
Symbolic Abstract Domains
2 / 3

Laurent Mauborgne

École Normale Supérieure

Interprétation abstraite, MPRI 2–6, année 2007-2008

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 1 / 82

Lesson Plan
Second session

Finite Sets of Symbols

Graphs and Infinity

1 Classic Representations for Infinite Sets of Symbols

2 Incremental Maximal Sharing

3 Relations

Mixing Symbolic and Numeric Properties

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 2 / 82

Classic Representations for Infinite Sets of Symbols

Finding a Good Data Structure for Symbolic Properties
In the unbounded case

Most general structures for symbolic properties:
Trees, graphs
Sets of trees or even sets of graphs?

Classical representations
Expressions, using variables, seem a bad idea
Automata are not well tailored to static analysis

New Representation for Sets of Trees
Expressive enough
Efficient for incremental computations
Can take advantage of approximations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 3 / 82

Incremental Maximal Sharing Hash-consing

Graphs and Infinity

1 Classic Representations for Infinite Sets of Symbols

2 Incremental Maximal Sharing
Hash-consing
Graph Minimality
Keys for Independant Stronly Connected Graphs
General Case
Applications

3 Relations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 4 / 82

Incremental Maximal Sharing Hash-consing

Sharing and Incrementality

Sharing
Objects are represented by a data structure
This data structure is stored at a given memory address
Representation shared iff no two memory address contain data
structures representing semantically equal objects

Gain in memory
Constant time equality ⇒ easy memoization
But hidden cost: when computing a new object

must be compared with all other represented objects
can be made efficient with hash-like techniques
but what is the interest compared with on-demand equality testing?

Only interesting if highly incremental

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 5 / 82

Incremental Maximal Sharing Hash-consing

The Easy Case

The most classical representation with sharing is hash-consing of
trees:

f
0
��

 1
��0

00

g
0 ��

f
0
����
�� 1
��0

00

a a g
0 ��
a

−→

f
0
����
� 1
��0

00

g
0 ��

f
0
~~}}

}}
}

1��
a g

0
oo

−→

f
0
����
� 1
��/

//

g
0 ��

f0

~~}}
}}

}
1

bb

a

Bottom-up process
Incremental: not need to compute everything again at each tree
modification

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 6 / 82

Incremental Maximal Sharing Hash-consing

Unicity

Y , Z

��

X
��

h
1
��1

11

0

��

f
0
����
� 1
��1

11

g
0 ��

f0

}}{{
{{

{
1

bb

a

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 7 / 82

Incremental Maximal Sharing Hash-consing

Mechanism

Dictionary + key

Key = label + sub-trees id

a : 1
g(1) : 2

f (1, 2) : 3
h(1, 2) : 4
f (2, 3) : 5

h4 1
��5

55
5

0

��

f50
����
�� 1

��2
22

g2

0 ��

f30

||xx
xx

x
1

cc

a1

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 8 / 82

Incremental Maximal Sharing Graph Minimality

Graphs and Infinity

1 Classic Representations for Infinite Sets of Symbols

2 Incremental Maximal Sharing
Hash-consing
Graph Minimality
Keys for Independant Stronly Connected Graphs
General Case
Applications

3 Relations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 9 / 82

Incremental Maximal Sharing Graph Minimality

Regular Trees

Regular = finite number of distinct sub-trees

Example

f
0

����
��

��
��

1
		

2

��>
>>

>>
>>

>

f0
$$

1
		

2

��>
>>

>>
>>

> g

0

II

1
yy

a

g

0

II

1
		

a

g

0

BB

1

II

or f0
$$

1
		

2

��>
>>

>>
>>

>

g

0

II

1
yy

a

Same complexity as oriented labeled multigraphs
Question: how to extend hash-consing to grahs?

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 10 / 82

Incremental Maximal Sharing Graph Minimality

Equivalent Graphs

First determine the semantic equality
Idea: all what we can observe of a graph is

Node labels
Follow edges by specifying labels (=paths)

Equivalent graphs
Two nodes can be distinguished iff there is a path starting from
each node, with same edge labels and leading to nodes with
different labels
Two edges can be distinguished iff different label or link
distinguishable nodes.
Two graphs are equivalent iff each node of each graph is
undistinguishable from a node of the other graph.

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 11 / 82

Incremental Maximal Sharing Graph Minimality

Example of equivalent graphs

Example

A
a

**

a ��>
>>

>>
B

b
jj

A

a

FF

a

??�����

B b

��

B

b����
��

�

A

a

FF
a

VV

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 12 / 82

Incremental Maximal Sharing Graph Minimality

Minimal graph

Definition
A graph is minimal iff all its nodes are distinguishable.

If we store all the graphs encountered in an analysis
Then it forms a big graph
If it is minimal, then no redundancy

⇒ We can easily reuse previous computations
To recognize if a graph argument has already been encountered,
just compare the nodes (= memory locations).
Notion of maximal sharing.

But systematic sharing might not be profitable

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 13 / 82

Incremental Maximal Sharing Graph Minimality

How to compute a minimal graph?

Finding the minimal graph amounts to a graph partitioning problem
⇒ Can be done in O(n log n).

Algorithm similar to Hopcroft for automata (refine a partition)
But not incremental at all.

The Incremental Minimality Problem
Suppose a minimal graph U (i.e. uniquely represented graphs)
Let G be a graph containing U .
Extend U in a minimal graph U ′ such that all nodes of G is
equivalent to a node of U ′.

Classical hash-consing algorithm?
cannot be used: there is no bottom in a graph

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 14 / 82

Incremental Maximal Sharing Graph Minimality

Strongly Connected Components
à la Hopcroft Minimisation Algorithm

A new strongly connected component is either entirely in U or
outside it.
There does not seem to be any better algorithme than partition
refinment for such graphs...

A Partition Refinment Algorithm
Start with a set of blocks (corresponding to a coarse partition)
Le W be the set of (B, l), with B a block and l an edge label
while W is not empty, take (B, l) out of W

Compute for each node the number of l-labeled edges leading to B
Split each block according to that number
if a block was not in W , only add the smallest splited blocks in W

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 15 / 82

Incremental Maximal Sharing Keys for Independant Stronly Connected Graphs

Graphs and Infinity

1 Classic Representations for Infinite Sets of Symbols

2 Incremental Maximal Sharing
Hash-consing
Graph Minimality
Keys for Independant Stronly Connected Graphs
General Case
Applications

3 Relations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 16 / 82

Incremental Maximal Sharing Keys for Independant Stronly Connected Graphs

Recognizing Strongly Connected Components

Problem
Minimizing a new strongly connected component does not share it
Too costly to minimize U !
Better way to recognize a strongly connected component?

Want to compare with as few as possible sub-graphs
(limited-depth hashing?)
Want to avoid costly equality testing

⇒ find a caracterictic key?

Caracteristic property
Isomorphic cycles have the same set of labeled paths

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 17 / 82

Incremental Maximal Sharing Keys for Independant Stronly Connected Graphs

Caracteristic Set of Trees for a Strongly Connected
Graph

The set of all paths can be described by a finite set of trees

Aa
&& b

**

c ��?
??

? B
a

jj b
xx

C
a

??����

A
a
��

 b��

c
��6

66

ε B
a
��

 b��

C
a��

ε b b

B
a
����

� b
��5

55
5

A
a
��		
		 b��

c
��6

66
ε

a ε C
a��

ε

C
a ��
B

a
����

� b
��6

66
6

A
a
�����

� b��
c
��7

77
7 a

aa a ε

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 18 / 82

Incremental Maximal Sharing Keys for Independant Stronly Connected Graphs

Keys for Strongly Connected Graphs

The caracteristic set of trees can be big (quadratic cost)
We can either

represent all paths (by a set of trees)
or just the paths starting from one node, and try all nodes

Better Solution
Distinguish one node through sorting

Naïve is quadratic
But can use partitioning algorithm!
So the key is a tree (same size as the graph)
Key comparison is constant time!

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 19 / 82

Incremental Maximal Sharing General Case

Graphs and Infinity

1 Classic Representations for Infinite Sets of Symbols

2 Incremental Maximal Sharing
Hash-consing
Graph Minimality
Keys for Independant Stronly Connected Graphs
General Case
Applications

3 Relations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 20 / 82

Incremental Maximal Sharing General Case

The 3 Cases

We want to minimize G, knowing that U , subgraph of G is minimal.
Go through G and see what happens when reaching U
If all outgoing edges of a node n ∈ G\U are in U

Classical hash-consing determines if n is equivalent to a node in U
⇒ if no cycle in G\U , we are done!

So we keep a dictionary for (label, children id) −→ id
Otherwise, we have a strongly connected component with all
outgoing edges in U . 3 cases:

1 No node is equivalent to a node in U
2 One node is equivalent do a direct child
3 All nodes are equivalent to a node in U , but none is a direct child of

the strongly connected component.

Case n◦ 1 yelds when we don’t have either 2 or 3. So we just
recognize cases 2 and 3.

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 21 / 82

Incremental Maximal Sharing General Case

Partial Keys
Recognizing strongly connected components when the candidate has no node
equivalent to a direct child

Let N a strongly connected subgraph of G\U such that it is
equivalent to a subgraph V of U
Suppose moreover all outgoing edges of N lead to U\V,
Then ∀n ∈ N , n is equivalent to a node v of V, and for each edge
label l , if n.l is in U , then

n.l = v .l

⇒ If we relace labels in N and V by a couple (label, id of children in
U\V, then the two graphs become Equivalent

Partial key = label + id of already treated children

So we just minimise the graph with partial keys
and use keys for strongly connected graphs with partial keys

⇒ we have a recursive procedure for incremental minimisation!

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 22 / 82

Incremental Maximal Sharing General Case

Exemple I

f1
0

��~~
~~

~~
1
��

2

 @
@@

@@
@

f20
&&

1
��

2
 A

AA
AA

A g6

0
II

1
vv

a7

g3

0
II

1
		

a5

g4

0

BB

1
II

D = ∅
DG = ∅

(f , • •�5)
0
NN

1
��

g3

0
II

1
		

g4

0

BB

1
II

D = {a → 5}
DG = ∅

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 23 / 82

Incremental Maximal Sharing General Case

Exemple II

f2
0

11

1
��

2
 A

AA
AA

A

g3

0
II

1
vv

a5

D = {a → 5, f (2, 3, 5) → 2, g(2, 3) → 3}

DG =


(f , • •�5)

||zzzzz
��

ε (g, ••)

||xx
xx

x
##F

FF
FF

ε 1

→2



Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 24 / 82

Incremental Maximal Sharing General Case

Exemple III

(f ,�2 • •)
1
��

2

%%KK
KKK

KKK

g6

0
II

1
vv

a7

D = {a → 5, f (2, 3, 5) → 2, g(2, 3) → 3}

DG =


(f , • •�5)

||zzzzz
��

ε (g, ••)

||xx
xx

x
##F

FF
FF

ε 1

→2



Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 25 / 82

Incremental Maximal Sharing General Case

Exemple IV

(f ,�2 •�5)

1
��

g6

0
II

1
vv

D = {a → 5, f (2, 3, 5) → 2, g(2, 3) → 3}

DG =


(f , • •�5)

||zzzzz
��

ε (g, ••)

||xx
xx

x
##F

FF
FF

ε 1

→2



Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 26 / 82

Incremental Maximal Sharing General Case

Root Unrolling

The last case, when a child is equivalent to a node of the strongly
connected component:

a 1 //
0

''

b
1 //

0

��

b
1 //

0
��

. . . 1 // b
1 //

0

ww

b 1
yy

0

xx

a0
%% 1 ((

b
0

hh 1
yy

Naive: compare each node to each child in U .
Each comparison is quadratic...

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 27 / 82

Incremental Maximal Sharing General Case

Finding if Loop Unrolling

Improvements
If two outgoing edges lead to two different strongly connected
components, only the latest included in U can be equivalent do N
If n ∈ N and l an edge label such that n.l is in the latest strongly
connected component of U , then just compare n with the v in the
component of n.l , such that v .l = n.l
Comparison between a node of U and a node of N is linear.

Still quadratic in the worst case, but very rare

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 28 / 82

Incremental Maximal Sharing General Case

Complexity results

shared direct representation
testing t1 = t2 O(1) O ((n1 + n2) log(n1 + n2))
testing t1 subtree of t2 O(n2) O ((n1 + n2) log(n1 + n2))
building t[p] O(|p|) O(|p|)
root constructor O(1) O(1)
cycle constructor O(n2) O(n)

n may be far bigger in the unshared case.
We don’t have to share systematicaly

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 29 / 82

Incremental Maximal Sharing General Case

Comparison with Finite Height Hash-Consing

Experimental results on random graph incremental manipulations and
equality testing show that

1 Sharing is always faster than no sharing
2 Finite height hash-consing is far less efficient than cycle

hash-consing
3 Sharing on demand is slightly more efficient than systematic

sharing

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 30 / 82

Incremental Maximal Sharing Applications

Graphs and Infinity

1 Classic Representations for Infinite Sets of Symbols

2 Incremental Maximal Sharing
Hash-consing
Graph Minimality
Keys for Independant Stronly Connected Graphs
General Case
Applications

3 Relations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 31 / 82

Incremental Maximal Sharing Applications

Application to Word Automata

As a graph, word automata have the same equivalence notion as
defined earlier, if

determinisitic
and complete (no forbiden transition) or useful (all states can lead
to a final state)

Static Analysis Application
Approximate the messages on channels between parallel processes

Approximation
Using Q-automata: encodes a sequence of languages by a regular
language

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 32 / 82

Incremental Maximal Sharing Applications

Experimental Results for Message Analysis

Fixpoint computation
Without minimisation, automara grow very quickly ⇒ inclusion
algorithms become very costly
Full minimisation at each step too costly

⇒ substantial speed-up with shared automata

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35

T
em

ps
 (

se
co

nd
es

)

Itérés

Partage
Classique

LASH

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

T
em

ps
 (

se
co

nd
es

)

Itérés

Partage
Classique

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 33 / 82

Incremental Maximal Sharing Applications

Widenings for Graph based Representations

Widening
Widening is an approximation of unions used to speed-up
convergence of iterations

Essential to yield precise analysis (which demand infinite
domains)
Tries to extrapolate on successive iterates

Graph folding
Try to replace a new node by an old one with the same label
Only if this old one represents more values

Path extrapolation
Repeat infinitely a newly added edge (or path).
Approximates {anbn | n ∈ N} by ak a∗bk b∗

Size limiting
After a pre-defined size of the graph reached, replace new nodes
by >.
Enforces termination.

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 34 / 82

Incremental Maximal Sharing Applications

Examples of Graph Folding

A1 : // /.-,()*+ a // /.-,()*+ b // /.-,()*+��������
A2 : // /.-,()*+ a // /.-,()*+ b // /.-,()*+�������� a // /.-,()*+ b // /.-,()*+��������
A3 : // /.-,()*+ a // /.-,()*+ b)) /.-,()*+��������

a
ii

G1 = A
))
Bhh

G2 = A // B //©
}}

// Bcc

G3 = A // B
))©aa hh

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 35 / 82

Incremental Maximal Sharing Applications

Examples of Path Extrapolation

A1 : // /.-,()*+ a // /.-,()*+ b // /.-,()*+��������
A2 : // /.-,()*+ a // /.-,()*+ b //

a ��

/.-,()*+��������
/.-,()*+ b // /.-,()*+b

OO

A3 : // /.-,()*+ a // /.-,()*+ b //
a ��

/.-,()*+��������
/.-,()*+ b //

a

22 /.-,()*+b
OO

G1 = A
b))

B
a
hh

G2 =

A
b //© //

��

B
a ((

A
b
ii

B
a

__?????? b ((
B

a
hh

G3 =

A
b //© //

��

B
a ((

A
b
hh

B
a

__>>>>>>
b //©

��

// B

a
xx

B

a
``AAAAAA

b

ll

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 36 / 82

Incremental Maximal Sharing Applications

Examples of Size Limiting

A1 : // /.-,()*+ a // /.-,()*+ b // /.-,()*+��������
A2 : // /.-,()*+ a // /.-,()*+ b //

a ��

/.-,()*+��������
/.-,()*+ b // /.-,()*+b

OO

A3 : // /.-,()*+ a // /.-,()*+ b //
a ��

/.-,()*+��������
/.-,()*+��������

b

ll

a

22

G1 = A
b))

B
a
hh

G2 =

A
b //© //

��

B
a ((

A
b
ii

B
a

__?????? b ((
B

a
hh

G3 =

A
b //© //

��

B
a ((

A
b
hh

B

a
""b //©hh

((

��

A
b
ii

B

a
II

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 37 / 82

Incremental Maximal Sharing Applications

Sets of Trees

Sharing Tree Automata?
A tree automaton is not a
graph
Hypergraph = set of nodes
+ set of tuples of nodes

Using a Graph + Interpreted
(union) Label?

Equivalence is not the
equality of paths
Unless normal form?
Potential problem of
cartesian approxiation

A set of tuples (of the same size) is a relation
A subset of a cartesian approximation is a relation

First take a look at representation of relations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 38 / 82

Relations Classic Representations

Graphs and Infinity

1 Classic Representations for Infinite Sets of Symbols

2 Incremental Maximal Sharing

3 Relations
Classic Representations
Entries in the Relations
Simple Infinite Behaviors
More Infinite Behaviors
New Classes of Relations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 39 / 82

Relations Classic Representations

Motivations

Relational domain of trees:

{
f
		�� ��

**

a b
,

f
		�� ��+

+

c d

}
⊂

f
���� ��:

:

©
���� ��.

. ©
���� ��/

/

a c b d

What we need
Define the possible sequences
Keep track of what we link
Maybe link ∞ decisions

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 40 / 82

Relations Classic Representations

Relations
Reminder

Definition
Let (Ei)i∈I be a familly of sets. A relation of support (Ei)i∈I is a sub-set
of

⊗
i∈I Ei .

Relation ≡ language, except for negation and the operations
u.v the concatenation between vectors of disjoint supports and
u.R def

= {u.v | v ∈ R}
projection R(J) (0011 6= 0012)
and partial evaluation R:i=b

Let R ' S iff same underlying language
Relation ≡ function

R(u) = true or false if u ∈
⊗
i∈I

Ei

= {v | u.v ∈ R} if u ∈
⊗

i∈J⊂I

Ei

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 41 / 82

Relations Classic Representations

Representations

A binary relation is a graph, but not the same notion of
equivalence: nodes cannot be merged
In the finite case, see first part
If the sets are finite, we can always use a boolean encoding
What remains to explore are the

infinitary relations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 42 / 82

Relations Classic Representations

ω-regular languages

Linear Temporal Logic (LTL)

Temporal logic ::= p atomic proposition
formula | f ∧ f | f ∨ f | ¬f logic connectors

| G.f | F .f | f .U.f | f .R.f temporal operators

Büchi Automata
Defined by (Q, E , I, F) i.e. (states, transitions, initial, final)
Infinite word recognized ⇔ goes infinitely through F
Closed by ∪, ∩ and ¬
ω-regular = finite union of U.V ω, U and V regular.

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 43 / 82

Relations Classic Representations

Sharing Büchi Automata?

Properties of Büchi Automata
Deterministic Büchi is less expressive than non-deterministic
In general, there is no minimal Büchi automaton

// /.-,()*+�������� a)) /.-,()*+
b
ii // /.-,()*+ a)) /.-,()*+��������

b
ii // /.-,()*+�������� a)) /.-,()*+��������

b
ii

Even in the restricted cases:
Not same notion of node equivalence
Final states can be redundant (hard to detect)

⇒ define sub-classes based on properties of the final state?

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 44 / 82

Relations Classic Representations

Problems with Classical ω-regular Languages in Static
Analysis

Translating Formulae into Automata
Formula with n sub-formulae ⇒ automaton with n.2n states

Complexity
Emptyness testing: PSPACE-complete

Usage
Not efficient in case of non-linear access:

partial evaluation
projection

What about a decision tree approach?

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 45 / 82

Relations Classic Representations

Decision Trees for Infinitary Relations
Problems if I is infinite. . .

x

wwpppppppp

''NNNNNNNN

y

����
��

��=
==

= y

����
��

��=
==

=

z
����
�
��.

..
z
����
�
��.

..
z
����
�
��.

..
z
����
�
��.

..

t
����
�
��&
&&

t
����
�
��&
&&

t
����
�
��&
&&

t
����
�
��&
&&

t
����
�
��&
&&

t
����
�
��&
&&

t
����
�
��&
&&

t
����
�
��&
&&

u u u u u u u u u u u u u u u u

∞ variables

regularity?

trees more than
∞

Simplifications
Each Ei can be encoded by B× . . .× B
⇒ we will just consider B
Just considere the case I ≡ N.

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 46 / 82

Relations Entries in the Relations

Graphs and Infinity

1 Classic Representations for Infinite Sets of Symbols

2 Incremental Maximal Sharing

3 Relations
Classic Representations
Entries in the Relations
Simple Infinite Behaviors
More Infinite Behaviors
New Classes of Relations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 47 / 82

Relations Entries in the Relations

Entry names

Considering relation ≡ function BN→B

Definition
The entries of a function are the rank of the arguments of that function

Names of a relation
For a given computation algorithm, the entry names are the variables
associated with the arguments

Definition
Named relation = relation R + nameR : I→ename(R)

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 48 / 82

Relations Entries in the Relations

Equivalent Entries

finite] of variables ⇒ sharing entry names

Entries i and j are equivalent

i j
. . . 010 a 10 . . . 00 b 001 . . . ∈ f
. . . 010 b 10 . . . 00 a 001 . . . ∈ f

Definition
∀σ permutation of I, ∀u ∈

⊗
i∈I Ei , R(u) = R(σ(u))

Idea
R:x=a is not ambiguous
In the decision tree, nodes with the same label x are equivalent

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 49 / 82

Relations Entries in the Relations

Example (finite case)

Let R = {000, 011, 111}. Entries 1 and 2 are equivalent (but not 0 and
2 as R(011) 6= R(110)).

So we can use the following BDD to represent R:

x
0
����

�� 1
!!C

CC
CC

y
0
����

�� 1
��=

==
= y

1
~~}}

}}
}

0

y
0
��>

>>
>

1
88

y
1
����

�� 0
 B

BB
B

true false

Speeds up some projection operations (R:2=false)

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 50 / 82

Relations Entries in the Relations

Elimination of redundant nodes

Theorem
If R(u.0) = R(u.1), then ∀v such that nameR(|u.v |) = nameR(|u|),
R(u.v .0) = R(u.v .1)

Proof.
Let v = a.w .
Then R(u.a.w .0) = R(u.0.w .a) = R(u.1.w .a) = R(u.a.w .1)

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 51 / 82

Relations Entries in the Relations

Infinitely many equivalent entries

Caution!
The notion "is equivalent entry" is not infinitely transitive

Example
Let f true iff u contains ∞ many 00
(001)ω ∈ f , but (01)ω 6∈ f
All pairs of entries are equivalent
but...

0 0
00

00
1

��
��

0
00

00
0

AA
AA

AA 1

}}
}}

}}
0

AA
AA

AA 0

KKKKKKKKK 1

sssssssss 0

KKKKKKKKK 0 1

nnnnnnnnnnnn 0 0 . . .

0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . .

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 52 / 82

Relations Entries in the Relations

Consequences when all entries are equivalent

Let R ⊂
⊗

i∈N E such that all entries of R are equivalent

Theorem
∀v ∈ En, ∀b letter of v, ∀α ∈ Eω containing b ∞ often,

vω ∈ R ⇔ (v .b)ω ∈ R
α ∈ R ⇔ b.α ∈ R

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 53 / 82

Relations Entries in the Relations

Equivalent Vectors of Entries

To represent greater classes of functions
In particular, the encoding of E into B× . . .× B
Just keep the permutations that change the whole vector at a time
(keeping the ordering of the vector)

Relations Representation

decision tree
��

+ naming

��
regular tree regular with sharing?

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 54 / 82

Relations Entries in the Relations

Representation

Definition
The entry names of R are ultimately periodic iff ∃k , j such that ∀i > j ,
nameR(i) = nameR(i + k)

Classical case: x < y < z...

Infinite case, representable, infinite word xyxxyzω

In the sequel, mainly considere relations with ultimately periodic
entry names
It is a true restriction:

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 55 / 82

Relations Entries in the Relations

Restricting to Ultimately Periodic Entry Names

Theorem
The ω-regular languages such that ∃ ultimately periodic naming of the
entries are a strict subset, closed under ∩, ∪ and ¬

Example
{O, 11}ω is ω-regular,
but 6 ∃i < j such that i equivalent to j ,
because 0j110ω ∈ R, but not 0i10j−i10ω

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 56 / 82

Relations Simple Infinite Behaviors

Graphs and Infinity

1 Classic Representations for Infinite Sets of Symbols

2 Incremental Maximal Sharing

3 Relations
Classic Representations
Entries in the Relations
Simple Infinite Behaviors
More Infinite Behaviors
New Classes of Relations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 57 / 82

Relations Simple Infinite Behaviors

Regularity

Definition
Let R a named relation. R is prefix-regular iff its entry names are
ultimately periodic and the] of R(u) modulo 'n is finite.

R 'n S iff R ' S and nameR ≡ nameS

does not mean the underlying language is ω-regulier!
Let L non regular

⇒ T = {0, 1}∗.L not regular
But, ∀u, T ' T (u)

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 58 / 82

Relations Simple Infinite Behaviors

Open and Closed Named Relations

Representation of prefix-regular named relations by a regular tree
Does not describe the ∞ behavior
Give a meaning to loops

Definition
R is open named relation iff R is prefix-regular and ∀α ∈ R, ∃u, β such
that α = u.β and R(u) ' Bω

Definition
R is closed named relation iff R is prefix-regular and ∀α 6∈ R, ∃u, β
such that α = u.β and R(u) ' ∅

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 59 / 82

Relations Simple Infinite Behaviors

Open and Closed ω-regular Relations

Büchi automata not easy to share because of possible
redundancy of final states.
Solution: just keep Büchi automata such that F = Q.

Contains only closed languages (for natural topology)
Not very interesting for temporal properties. . .

Solution 2: only 1 final state, which is a simple loop
These are the complement of the previous automata
So contains only closed languages (for natural topology)
Can express "must not stay infinitely"

Solution 3: all finite states are simple loops
Defines quasi-open languages:

∀α ∈ L, ∃u such that α = u.β and if A is the set of letters in β, u.Aω ⊂ L.

Can express termination
Cannot express fairness

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 60 / 82

Relations Simple Infinite Behaviors

Examples of Closed and Open Relations

Property
A finite relation is closed and open

x
����

��
!!C

CC
C

true false

x
0
��~~

~~
1

yy

true
var. names x .yω xω

open 0.Bω 1∗.0.Bω

closed 0.Bω 1∗.0.Bω ∪ 1ω

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 61 / 82

Relations Simple Infinite Behaviors

Representation

Regular trees with sharing
New source of non-uniqueness: x0

%%
1

yy

But easy to check when sharing
⇒ Efficient representation

Unique representation if elimination of redundant nodes
But up to renaming!

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 62 / 82

Relations Simple Infinite Behaviors

Properties of Open Relations
and Closed Relations

Property
∀R, S open, R ∩ S and R ∪ S
are open

Property
∀(Ri)i∈N open,

⋃
i∈N Ri is open

Property
∀R, S closed, R ∩ S and R ∪ S
are closed

Property
∀(Ri)i∈N closed,

⋂
i∈N Ri is

closed

Approximation
∀R prefix-regular relation, ∃ greatest open contained in R and a
smallest closed containing R

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 63 / 82

Relations More Infinite Behaviors

Graphs and Infinity

1 Classic Representations for Infinite Sets of Symbols

2 Incremental Maximal Sharing

3 Relations
Classic Representations
Entries in the Relations
Simple Infinite Behaviors
More Infinite Behaviors
New Classes of Relations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 64 / 82

Relations More Infinite Behaviors

Iteration

Idea
Use trees to represent the ∞ behavior

Let R a named relation.

Ω (R)
def
= {u0.u1 . . .|ui minimal such

that

|ui | > 0
R(ui) = Bω

nameR(|ui |) = nameR(0)

Definition
R is iterative iff its names are perdiodic and ∃S open such that
R = Ω(S)

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 65 / 82

Relations More Infinite Behaviors

Examples

Safety Liveness Fairness
x

0
����

�� 1
!!C

CC
C

true false

x
0
��~~

~~
1

yy

true

x
0
~~~~

~~ 1
  @

@@
@

x0
%%

1
��@

@@
@ x

0
��~~

~~
1

yy

true
∅ and Bω are open and iterative

Theorem
iterative ⇒ prefix-regular

Proof.
R = Ω(S), and S is open, so prefix-regular. Take u such that ∃v ,
|v | < |u| and S(u) 'n S(v). If S(u) 6= Bω, R(u) ' R(v). If S(u) = Bω,
u = u0.u1 with R(u0) = R so R(u) = R(u1)

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 66 / 82



Relations More Infinite Behaviors

Representation of Iterative Relations

Uniqueness Problem

x
0
~~~~

~~ 1
 @

@@
@

x0
%%

1
��@

@@
@ x

0
��~~

~~
1

yy

true

x
0
~~~~

~~
1

yy

x0
%%

1
��@

@@
@

true

x0
%%

1
��3

33

x
0
����
�

1
yy

x
0
��~~

~~
1

yy

true

Theorem
Let R iterative. S = {u.α | uω ∈ R and R(u) = u} is the greatest open
relation such that R = Ω(S).

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 67 / 82



Relations More Infinite Behaviors

Lemma

To simplify: only one entry name and base domain E

Lemma
Let u such that S(u) = Eω, |u| > 0 and ∀v < u, S(v) 6= Eω. Then
uω ∈ R and R(u) ' R

Let α ∈ Eω.
Lemma hypothesis: u.α ∈ S
Definition of S: ∃v ≺ α such that (u.v)ω ∈ R and R(u.v) ' R.
Special case α = bω : ∃k such that (u.bk )ω ∈ R and R(u.bk ) ' R

Let b a letter of u. (u.bk )ω ∈ R ⇒ uω ∈ R
Let β ∈ R, ∃b which appears ∞ in β. u.bk .β ∈ R ⇒ u.β ∈ R
Let β ∈ R(u) then bk .β ∈ R(u) so β ∈ R

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 68 / 82



Relations More Infinite Behaviors

Proof of the Greatest Open Theorem (1/2)

S is open because ∀α ∈ S, ∃u ≺ α, ∀β, u.β ∈ R
R iterative ⇒ ∃S′ open such that R = Ω(S′)

Let α ∈ S′, ∃u ≺ α S′(u) = Eω

Let u0 the smallest such u, then uω
0 ∈ R and R(u0) ' R

By definition of S, α ∈ S
⇒ S′ ⊂ S

R ⊂ Ω (S)

Let α ∈ R such that α 6∈ Ω (S)
If ∃ smallest u such that α = u.β and S(u) = Eω, α 6∈ Ω (S)
⇒ β 6∈ Ω (S). But lemma says R(u) = R, so we start again with β.
We arrive to 6 ∃u ≺ α such that S(u) = Eω

But α ∈ R ⇒ ∃u ≺ α, S′(u) = Eω, so S(u) = Eω.

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 69 / 82



Relations More Infinite Behaviors

Proof of the Greatest Open Theorem (2/2)

Ω (S) ⊂ R
Let α = u0.u1. . . . .un . . . ∈ Ω (S)
∀i , R(ui) = R and uω

i ∈ R
σ(α) = v .β with β just letters ∞ often
β ∈ Ω (S) and α ∈ R ⇔ β ∈ R (lemma)
τ(β) = (v0.v1 . . . vm)ω

R(vi) = R and vω
m ∈ R so γ = v0.v1 . . . vm−1.vω

m ∈ R
R = Ω(S′) so γ = u′

0.u
′
1 . . . u′

n . . .
∃j u′

0 . . . u′
j = v0.v1 . . . vm−1.vn

m.w with w ≺ vm
So (v0.v1 . . . vm−1.vn

m.w)ω ∈ R, so β ∈ R

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 70 / 82



Relations More Infinite Behaviors

Representation of Iterative Relations

The theorem is constructive
If we have a representation by an open relation, we detect the u
such that uω ∈ R and R(u) = R

Example

x
0
~~~~

~~
1

yy

x0
%%

1
��@

@@
@

true

R, ∅
0
{{xxxx 1

##F
FFF

R, {0}0
GG

1
##HH

HHH
R, {1}

0
{{vvv

vv
1
WW

true

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 71 / 82

Relations New Classes of Relations

Graphs and Infinity

1 Classic Representations for Infinite Sets of Symbols

2 Incremental Maximal Sharing

3 Relations
Classic Representations
Entries in the Relations
Simple Infinite Behaviors
More Infinite Behaviors
New Classes of Relations

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 72 / 82

Relations New Classes of Relations

Regular Relations

Definition
R named is regular iff prefix-regular and ∃I(R), ∀S ∈ I(R), S 6= ∅ and
S iterative and ∀α ∈ R, ∃u, ∃S ∈ I(R), α ∈ u.S and S ⊂ R(u).

Example
{0ω, 1ω}, or the set of vectors ending with Oω or 1ω

Theorem
A named relation R is regular iff entries ultimately periodic and
underlying language is ω-regular

Idea: finite union of U.V ω with U and V regular

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 73 / 82

Relations New Classes of Relations

Proof

Let R reguliar and I(R) = (Ri)i∈C
Each Ri defines a regular language

(Q, E , {Ri}, {Ri}
Q = {Ri(u) | u fini}
E(Ri(u), b) = Ri if Ri(u.b) = Bω and Ri(u.b) otherwise

So finite ∪ of u.Ri ω-regular languages
Let (Q, E , I, F) a Büchi such that ∃R ultimately periodic

Rq = language of (Q, E , {q}, {q})
Rq = Ω (Sq) with Sq the set of α such that ∃u ≺ α, u in the finite
language of (Q, E , {q}, {q}).

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 74 / 82

Relations New Classes of Relations

Regular Relations Usage

Corollary
R and G regular, then R ∩G, R ∪G and ¬R too.

But representation too inefficient:
Non unicity of I(R) and of its representation
Non deterministic decision process

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 75 / 82

Relations New Classes of Relations

ω-deterministic Relations

Limit the] of infinite behaviors at a given point.

RΩ
[u]

def
= Ω({v .α | u.vω ∈ R and R(u.v) = R(u)})

Definition
R is ω-deterministic iff prefix-regular and ∀u, RΩ

[u] ⊂ R(u)

Theorem
If R ω-deterministic then R regular and ∀u, ∃S ∈ I(R), such that
S ⊂ R(u), and ∀S′ ∈ I(R) behavior at u, S′ ⊂ S.

⇒ unique representation

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 76 / 82

Relations New Classes of Relations

Representation of ω-deterministic Relations

Introduction of an iter node at u to signal RΩ
[u] non empty

Pseudo-decision process
Deterministicaly going through the tree and the vector to recognize
Start with an empty stack

If variable
x
���� ��-

-

t0 t1
take t0 or t1 according to vector value

If false the vector is not in the relation

If
iter
��
t

, empty the stack

If true, continue at the latest iter and stack true
The vector is in the relation if the stack is infinite

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 77 / 82

Relations New Classes of Relations

Examples of ω-deterministic Decision Trees

x
0
>~~~~

~~ 1
�!!D

DDD
D

x
0 ��

1

((PPPPPPPP x1

vvnnnnnnnn
0��

true false

represents the relation {0ω, 1ω}

x
0
��~~

~~
1

2yy

true
represents the set of vectors ending with 0ω.

open ⇒ ω-deterministic

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 78 / 82

Relations New Classes of Relations

Properties of ω-deterministic Relations

closed by intersection
∀R prefix-regular, there is a smallest ω-deterministic containing R

⇒ possibility to approximate all operations yelding a prefix-regular
relation
Canonical and incremental representation
If we apply the same representation to finite relation, we get
exactly BDDs

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 79 / 82

Relations New Classes of Relations

Algorithms on ω-deterministic Relations

General idea for binary operations
Go through the two trees in parallel (as for BDD)
Go back to the previous iterif you come to a true

Store the couples of encountered sub-trees
If you cross again (u, v), according to the relation, see if you have
been through a true on a side or both

To finish, must compute the biggest open (smaller v such that vω ∈ R
and R(v) = v

For inclusion
Go through the trees, according to pseudo-decision process
So you cross again (u, v), if u have been through true, v must
have too (otherwise, not included)

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 80 / 82

Relations New Classes of Relations

Intersection

Algorithm
Go through the trees, keeping which one went through true

Creation of a node according to that information
Then sharing

Example

x
0
��~~

~~
1

yy

true

⋂ x0
%%

1
��@

@@
@

true
=

xFF
0
}}{{

{{ 1
!!C

CC
C

xFT0
**

1 ""D
DD

D xTF 1
tt

0||zz
zz

true

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 81 / 82

Relations New Classes of Relations

Union

Example

x
0
~~~~

~~ 1
  @

@@
@

x0
%%

1
��@

@@
@ x

0
��~~

~~
1

yy

true

⋃ x
0
����

�� 1
!!C

CC
C

true false
=

x

0

%%

1

�''P
PPPPPPPP

x
0
~~~~

~~ 1
��3

33

x0
%%

1��

x
0
yyrrrrrr 1

yy

true

x
0
��~~

~~
1

2yy

true

⋃ x0
�%%

1
��@

@@
@

true
will be approximated by true

Laurent Mauborgne (ENS) Symbolic Abstract Domains MPRI 2–6, année 2007-2008 82 / 82

	Classic Representations for Infinite Sets of Symbols
	Incremental Maximal Sharing
	Hash-consing
	Graph Minimality
	Keys for Independant Stronly Connected Graphs
	General Case
	Applications

	Relations
	Classic Representations
	Entries in the Relations
	Simple Infinite Behaviors
	More Infinite Behaviors
	New Classes of Relations

