Symbolic Abstract Domains 2/3

Laurent Mauborgne

École Normale Supérieure

Interprétation abstraite, MPRI 2-6, année 2007-2008

Laurent Mauborgne (ENS)

Finite Sets of Symbols

Graphs and Infinity

Classic Representations for Infinite Sets of Symbols

Incremental Maximal Sharing

Mixing Symbolic and Numeric Properties

Finding a Good Data Structure for Symbolic Properties In the unbounded case

- Most general structures for symbolic properties:
 - Trees, graphs
 - Sets of trees or even sets of graphs?
- Classical representations
 - Expressions, using variables, seem a bad idea
 - Automata are not well tailored to static analysis

New Representation for Sets of Trees

- Expressive enough
- Efficient for incremental computations
- Can take advantage of approximations

Graphs and Infinity

Classic Representations for Infinite Sets of Symbols

Incremental Maximal Sharing

- Hash-consing
- Graph Minimality
- Keys for Independant Stronly Connected Graphs
- General Case
- Applications

Relations

Sharing and Incrementality

Sharing

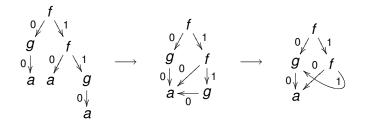
- Objects are represented by a data structure
- This data structure is stored at a given memory address
- Representation shared iff no two memory address contain data structures representing semantically equal objects

Gain in memory

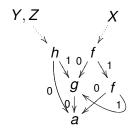
- Constant time equality \Rightarrow easy memoization
- But hidden cost: when computing a new object
 - must be compared with all other represented objects
 - can be made efficient with hash-like techniques
 - but what is the interest compared with on-demand equality testing?
- Only interesting if highly incremental

The Easy Case

The most classical representation with sharing is hash-consing of trees:



- Bottom-up process
- Incremental: not need to compute everything again at each tree modification

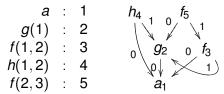


Laurent Mauborgne (ENS)

Mechanism

Dictionary + key

Key = label + sub-trees id



Graphs and Infinity

Classic Representations for Infinite Sets of Symbols

Incremental Maximal Sharing

Hash-consing

Graph Minimality

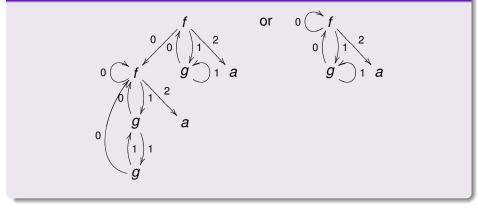
- Keys for Independant Stronly Connected Graphs
- General Case
- Applications

Relations

Regular Trees

Regular = *finite* number of distinct sub-trees

Example



- Same complexity as oriented labeled multigraphs
- Question: how to extend hash-consing to grahs?

10/82

Laurent Mauborgne (ENS)

Symbolic Abstract Domains

Equivalent Graphs

- First determine the semantic equality
- Idea: all what we can observe of a graph is
 - Node labels
 - Follow edges by specifying labels (=paths)

Equivalent graphs

- Two nodes can be distinguished iff there is a path starting from each node, with same edge labels and leading to nodes with different labels
- Two edges can be distinguished iff different label or link distinguishable nodes.
- Two graphs are equivalent iff each node of each graph is undistinguishable from a node of the other graph.

Incremental Maximal Sharing Graph Minimality

Example of equivalent graphs

Example



Laurent Mauborgne (ENS)

Minimal graph

Definition

A graph is minimal iff all its nodes are distinguishable.

- If we store all the graphs encountered in an analysis
- Then it forms a big graph
- If it is minimal, then no redundancy
- \Rightarrow We can easily reuse previous computations
 - To recognize if a graph argument has already been encountered, just compare the nodes (= memory locations).
 - Notion of maximal sharing.
 - But systematic sharing might not be profitable

How to compute a minimal graph?

- Finding the minimal graph amounts to a graph partitioning problem
- \Rightarrow Can be done in $O(n \log n)$.
 - Algorithm similar to Hopcroft for automata (refine a partition)
 - But not incremental at all.

The Incremental Minimality Problem

- Suppose a minimal graph ${\cal U}$ (i.e. uniquely represented graphs)
- Let \mathcal{G} be a graph containing \mathcal{U} .
- Extend U in a minimal graph U' such that all nodes of G is equivalent to a node of U'.
- Classical hash-consing algorithm?
- cannot be used: there is no bottom in a graph

14/82

Strongly Connected Components à la Hopcroft Minimisation Algorithm

- A new strongly connected component is either entirely in U or outside it.
- There does not seem to be any better algorithme than partition refinment for such graphs...

A Partition Refinment Algorithm

- Start with a set of blocks (corresponding to a coarse partition)
- Le W be the set of (B, I), with B a block and I an edge label
- while W is not empty, take (B, I) out of W
 - Compute for each node the number of *I*-labeled edges leading to B
 - Split each block according to that number
 - if a block was not in W, only add the smallest splited blocks in W

15/82

Graphs and Infinity

Classic Representations for Infinite Sets of Symbols

Incremental Maximal Sharing

- Hash-consing
- Graph Minimality
- Keys for Independant Stronly Connected Graphs
- General Case
- Applications

Relations

Incremental Maximal Sharing Keys for Independant Stronly Connected Graphs

Recognizing Strongly Connected Components

Problem

- Minimizing a new strongly connected component does not share it
- Too costly to minimize $\mathcal{U}!$
- Better way to recognize a strongly connected component?
- Want to compare with as few as possible sub-graphs (limited-depth hashing?)
- Want to avoid costly equality testing
- \Rightarrow find a caracterictic key?

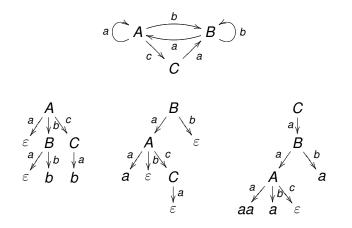
Caracteristic property

Isomorphic cycles have the same set of labeled paths

17/82

Caracteristic Set of Trees for a Strongly Connected Graph

The set of all paths can be described by a finite set of trees



18/82

Keys for Strongly Connected Graphs

- The caracteristic set of trees can be big (quadratic cost)
- We can either
 - represent all paths (by a set of trees)
 - or just the paths starting from one node, and try all nodes

Better Solution

Distinguish one node through sorting

- Naïve is quadratic
- But can use partitioning algorithm!
- So the key is a tree (same size as the graph)
- Key comparison is constant time!

Graphs and Infinity

Classic Representations for Infinite Sets of Symbols

Incremental Maximal Sharing

- Hash-consing
- Graph Minimality
- Keys for Independant Stronly Connected Graphs
- General Case
- Applications

Relations

The 3 Cases

- We want to minimize \mathcal{G} , knowing that \mathcal{U} , subgraph of \mathcal{G} is minimal.
- Go through $\mathcal G$ and see what happens when reaching $\mathcal U$
- If all outgoing edges of a node $n \in \mathcal{G} \setminus \mathcal{U}$ are in \mathcal{U}
 - Classical hash-consing determines if *n* is equivalent to a node in *U*
 - \Rightarrow if no cycle in $\mathcal{G} \setminus \mathcal{U}$, we are done!
 - $\bullet~$ So we keep a dictionary for (label, children id) \longrightarrow id
- Otherwise, we have a strongly connected component with all outgoing edges in \mathcal{U} . 3 cases:
 - **(1)** No node is equivalent to a node in \mathcal{U}
 - One node is equivalent do a direct child
 - All nodes are equivalent to a node in U, but none is a direct child of the strongly connected component.
- Case n° 1 yelds when we don't have either 2 or 3. So we just recognize cases 2 and 3.

Partial Keys

Recognizing strongly connected components when the candidate has no node equivalent to a direct child

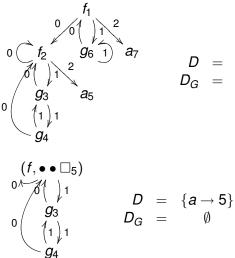
- Let \mathcal{N} a strongly connected subgraph of $\mathcal{G} \setminus \mathcal{U}$ such that it is equivalent to a subgraph \mathcal{V} of \mathcal{U}
- Suppose moreover all outgoing edges of $\mathcal N$ lead to $\mathcal U \backslash \mathcal V,$
- Then ∀n ∈ N, n is equivalent to a node v of V, and for each edge label I, if n.I is in U, then

 $\Rightarrow \ \ \text{If we relace labels in \mathcal{N} and \mathcal{V} by a couple (label, id of children in $\mathcal{U} \setminus \mathcal{V}$, then the two graphs become Equivalent}$

Partial key = label + id of already treated children

- So we just minimise the graph with partial keys
- and use keys for strongly connected graphs with partial keys
- we have a recursive procedure for incremental minimisation!

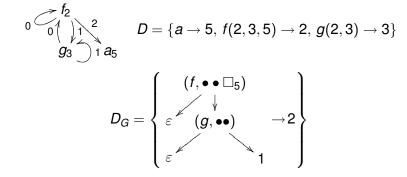
Exemple I



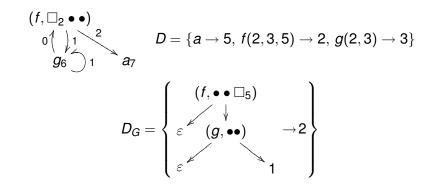
$$\begin{array}{rcl} D &=& \emptyset \\ D_G &=& \emptyset \end{array}$$

23 / 82

Exemple II



Exemple III



Exemple IV

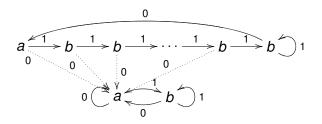
$$(f, \Box_2 \bullet \Box_5)$$

$$0 \left(\begin{array}{c} \downarrow_1 \\ g_6 \end{array} \right) 1 \qquad D = \{a \to 5, f(2,3,5) \to 2, g(2,3) \to 3\}$$

$$D_G = \left\{ \begin{array}{c} (f, \bullet \Box_5) \\ \varepsilon & (g, \bullet) \\ \varepsilon & 1 \end{array} \right\}$$

Root Unrolling

The last case, when a child is equivalent to a node of the strongly connected component:



- Naive: compare each node to each child in U.
- Each comparison is quadratic...

Finding if Loop Unrolling

Improvements

- If two outgoing edges lead to two different strongly connected components, only the latest included in ${\cal U}$ can be equivalent do ${\cal N}$
- If n ∈ N and l an edge label such that n.l is in the latest strongly connected component of U, then just compare n with the v in the component of n.l, such that v.l = n.l
- $\bullet\,$ Comparison between a node of ${\cal U}$ and a node of ${\cal N}$ is linear.

Still quadratic in the worst case, but very rare

Complexity results

	shared	direct representation
testing $t_1 = t_2$	$\mathcal{O}(1)$	$O((n_1 + n_2)\log(n_1 + n_2))$
testing t_1 subtree of t_2	$\mathcal{O}(n_2)$	$O((n_1 + n_2)\log(n_1 + n_2))$
building t _[p]	$\mathcal{O}(\pmb{p})$	$\mathcal{O}(\boldsymbol{p})$
root constructor	$\mathcal{O}(1)$	$\mathcal{O}(1)$
cycle constructor	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$

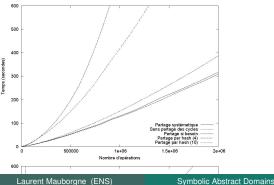
- *n* may be far bigger in the unshared case.
- We don't have to share systematicaly

Incremental Maximal Sharing General Case

Comparison with Finite Height Hash-Consing

Experimental results on random graph incremental manipulations and equality testing show that

- Sharing is always faster than no sharing
- Finite height hash-consing is far less efficient than cycle hash-consing
- Sharing on demand is slightly more efficient than systematic sharing



Graphs and Infinity

Classic Representations for Infinite Sets of Symbols

Incremental Maximal Sharing

- Hash-consing
- Graph Minimality
- Keys for Independant Stronly Connected Graphs
- General Case

Applications

Relations

- As a graph, word automata have the same equivalence notion as defined earlier, if
 - determinisitic
 - and complete (no forbiden transition) or useful (all states can lead to a final state)

Static Analysis Application

Approximate the messages on channels between parallel processes

Approximation

Using Q-automata: encodes a sequence of languages by a regular language

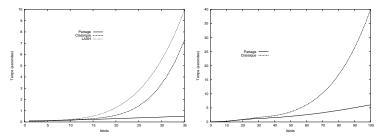
Experimental Results for Message Analysis

Incremental Maximal Sharing

- Fixpoint computation
- Without minimisation, automara grow very quickly ⇒ inclusion algorithms become very costly

Applications

- Full minimisation at each step too costly
- ⇒ substantial speed-up with shared automata



Incremental Maximal Sharing

Applications

Widenings for Graph based Representations

Widening

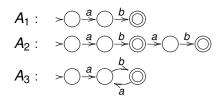
Widening is an approximation of unions used to speed-up convergence of iterations

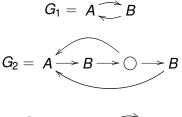
- Essential to yield precise analysis (which demand infinite domains)
- Tries to extrapolate on successive iterates
- Graph folding
 - Try to replace a new node by an old one with the same label
 - Only if this old one represents more values
- Path extrapolation
 - Repeat infinitely a newly added edge (or path).
 - Approximates $\{a^nb^n \mid n \in \mathbb{N}\}$ by $a^ka^*b^kb^*$
- Size limiting
 - After a pre-defined size of the graph reached, replace new nodes by $\top.$
 - Enforces termination.

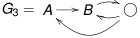
Incremental Maximal Sharing

Applications

Examples of Graph Folding



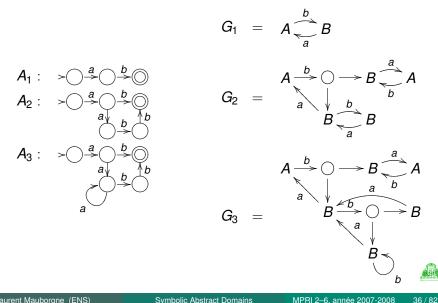




Incremental Maximal Sharing

Applications

Examples of Path Extrapolation

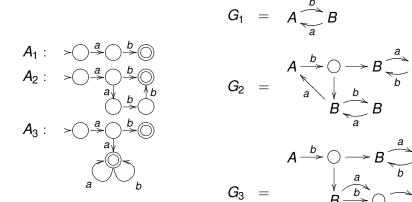


Laurent Mauborgne (ENS)

Incremental Maximal Sharing

Applications

Examples of Size Limiting



В

 $\xrightarrow{v} \bigcirc \longrightarrow B$

37 / 82

Sets of Trees

Sharing Tree Automata?

- A tree automaton is not a graph
- Hypergraph = set of nodes
 + set of tuples of nodes

Using a Graph + Interpreted (union) Label?

- Equivalence is not the equality of paths
- Unless normal form?
- Potential problem of cartesian approxiation
- A set of tuples (of the same size) is a relation
- A subset of a cartesian approximation is a relation

First take a look at representation of relations

Graphs and Infinity

Classic Representations for Infinite Sets of Symbols

Incremental Maximal Sharing

3 Relations

- Classic Representations
- Entries in the Relations
- Simple Infinite Behaviors
- More Infinite Behaviors
- New Classes of Relations

Motivations

Relational domain of trees:
$$\begin{cases} f & f \\ \not \models \forall & \not \models \forall \\ a & b & c & d \end{cases} \subset \bigcirc \bigcirc \\ f & \downarrow \forall & \downarrow \forall \\ a & c & b & d \end{cases}$$

What we need

- Define the possible sequences
- Keep track of what we link
- $\bullet \ \ \text{Maybe link} \ \infty \ \text{decisions} \\$

Relations Reminder

Definition

Let $(E_i)_{i \in I}$ be a family of sets. A relation of support $(E_i)_{i \in I}$ is a sub-set of $\bigotimes_{i \in I} E_i$.

- Relation \equiv language, except for negation and the operations
 - u.v the concatenation between vectors of disjoint supports and

$$u.R \stackrel{\mathsf{def}}{=} \{ u.v \mid v \in R \}$$

- projection $R_{(J)}$ (0₀1₁ \neq 0₀1₂)
- and partial evaluation R:i=b
- Let $R \simeq S$ iff same underlying language
- Relation \equiv function

$$R(u) = \text{true or false if } u \in \bigotimes_{i \in I} E_i$$
$$= \{ v \mid u.v \in R \} \text{ if } u \in \bigotimes_{i \in J \subset I} E_i$$

41/82

- A binary relation is a graph, but not the same notion of equivalence: nodes cannot be merged
- In the finite case, see first part
- If the sets are finite, we can always use a boolean encoding
- What remains to explore are the

infinitary relations

ω -regular languages

Linear Temporal Logic (LTL)

Temporal logic ::=	р	atomic proposition
formula	$f \wedge f \mid f \vee f \mid \neg f$	logic connectors
	G.f F.f f.U.f f.R.f	temporal operators

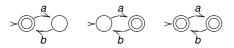
Büchi Automata

- Defined by (Q, E, I, F) i.e. (states, transitions, initial, final)
- Infinite word recognized ⇔ goes infinitely through F
- Closed by \cup , \cap and \neg
- ω -regular = finite union of $U.V^{\omega}$, U and V regular.

Sharing Büchi Automata?

Properties of Büchi Automata

- Deterministic Büchi is less expressive than non-deterministic
- In general, there is no minimal Büchi automaton



Even in the restricted cases:

- Not same notion of node equivalence
- Final states can be redundant (hard to detect)
- ⇒ define sub-classes based on properties of the final state?

Relations Classic Representations

Problems with Classical ω -regular Languages in Static Analysis

Translating Formulae into Automata

Formula with *n* sub-formulae \Rightarrow automaton with *n*.2^{*n*} states

Complexity

Emptyness testing: PSPACE-complete

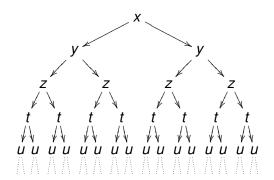
Usage

Not efficient in case of non-linear access:

- partial evaluation
- projection

What about a decision tree approach?

Decision Trees for Infinitary Relations Problems if *I* is infinite...



 ∞ variables regularity? trees more than ∞

Simplifications

- Each *E_i* can be encoded by 𝔅 × . . . × 𝔅
 ⇒ we will just consider 𝔅
- Just considere the case $I \equiv \mathbb{N}$.

Graphs and Infinity

Classic Representations for Infinite Sets of Symbols

Incremental Maximal Sharing

3 Rela

Relations

- Classic Representations
- Entries in the Relations
- Simple Infinite Behaviors
- More Infinite Behaviors
- New Classes of Relations

Entry names

Considering relation \equiv function $\mathbb{B}^{\mathbb{N}} \rightarrow \mathbb{B}$

Definition

The entries of a function are the rank of the arguments of that function

Names of a relation

For a given computation algorithm, the entry names are the variables associated with the arguments

Definition

Named relation = relation R + name_R : $I \rightarrow$ ename(R)

Equivalent Entries

finite \sharp of variables \Rightarrow sharing entry names

Entries *i* and *j* are equivalent

$$i$$
 j
...010 a 10...00 b 001... $\in f$
...010 b 10...00 a 001... $\in f$

Definition

$$\forall \sigma \text{ permutation of } I, \forall u \in \bigotimes_{i \in I} E_i, R(u) = R(\sigma(u))$$

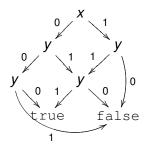
Idea

- *R*:x=a is not ambiguous
- In the decision tree, nodes with the same label x are equivalent

Example (finite case)

Let $R = \{000, 011, 111\}$. Entries 1 and 2 are equivalent (but not 0 and 2 as $R(011) \neq R(110)$).

So we can use the following BDD to represent *R*:



Speeds up some projection operations ($R_{:2=false}$)

Elimination of redundant nodes

Theorem

If R(u.0) = R(u.1), then $\forall v$ such that $name_R(|u.v|) = name_R(|u|)$, R(u.v.0) = R(u.v.1)

Proof.

Let v = a.w.Then R(u.a.w.0) = R(u.0.w.a) = R(u.1.w.a) = R(u.a.w.1)

Infinitely many equivalent entries

Caution!

The notion "is equivalent entry" is not infinitely transitive

Example

- Let f true iff u contains ∞ many 00
- $(001)^{\omega} \in f$, but $(01)^{\omega} \notin f$
- All pairs of entries are equivalent
- but...

52 / 82

Consequences when all entries are equivalent

Let $R \subset \bigotimes_{i \in \mathbb{N}} E$ such that all entries of R are equivalent

Theorem

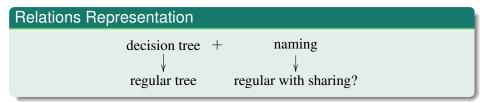
 $\forall v \in E^n$, $\forall b$ letter of v, $\forall \alpha \in E^{\omega}$ containing $b \infty$ often,

•
$$v^{\omega} \in R \Leftrightarrow (v.b)^{\omega} \in R$$

• $\alpha \in \mathbf{R} \Leftrightarrow \mathbf{b}.\alpha \in \mathbf{R}$

Equivalent Vectors of Entries

- To represent greater classes of functions
- In particular, the encoding of *E* into $\mathbb{B} \times \ldots \times \mathbb{B}$
- Just keep the permutations that change the whole vector at a time (keeping the ordering of the vector)



Definition

The entry names of *R* are ultimately periodic iff $\exists k, j$ such that $\forall i > j$, name_{*R*}(*i*) = name_{*R*}(*i* + *k*)

- Classical case: x < y < z...
- Infinite case, representable, infinite word xyxxyz^w
- In the sequel, mainly considere relations with ultimately periodic entry names
- It is a true restriction:

Restricting to Ultimately Periodic Entry Names

Theorem

The ω -regular languages such that \exists ultimately periodic naming of the entries are a strict subset, closed under \cap , \cup and \neg

Example

- $\{O, 11\}^{\omega}$ is ω -regular,
- but $\exists i < j$ such that *i* equivalent to *j*,
- because $0^{j}110^{\omega} \in R$, but not $0^{i}10^{j-i}10^{\omega}$

Graphs and Infinity

Classic Representations for Infinite Sets of Symbols

Incremental Maximal Sharing

Relations

- Classic Representations
- Entries in the Relations
- Simple Infinite Behaviors
- More Infinite Behaviors
- New Classes of Relations

Regularity

Definition

Let *R* a named relation. *R* is prefix-regular iff its entry names are ultimately periodic and the \sharp of R(u) modulo \simeq_n is finite.

- $R \simeq_n S$ iff $R \simeq S$ and name_R \equiv name_S
- does not mean the underlying language is ω -regulier!
 - Let ${\mathcal L}$ non regular
 - \Rightarrow T = {0, 1}*.L not regular
 - But, $\forall u, T \simeq T(u)$

Open and Closed Named Relations

• Representation of prefix-regular named relations by a regular tree

Simple Infinite Behaviors

Relations

- Does not describe the ∞ behavior
- Give a meaning to loops

Definition

R is open named relation iff *R* is prefix-regular and $\forall \alpha \in R, \exists u, \beta$ such that $\alpha = u.\beta$ and $R(u) \simeq \mathbb{B}^{\omega}$

Definition

R is closed named relation iff *R* is prefix-regular and $\forall \alpha \notin R, \exists u, \beta$ such that $\alpha = u.\beta$ and $R(u) \simeq \emptyset$

59/82

Open and Closed ω -regular Relations

 Büchi automata not easy to share because of possible redundancy of final states.

Relations

Simple Infinite Behaviors

- Solution: just keep Büchi automata such that F = Q.
 - Contains only closed languages (for natural topology)
 - Not very interesting for temporal properties...
- Solution 2: only 1 final state, which is a simple loop
 - These are the complement of the previous automata
 - So contains only closed languages (for natural topology)
 - Can express "must not stay infinitely"
- Solution 3: all finite states are simple loops
 - Defines quasi-open languages:

 $\forall \alpha \in L, \exists u \text{ such that } \alpha = u.\beta \text{ and if } A \text{ is the set of letters in } \beta, u.A^{\omega} \subset L.$

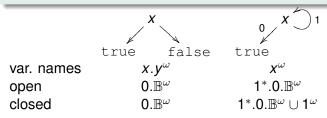
- Can express termination
- Cannot express fairness

Relations Simple Infinite Behaviors

Examples of Closed and Open Relations

Property

A finite relation is closed and open



- Regular trees with sharing
- New source of non-uniqueness: 0 (x) 1
- But easy to check when sharing
- ⇒ Efficient representation
 - Unique representation if elimination of redundant nodes
 - But up to renaming!

Properties of Open Relations and Closed Relations

Property

 $\forall R, S \text{ open}, R \cap S \text{ and } R \cup S$ are open

Property

 $\forall R, S \text{ closed}, R \cap S \text{ and } R \cup S$ are closed

Property

 $\forall (R_i)_{i \in \mathbb{N}}$ open, $\bigcup_{i \in \mathbb{N}} R_i$ is open

Property

 $\forall (R_i)_{i\in\mathbb{N}} \text{ closed}, \bigcap_{i\in\mathbb{N}} R_i \text{ is closed}$

Approximation

 $\forall R$ prefix-regular relation, \exists greatest open contained in R and a smallest closed containing R

Graphs and Infinity

Classic Representations for Infinite Sets of Symbols

Incremental Maximal Sharing

Relations

- Classic Representations
- Entries in the Relations
- Simple Infinite Behaviors
- More Infinite Behaviors
- New Classes of Relations

 $|\mu| > 0$

Iteration

Idea

Use trees to represent the ∞ behavior

Let R a named relation.

$$\Omega(R) \stackrel{\text{\tiny def}}{=} \{u_0.u_1 \ldots | u_i \text{ minimal such } \}$$

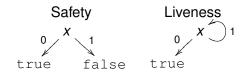
•
$$R(u_i) = \mathbb{B}^{\omega}$$

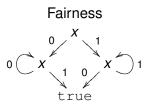
• $\operatorname{name}_R(|u_i|) = \operatorname{name}_R(0)$

Definition

R is iterative iff its names are perdiodic and $\exists S$ open such that $R = \Omega(S)$

Examples





 \emptyset and \mathbb{B}^ω are open and iterative

Theorem

iterative \Rightarrow *prefix-regular*

Proof.

 $R = \Omega(S)$, and *S* is open, so prefix-regular. Take *u* such that $\exists v$, |v| < |u| and $S(u) \simeq_n S(v)$. If $S(u) \neq \mathbb{B}^{\omega}$, $R(u) \simeq R(v)$. If $S(u) = \mathbb{B}^{\omega}$, $u = u_0.u_1$ with $R(u_0) = R$ so $R(u) = R(u_1)$

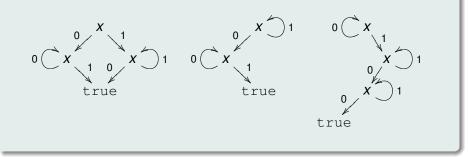
66 / 82

Relations

More Infinite Behaviors

Representation of Iterative Relations

Uniqueness Problem



Theorem

Let R iterative. $S = \{ u.\alpha \mid u^{\omega} \in R \text{ and } R(u) = u \}$ is the greatest open relation such that $R = \Omega(S)$.

Lemma

To simplify: only one entry name and base domain E

Lemma

Let u such that $S(u) = E^{\omega}$, |u| > 0 and $\forall v < u$, $S(v) \neq E^{\omega}$. Then $u^{\omega} \in R$ and $R(u) \simeq R$

- Let $\alpha \in E^{\omega}$.
 - Lemma hypothesis: $u.\alpha \in S$
 - Definition of S: $\exists v \prec \alpha$ such that $(u.v)^{\omega} \in R$ and $R(u.v) \simeq R$.
 - Special case $\alpha = b^{\omega}$: $\exists k$ such that $(u.b^k)^{\omega} \in R$ and $R(u.b^k) \simeq R$
- Let *b* a letter of *u*. $(u.b^k)^\omega \in R \Rightarrow u^\omega \in R$
- Let $\beta \in R$, $\exists b$ which appears ∞ in β . $u.b^k.\beta \in R \Rightarrow u.\beta \in R$
- Let $\beta \in R(u)$ then $b^k \cdot \beta \in R(u)$ so $\beta \in R$

Proof of the Greatest Open Theorem (1/2)

Relations

More Infinite Behaviors

- *S* is open because $\forall \alpha \in S, \exists u \prec \alpha, \forall \beta, u.\beta \in R$
- *R* iterative $\Rightarrow \exists S'$ open such that $R = \Omega(S')$
 - Let $\alpha \in S'$, $\exists u \prec \alpha \ S'(u) = E^{\omega}$
 - Let u_0 the smallest such u, then $u_0^{\omega} \in R$ and $R(u_0) \simeq R$
 - By definition of $S, \alpha \in S$
 - \Rightarrow $S' \subset S$
- $R \subset \Omega(S)$
 - Let $\alpha \in \boldsymbol{R}$ such that $\alpha \notin \Omega(\boldsymbol{S})$
 - If ∃ smallest *u* such that α = *u*.β and *S*(*u*) = *E*^ω, α ∉ Ω(*S*)
 ⇒ β ∉ Ω(*S*). But lemma says *R*(*u*) = *R*, so we start again with β.
 - We arrive to $\not\exists u \prec \alpha$ such that $S(u) = E^{\omega}$
 - But $\alpha \in \mathbf{R} \Rightarrow \exists u \prec \alpha, S'(u) = \mathbf{E}^{\omega}$, so $S(u) = \mathbf{E}^{\omega}$.

Relations

More Infinite Behaviors

Proof of the Greatest Open Theorem (2/2)

•
$$\Omega(S) \subset R$$

• Let $\alpha = u_0.u_1....u_n... \in \Omega(S)$
• $\forall i, R(u_i) = R$ and $u_i^{\omega} \in R$
• $\sigma(\alpha) = v.\beta$ with β just letters ∞ often
• $\beta \in \Omega(S)$ and $\alpha \in R \Leftrightarrow \beta \in R$ (lemma)
• $\tau(\beta) = (v_0.v_1...v_m)^{\omega}$
• $R(v_i) = R$ and $v_m^{\omega} \in R$ so $\gamma = v_0.v_1...v_{m-1}.v_m^{\omega} \in R$
• $R = \Omega(S')$ so $\gamma = u'_0.u'_1...u'_n...$
• $\exists j \ u'_0...u'_j = v_0.v_1...v_{m-1}.v_m^{m}.w$ with $w \prec v_m$
• So $(v_0.v_1...v_{m-1}.v_m^{m}.w)^{\omega} \in R$, so $\beta \in R$

70/82

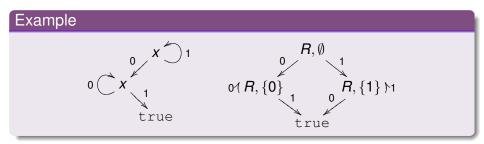
Relations

More Infinite Behaviors

Representation of Iterative Relations

• The theorem is constructive

If we have a representation by an open relation, we detect the *u* such that *u^ω* ∈ *R* and *R*(*u*) = *R*



Graphs and Infinity

Classic Representations for Infinite Sets of Symbols

Incremental Maximal Sharing

Relations

- Classic Representations
- Entries in the Relations
- Simple Infinite Behaviors
- More Infinite Behaviors
- New Classes of Relations

Regular Relations

Definition

R named is regular iff prefix-regular and $\exists \mathcal{I}(R), \forall S \in \mathcal{I}(R), S \neq \emptyset$ and *S* iterative and $\forall \alpha \in R, \exists u, \exists S \in \mathcal{I}(R), \alpha \in u.S$ and $S \subset R(u)$.

Example

 $\{0^{\omega},1^{\omega}\},$ or the set of vectors ending with ${\it O}^{\omega}$ or 1^{ω}

Theorem

A named relation R is regular iff entries ultimately periodic and underlying language is ω -regular

Idea: finite union of $U.V^{\omega}$ with U and V regular

Proof

• Let R reguliar and $\mathcal{I}(R) = (R_i)_{i \in C}$

- Each R_i defines a regular language
 - $(Q, E, \{R_i\}, \{R_i\})$
 - $Q = \{ R_i(u) \mid u \text{ fini} \}$
 - $E(R_i(u), b) = R_i$ if $R_i(u.b) = \mathbb{B}^{\omega}$ and $R_i(u.b)$ otherwise
- So finite \cup of $u.R_i \omega$ -regular languages
- Let (Q, E, I, F) a Büchi such that $\exists R$ ultimately periodic
 - R_q = language of $(Q, E, \{q\}, \{q\})$
 - $R_q = \Omega(S_q)$ with S_q the set of α such that $\exists u \prec \alpha, u$ in the finite language of $(Q, E, \{q\}, \{q\})$.

Regular Relations Usage

Corollary

R and *G* regular, then $R \cap G$, $R \cup G$ and $\neg R$ too.

But representation too inefficient:

- Non unicity of $\mathcal{I}(R)$ and of its representation
- Non deterministic decision process

ω -deterministic Relations

• Limit the # of infinite behaviors at a given point.

•
$$R_{[u]}^{\Omega} \stackrel{\text{\tiny def}}{=} \Omega\left(\{v.\alpha \mid u.v^{\omega} \in R \text{ and } R(u.v) = R(u)\}\right)$$

Definition

R is ω -deterministic iff prefix-regular and $\forall u, R_{[u]}^{\Omega} \subset R(u)$

Theorem

If $R \ \omega$ -deterministic then R regular and $\forall u, \exists S \in \mathcal{I}(R)$, such that $S \subset R(u)$, and $\forall S' \in \mathcal{I}(R)$ behavior at $u, S' \subset S$.

\Rightarrow unique representation

Representation of ω -deterministic Relations

Introduction of an iter node at u to signal $R^{\Omega}_{[u]}$ non empty

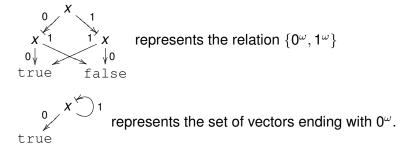
Pseudo-decision process

- Deterministically going through the tree and the vector to recognize
- Start with an empty stack
- If variable $\begin{pmatrix} x \\ \not \in \mathbb{N} \\ t_0 & t_1 \end{pmatrix}$ take t_0 or t_1 according to vector value
- If false the vector is not in the relation
- If $\overset{\text{iter}}{\overset{\text{iter}}{\overset{\text{r}}}}$, empty the stack
- If true, continue at the latest iter and stack true
- The vector is in the relation if the stack is infinite

77 / 82

Relations New Classes of Relations

Examples of ω -deterministic Decision Trees



open $\Rightarrow \omega$ -deterministic

Relations New Classes of Relations

Properties of ω -deterministic Relations

- closed by intersection
- $\forall R$ prefix-regular, there is a smallest ω -deterministic containing R
- ⇒ possibility to approximate all operations yelding a prefix-regular relation
 - Canonical and incremental representation
 - If we apply the same representation to finite relation, we get exactly BDDs

Algorithms on ω -deterministic Relations

General idea for binary operations

- Go through the two trees in parallel (as for BDD)
- Go back to the previous iterif you come to a true
- Store the couples of encountered sub-trees
- If you cross again (*u*, *v*), according to the relation, see if you have been through a true on a side or both

To finish, must compute the biggest open (smaller v such that $v^{\omega} \in R$ and R(v) = v

For inclusion

- Go through the trees, according to pseudo-decision process
- So you cross again (*u*, *v*), if *u* have been through true, *v* must have too (otherwise, not included)

Intersection

Algorithm

- Go through the trees, keeping which one went through true
- Creation of a node according to that information
- Then sharing

Example

Union

Example

