relation

Graphs represents sets of trees or graphs and relations

Incremental sharing of graphs

- Exact techniques: too expensive
- Cartesian approximation: bottom-up tree automata
- + sharing : skeletons
- + expressive : relations between choices
- Infinitary relations:
 - close, open and quasi-open
 - ω -déterministic for more expressivity

Domains Presented Using Numeric Domains

Extracting Numbers From Symbolic Properties

- Approximating words by numbers
- Introducing counters
 - allows for compact representations
 - new widenings
 - but complexity or redundancy problems

Local disjunctions based on history of computation

- Theory:
 - Generic abstract domain construction
 - Flexible
- Practice
 - Scalable
 - Solves precision issue at low implementation cost
 - ⇒ Good alternative to the design of complex relational domains
 - But we kept the decision trees...

Some Applications

- Shape analysis (TVLA, graphs, counters)
- Protocols (trees or sets of words)
- Trace properties:
 - Simple partitioning (trees)
 - Discrimination according to temporal properties (infinitary relations)
- Typing (trees)
- Temporal Proprerties (schemata, counters + infinitary)

Many Many Paths Remain to be Explored

- Not all classical algorithmics have been explored
- Practical experimentation on the choice of expressiveness for the relations
- Using abstract domain elements as labels
 - new opportunities for sharing by label approximation
 - efficient algorithms
 - decidability?
- Explore the limits of counters
- Under-approximation, mixed with over-approximation
- Equational theories
- Approximation of negation
- Introduction of a symbol for "entire universe"
- Tree concatenation
- For trace discrimination
 - Discriminations according to number of recursive calls
 - Discriminations according to temporal properties
 - Backward analysis with trace discrimination

