
The Trace Partitioning Abstract Domain

XAVIER RIVAL and LAURENT MAUBORGNE

École Normale Supérieure

In order to achieve better precision of abstract interpretation based static analysis, we introduce
a new generic abstract domain, the trace partitioning abstract domain. We develop a theoretical
framework allowing a wide range of instantiations of the domain, proving that all these instan-
tiations give correct results. From this theoretical framework, we go into implementation details
of a particular instance developed in the Astrée static analyzer. We show how the domain is
automatically configured in Astrée and the gain and cost in terms of performance and precision.

Categories and Subject Descriptors: F.3.1 [Logics and Meaning of Programs]: Specifying
and Verifying and Reasoning about Programs; F.3.2 [Logics and Meaning of Programs]:

Semantics of Programming Languages—Program analysis

General Terms: Verification, Experimentation, Theory

1. INTRODUCTION

Usually, concrete program executions can be described with traces; yet, most static
analyses abstract them and focus on proving properties of the set of reachable
states. For instance, checking the absence of runtime errors in C programs can be
done by computing an over-approximation of the reachable states of the program
and then checking that none of these states is erroneous. When computing a set of
reachable states, any information about the execution order and the concrete flow
paths is lost.

However, this reachable states abstraction might lead to too harsh an approxi-
mation of the program behavior, resulting in a failure of the analyzer to prove the
desired property. This is easily illustrated with the following example.

1.1 A Simple Motivating Example

Let us consider the program:

int x, sgn;
l0 if(x < 0){
l1 sgn = −1;
l2 }else{
l3 sgn = 1;
l4 }
l5 y = x/sgn;
l6 . . .

Clearly sgn is either equal to 1 or −1 at point l4; in particular, sgn cannot be
equal to 0. As a consequence, dividing by sgn at point l5 is safe. However, a
simple interval analysis [Cousot and Cousot 1977] would not discover it, since the
lub (least upper bound) of the intervals [−1,−1] and [1, 1] is the interval [−1, 1] and
0 ∈ [−1, 1]. Indeed, it is well-known that the lub operator of domains expressing
convex constraints may induce a loss of precision, since elements in the convex hull

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–44.

2 · X. Rival and L. Mauborgne

may be added to the result, which are not in either arguments. A simple fix would
be to use a more expressive abstract domain.

A first possible refinement relies on disjunctive completion [Cousot and Cousot
1979], i.e., the possible values for a variable are abstracted into the union of a set of
intervals. An abstract value would be a finite union of intervals; hence, the analysis
would report x to be in [−1,−1] ∪ [1, 1] at the end of the above program. An
important drawback of disjunctive completion is its cost: when applied to a finite
domain of cardinal n, it produces a domain of 2n elements, with chains of length
n + 1. Moreover, the design of a widening for the domains obtained by disjunctive
completion is a non-trivial issue; in particular, a good widening operator should
decide which elements of a partition to merge or to widen.

A second solution to these issues is to refine the abstract domain, so as to express
a relation between x and sgn. For instance, we would get the following constraint,
at point l5:

{

x < 0 ⇒ sgn = −1
x ≥ 0 ⇒ sgn = 1

Such an abstraction would be very costly if applied exhaustively, to any variable
(especially if the program to analyze contains thousands of variables), therefore a
strategy should be used in order to determine which relations may be useful to
improve the precision of the result. However, the choice of the predicate which
should guide the partitioning (i.e., x < 0 in the above example) may not always be
obvious.

For instance, common relational domains like octagons [Miné 2001] or polyhedra
[Cousot and Halbwachs 1978] would not help here, since they describe convex sets
of values, so the abstract union operator is an imprecise over-approximation of the
concrete union. A reduced product of the domain of intervals with a congruence
domain [Granger 1989] succeeds in proving the property, since −1 and 1 are both
in {1 + 2× k | k ∈

�
}.

However, a more intuitive way to solve the difficulty would be to relate the value
of sgn to the way it is computed. Indeed, if the true branch of the conditional
was executed, then sgn = −1; otherwise, sgn = 1. This amounts to keeping some
disjunctions based on control criteria. Each element of the disjunction is related to
some property about the history of concrete computations, such as “which branch
of the conditional was taken”. This approach was first suggested by [Handjieva and
Tzolovski 1998]; yet, it was presented in a rather limited framework and no imple-
mentation result was provided. The same idea was already present in the context
of data-flow analysis in [Holley and Rosen 1980] where the history of computation
is traced using an automaton chosen before the analysis.

Choosing the relevant partitioning (which explicit disjunctions to keep during
the static analysis) is a rather difficult and crucial point. In practice, it can be
necessary to make this choice at analysis time. Another possibility presented in
[Ammons and Larus 1998] is to use profiling to determine the partitions, but this
approach is relevant in optimization problems only.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 3

1.2 The Astrée Analyzer

The previous example —and many others— where encountered during the devel-
opment of the Astrée analyzer [Blanchet et al. 2002; 2003]. The Astrée analyzer
is an abstract interpretation-based static program analyzer aiming at proving auto-
matically the absence of run time errors in programs written in the C programming
language. The errors detected by Astrée include out-of-bound array access, ille-
gal arithmetic operations, overflows and simple user-defined assertions [Mauborgne
2004]. Astrée has been applied with success to large safety critical real-time soft-
ware, producing a correctness proof for complex software without any false alarm
in a few hours of computation [Cousot et al. 2005]. The challenge of analyzing such
large codes without any false alarms is very demanding, especially in a context of
large number of global variables and intensive floating point computation. In order
to achieve that result, we needed techniques which are

— well founded theoretically to provide a good confidence in the correctness
proofs;

— efficient to scale up to programs with thousands of global variables and hun-
dred of thousands of lines of code;

— flexible enough to provide a solution to many precision issues, in order to be
reactive to end-users of the analyzer.

The trace partitioning abstract domain presented in this paper seems to fulfill
those requirements. We provide a theoretical framework for trace partitioning, that
can be instantiated in a broad series of cases. More partitioning configurations are
supported than in [Handjieva and Tzolovski 1998] and the framework also supports
dynamic partitioning (choice of the partitions during the abstract computation).

Also, we provide detailed practical information about the use of the trace par-
titioning domain. These details are supported by the experience of the design,
implementation and practical use of the Astrée analyzer. We describe the im-
plementation of the domain and we review some strategies for partition creation
during the analysis.

Finally, we assess the efficiency of the technique by presenting experimental re-
sults with Astrée and more examples where Astrée uses trace partitioning to
solve precision issues.

1.3 Outline of the Paper

Section 2 introduces the most basic notions and notations used throughout the
paper.

The next two sections are devoted to the theoretical trace partitioning framework.
The control-based partitioning of transition system is formalized in Section 3; it is
the basis for the definition of trace partitioning abstract domains in Section 4.

Then, we describe the structure of the trace partitioning domain used in the
Astrée analyzer in Section 5, and the implementation of this domain, together
with partitioning strategies and detailed experimental evaluations in Section 6.

Last, Section 7 concludes and reviews related works.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · X. Rival and L. Mauborgne

2. ABSTRACT INTERPRETATION-BASED STATIC ANALYSIS

This section introduces basic notions and notations used in the paper. It also
collects the most important technical facts about the Astrée analyzer, which are
required in order to understand the future sections about trace partitioning in
Astrée.

2.1 Notations

In this paper, all example programs are written in the C language (which is the lan-
guage analyzed by Astrée). However, we provide here a formal model of programs,
as transition systems, so that all techniques and algorithms can be generalized to
other languages as well.

2.1.1 Syntax. We describe an imperative (C) program with a transition system.
More precisely, we let � denote a set of values; � denote a finite set of memory

locations (aka variables). A memory state (or store) describes the values stored in
the memory at a precise time in the execution of the program; it is a mapping of
program variables into values. A store is a function σ ∈ � , where � = � → � .

A control state (or program point) roughly corresponds to the program counter
at a precise time in the execution of the program; we usually write � for the set of
control states.

A state s is a pair made of a control state l ∈ � and a memory state σ ∈ � . We
write � for the set of states, so � = � × � .

A program is defined by a set � of control states, a set of initial states � i, and a
transition relation (→) ⊆ � × � , which describes how the execution of the program
may step from one state to the next one.

In practice, � i = {l i} × � , where l i ∈ � is the entry control state, i.e. the first
point in the program.

Real world programs may crash, e.g., due to a memory or arithmetic error. There-
fore, we should also add a special error state; though, we do not need to deal
formally with errors in this paper, so we omit it.

Last, we will also consider interprocedural programs. Then, a control state is
defined by a pair (κ, l), where κ is a calling stack (stack of function names) and l
a syntactic control point. We write � for the set of stacks, and keep the notation
� for the syntactic control points, so that a state in an interprocedural program is
a tuple in (� × �)× � .

2.1.2 Semantics. We assume here that a program P is defined by the data of
a tuple (� , � ,→, � i). The most common semantics for describing the behavior
of transition systems is the operational semantics, which we sketch here. It was
introduced, e.g. in [Plotkin 1981].

An execution of a program is represented with a sequence of states, called a trace;
the semantics of the program collects all such executions:

Definition 2.1.1. (Trace, Semantics) A trace σ is a finite sequence 〈s0, . . . , sn〉
where s0, . . . , sn ∈ � . We write � ? for the set of such traces, and length(σ) for the
length of σ.

A trace of P is a trace such that any two successive states are bound by the
transition relation: ∀i, si → si+1. The semantics JP K of P is the set of traces of P ,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 5

i.e. JP K = {〈s0, . . . , sn〉 ∈ � ? | s0 ∈ � i ∧ ∀i, si → si+1}.

Note that we restrict to finite traces.
We can remark that the semantics JP K of P writes down as a least fixpoint:

JP K = lfp
⊆

S iF−→
P

where F−→
P

is the semantic function, defined by:

F−→
P

: � ? → � ?

E 7→ E ∪ {〈s0, . . . , sn, sn+1〉 | 〈s0, . . . , sn〉 ∈ E ∧ sn → sn+1}

2.2 Abstraction

The semantics introduced in Section 2.1.2 is not decidable; therefore, proving safety
properties about programs usually requires computing an approximation of the
reachable states. We describe such an abstraction here.

2.2.1 Set of Traces of Interest. In this section, we consider a program P de-
fined by the data of a tuple (� , � , � i,→). We focus on the approximation of the
executions of P , i.e. on the states which appear in a trace of P . As a consequence,
we wish to approximate the set of traces T = {〈s0, . . . , sn〉 | ∃ρ0, s0 = (l i, ρ0)}. We
recall that that T = lfp � iF .

We proceed to the abstraction of traces into reachable states: we wish to abstract
the traces into an approximation for the set of states S which appear in at least
one tract in T . In the following, we approximate all the states distinct from Ω:
deciding whether Ω is reachable from the set of all reachable, non-error states is
usually straightforward (it amounts to checking whether there exists a state s such
that s → Ω in the set S).

2.2.2 Abstraction of Traces. We assume that an abstract domain (D]� ,v) for
representing sets of stores is defined, together with a concretization function γ

�
:

D]� → P(�).
The abstract values in such a domain usually express constraints among the

variables of the program. The interval domain [Cousot and Cousot 1977] allows
to express ranges the variables should live in. Relational abstractions allow to
express constraints involving several variables; we can cite the polyhedra [Cousot
and Halbwachs 1978], octagons [Miné 2001] as examples of relational abstractions.

We let the abstraction for approximating the concrete semantics be defined by:

— the abstract domain D] = � → D]� , with the pointwise ordering induced by
v (which we also write v);

— the concretization function γ : I ∈ D] 7→ {〈(l0, ρ0), . . . , (ln, ρn)〉 | ∀i, ρi ∈
γ

�
(I (li)).

Intuitively, this very simple abstraction collects the memory states corresponding
to each control state and applies the store abstraction to the resulting sets of stores.

2.2.3 Abstract Operations. Moreover, we assume that the domain D]� provides
some sound abstract operations (in the following, we write � for the set of expres-
sions,

�
for the set of l-values, and � for the set of booleans):

— a least element ⊥, such that γ
�

(⊥) = ∅;

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · X. Rival and L. Mauborgne

— a greatest element >, such that γ
�

(>) = � ;

— an abstract join operator t, approximating the concrete operator (∀x, y ∈

P(�), x], y] ∈ D]� , x ⊆ γ
�

(x]) ∧ y ⊆ γ
�

(y]) =⇒ x ∪ y ⊆ γ
�

(x] t y])).

— a sound counterpart guard : � × � × D]� → D]� for the concrete testing of
conditions:

∀ρ ∈ � , e ∈ � , b ∈ � , d ∈ D]� ,
ρ ∈ γ

�
(d)

∧ JeK(ρ) = b

}

=⇒ ρ ∈ γ
�

(guard (e, b, d))

Since the operator guard : (e, b, d) 7→ d trivially satisfies the above assumption, we
assume that the guard operator is reductive:

∀ρ ∈ � , e ∈ � , b ∈ � , γ
�

(guard (e, b, d)) ⊆ γ
�

(d)

— a sound counterpart assign :
�
× � ×D]� → D]� for the concrete assignment:

∀ρ ∈ � , ∀l ∈
�
, e ∈ � , d ∈ D]� ,

ρ ∈ γ
�

(d)
∧ JlK(ρ) = x
∧ JeK(ρ) = v

=⇒ ρ[x← v] ∈ γ
�

(assign(l, e, d))

— a sound counterpart forget :
�
×D]� → D]� for the “variable-forget” operation,

which writes a random value into a variable:

∀ρ ∈ � , ∀l ∈
�
, ∀v ∈ � , ∀d ∈ D]� ,

ρ ∈ γ
�

(d)
∧ JlK(ρ) = x

}

=⇒ ρ[x← v] ∈ γ
�

(forget(l, d))

The purpose of these abstract operations is to ensure that we can use them in the
design of a static analyzer, which over-approximates each computation step. As
a result, the soundness of such an analyzer follows from a simple fixpoint transfer
theorem, like:

Theorem 2.2.1. (Fixpoint transfer) We let x ∈ P(�), d ∈ D]� . Let F :

P(�)→ P(�) and F] : D]� → D]� . Then, if x ⊆ γ
�

(d), and F ◦ γ
�
⊆ γ

�
◦ F],

then lfpxF ⊆ γ
�

(lfpdF
]).

2.2.4 Widening Iteration and Convergence. The fixpoint-transfer scheme pre-
sented above leaves one major issue to be addressed: the sequences of abstract
iterates might be infinite, in case the abstract domain has infinite increasing chains
(this is the case for most domains, including intervals, polyhedra, octagons...).
Therefore, we replace the abstract join operator with a widening operator [Cousot
and Cousot 1977], which is an approximate join [Cousot and Cousot 1992b], with
additional termination properties:

Definition 2.2.2. (Widening operator) A widening is a binary operator ∇ on
D], which satisfies the two following properties:

(1) ∀x], y] ∈ D], x] v x]∇y] ∧ y] v x]∇y]

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 7

(2) For any sequence (xn)n∈ � , the sequence (yn)n∈ � defined below is not strictly
increasing:

{

y0 = x0

∀n ∈
�

, yn+1 = yn∇xn+1

The following theorem [Cousot and Cousot 1977] shows how widening operators
makes it possible to compute in a finite number of iterations a sound over-approxima-
tion for the concrete properties:

Theorem 2.2.3. (Abstract iteration with widening) We assume a con-
cretization γ : D] → D is defined and that F] is such that F ◦ γ ⊆ γ ◦ F]. Let
x ∈ D, x] ∈ D], such that x ⊆ γ(x]). We define the sequence (xn)n∈ � as follows:

{

x0 = x]

∀n ∈
�

, xn+1 = xn∇F](xn)

Then, the sequence (xn)n∈ � is ultimately stationary and its limit lim(xn)n∈ � is a
sound approximation of lfpxF :

lfpxF ⊆ γ(lim(xn)n∈ �)

Proof. See [Cousot and Cousot 1977].

2.3 Static Analysis

Last, we briefly review the design of a denotational style abstract interpreter for
a fragment of C. In particular, the iterator of the Astrée analyzer follows this
scheme. In this subsection, we assume that a domain D]� is given. Indeed, the
iterator of the Astrée analyzer accepts an abstract domain for representing sets
of stores as a parameter.

2.3.1 The Core of the Interpreter. Let s be a statement; we write l ` (resp. l a)
for the control point before (resp. after) s. We let the denotational semantics
of s be the function JsKδ = αtF [l `,l a](JsK). The abstract semantics of s is the

function JsK] : D]� → D]� , which inputs an abstract pre-condition and returns
a strongest post-condition. It should be sound in the sense that the output of
the abstract semantics should over-approximate the set of output states of the
underlying, concrete denotational semantics.

We propose on Figure 1 the definition of a very simple denotational semantics-
based interpreter; we provide for each common language construction (assignment,
conditional, loop, reading of an input, assertion) a simple abstract transfer function.
The abstract semantics displayed in Figure 1 is sound:

Theorem 2.3.1. (Soundness of the analysis) The abstract semantics soundly
approximates the denotational semantics:

∀ρ, ρ′ ∈ � , d ∈ D]� , ρ ∈ γ
�

(d) ∧ ρ′ ∈ JsKδ(ρ) =⇒ ρ′ ∈ γ
�

(JsK](d))

Proof. By induction on the structure of the code.
The case of the loop is based on the soundness of the lfp] operator; in practice, it

is derived from a widening operator∇
�

over D]� , so the soundness and termination

of lfp] follow from Theorem 2.2.3.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · X. Rival and L. Mauborgne

statement s abstract semantics

x := e; JsK] : d 7→ assign(x, e, d)

if(e){s0}else{s1} JsK] : d 7→ Js0K
](guard (e, true, d)) t Js1K

](guard (e, false, d))

while(e){s} JsK] : d 7→ guard (e, false, lfp]F]) where

F] : D]� → D]�
d0 7→ d0 t JsK](guard (e, true, d))

and lfp] computes an abstract post-fixpoint

input(x ∈ V); JsK] : d 7→ guard (x ∈ V], forget(x, d))

assert(e); JsK] : d 7→ guard (e, true, d)

Fig. 1: A simple abstract interpreter

As a corollary, the abstract semantics is sound with respect to the standard, oper-
ational semantics. Indeed, if l ` : s; l a is a program, then:

∀〈(l `, ρ`), . . . , (l a, ρa)〉 ∈ JsK, ∀d ∈ D]� , ρ` ∈ γ
�

(d) =⇒ ρa ∈ γ
�

(JsK](d))

2.3.2 Output of the Analysis. We showed how to compute a sound invariant
after a statement from a pre-condition; however, the Astrée analyzer not only
outputs an invariant in the end of the analyzed program, but also:

— Alarm reports, if the invariants do not ensure that all critical operations
(including arithmetic operations, memory operations, user assertions) are safe;

— Local invariants, if the invariant export option is enabled: then, the analyzer
saves local invariants for all control states in the program, so that the user can scan
the results of the analysis (of course, this option requires a lot of memory, when a
large program is being analyzed, which is the reason why we insisted on the choice
of a strategy, where the export of all local invariants is not mandatory).

In particular, the analyzer is equivalent to an analyzer computing an invariant in
D] = � → D]� , even though it explicitly outputs only an invariant in D]� .

2.3.3 Running the Analyzer. The previous paragraphs summarize the principle
of the iterator of the Astrée analyzer; however, during the analysis of a program,
Astrée performs many other operations, including:

— several pre-processing steps, such as constant propagation in the code to an-
alyze;

— the choice of analysis parameters, which affect the abstract domain and the
iteration strategy, such as the choice of packs of variables relations should be com-
puted for; similar choices will be made in the case of the trace partitioning domain
(the strategy defining which partitions should be created will be exposed in Section
6.2)

The implementation of the abstract domain was guided by the kind of predicates
required for tight invariants to be inferred. By default, the analyzer uses a reduced

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 9

product of a series of abstract domains including intervals [Cousot and Cousot 1977],
octagons [Miné 2001], boolean relations (i.e., a generalization of BDDs [Bryant
1986]), arithmetic-geometric progressions [Feret 2005], and a domain dedicated to
the analysis of digital filters [Feret 2004].

3. CONTROL-BASED PARTITIONING OF TRANSITION SYSTEMS

In this section, we formalize the notion of partition of a transition system. Such
partitions should describe the same set of traces as the the semantics of the initial
program (or an approximation of it) and should allow to distinguish traces depend-
ing on the history of control flow. As a result, we can address the imprecision
mentioned in the introduction by analyzing a partitioned system.

3.1 Partitioning Control States

First of all, we underline that partitioning the reachable states with the control
states is a rather common approach in static analysis. Later, we generalize drasti-
cally this technique.

3.1.1 Non-Procedural Case. Indeed, the analysis proposed in Section 2 relies on
this kind of partitioning. The abstraction of sets of traces can be seen as a two
steps abstraction:

(1) abstraction of traces into states, with partitioning:

(P(� ?),⊆) −−−−−→←−−−−−
αP(�)

γP(�)

(� → P(�),⊆)

αP(�) : P(� ?) → (� → P(�))
E 7→ λ(l ∈ �) · {ρ | 〈. . . , (l , ρ), . . .〉 ∈ E}

Whenever the concretization function is defined straightforwardly from the abstrac-
tion function, we provide the abstraction function only: in a complete lattice, any
monotone abstraction function defines a unique concretization [Cousot and Cousot
1977].

(2) abstraction of sets of states, defined by the concretization function γ
�

:

D]� → P(�).

The first step includes a partitioning in the sense of [Cousot and Cousot 1992a,
§4.2.3.2]. Indeed, it amounts to partitioning the set of sets of states using the
partition {{(l , ρ) | ρ ∈ � } | l ∈ � }; the resulting domain is in bijection with

� → P(�).

3.1.2 Procedural Case. In case the language features procedures, similar ab-
stractions are usually implemented.

When designing an analysis for such a procedural language, one faces the problem
of deciding how to replace the abstraction mentioned in step 1 above. Among the
possible choices, we can cite [Sharir and Pnuelli 1981]:

— the full abstraction of the stack: we may abstract away the stack and
keep only the control states (analysis insensitive to the calling context):

αP(�) : P(� ?) → (� → P(�))
E 7→ λ(l ∈ �) · {ρ | ∃κ ∈ � , ∃〈. . . , (κ, l , ρ), . . .〉 ∈ E}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · X. Rival and L. Mauborgne

— the partitioning with the stack: we may keep the stack, i.e. abstract
traces into functions mapping pairs made of a stack and a control state into a set
of memory states (analysis completely sensitive to the calling context):

αP(�) : P(� ?) → ((� × �)→ P(�))
E 7→ λ((κ, l) ∈ (� × �)) · {ρ | 〈. . . , (l , ρ), . . .〉 ∈ E}

This approach amounts to inlining functions; it works only in the case of non-
recursive function calls (the stack may grow infinite in the case of recursive calls).
At the time this thesis is written, this is the technique implemented in Astrée.

Many intermediate abstractions exist, which allow to retain a good level of precision
in some cases and abstract long sequences of calls (the main such technique is k-
limiting).

Another approach to the analysis of procedural programs is to modelize the effect
of each function (intra-procedural phase) and then, to perform a global iteration
[Reps et al. 1995]. This technique relies on the resolution of the reachability along
“interprocedural realizable paths”, which is also based on some abstraction of the
stack (this method was also used in slicing [Horwitz et al. 1988]).

3.2 Partitions and Coverings

We now set up the notions of partitioned set and partitioned system. Our goal is to
design sets of finer partitions at the control structure level, which will be used in
the following sections as a basis for building trace partitioning domains.

3.2.1 Partitioning Function. A covering of a set F is a family of subsets of F ,
such that any element of F belongs to some element of the family. A partition is a
covering such that any two distinct elements of the family are disjoint; in particular,
for any element x ∈ F , there exists a unique element A of the partition such x ∈ A.
In the following, we need to index the elements of coverings (resp. partitions);
hence, the following definition resorts to functions, defined on a set of indexes.

Definition 3.2.1. (Partitioned set) Let E, F be two sets, and δ : E → P(F).
Then:

— δ is a covering of F if and only if:

∀x ∈ E, δ(x) 6= ∅

and,

F =
⋃

x∈E

δ(x)

— δ is a partition of F if and only if it is a covering and:

∀x, y ∈ E, x 6= y =⇒ δ(x) ∩ δ(y) = ∅

We note that a covering (resp. partitioning) δ of F defines an abstraction of
(P(F),⊆):

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 11

Lemma 3.2.1. (Partitioning abstraction) Let αP(δ) and γP(δ) be defined
by:

αP(δ) : P(F) → (E → P(F))
E 7→ λ(x ∈ E) · E ∩ δ(x)

γP(δ) : (E → P(F)) → P(F)
φ 7→

⋃

x∈E φ(x)

Then, if δ is a covering, we have a Galois-connection (P(F),⊆) −−−−−→←−−−−−
αP(δ)

γP(δ)

(E →

P(F),⊆), and αP(δ) is into (Galois injection).
Moreover, if δ is a partition, then αP(δ) is one-to-one (Galois bijection).

Proof. Straightforward application of the definition of coverings.

Definition 3.2.1 would allow to set up very general notions of trace partitioning. In
particular, the partitioning of traces using the control state of the traces (Section
3.1) of the last state fits in this framework (with E = �); the case of calling stacks
is similar (with either E ≡ � , or E = � × � , or other partitions). We may even
design some weaker partitions: for instance, we may decide to merge together the
state corresponding to several distinct control states (with E a partition of �).
However, we wish to derive the partitions from the history of executions; therefore
the following paragraph introduces the notion of partitioned system.

3.2.2 Partitioning Transitions. In the following, we assume that a program P
is given, and defined by (� , � i,→). We consider partitions finer than the partition
defined by E = � only. More precisely, we let

�
be a set of tokens, and T = P(

�
).

We define extended transition systems as transition systems over the sets of labels
extended with a set of tokens T ⊆

�
; it is basically defined by T and by extensions

of the set of initial states and of the transition relation. Such a system P0 is a
covering of P1 if and only if it simulates the transitions of P1; moreover, P0 is a
partition if and only if any transition in P1 is simulated by exactly one transition
in P0 (and the same for the initial states). System P0 is complete in case it does
not add any fictitious transition, when compared to P1. Intuitively, a complete
partition or covering P0 shall describe the same set of traces as P1, up-to some
information added in the control states. The main difference between a covering
and a partition is that the covering may not ensure the unicity of the counterpart
of the traces of the initial program.

The extra information embedded in the control structure of the extended system
will be the basis of the partitioning abstraction. The notions of covering, partition-
ing and complete systems are formalized in the following definition.

Definition 3.2.2. (Partitioned system) Let T ∈ T. We write � T for the set
of partitioned control states � × T , � T for the set of partitioned states � T × � ,
and � i

T ⊆ � T for a set of partitioned initial states, and →T for a transition relation
among partitioned states. An extended system is defined by the data of a tuple
(T, � i

T ,→T). Last, � ?
T denotes the set of traces made of states in � T .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · X. Rival and L. Mauborgne

(l0, t)

{{xx
xx

##
FF

FF

(l1, t)

##
FF

FF
(l2, t)

{{xx
xx

(l3, t)

��

(l4, t)
(a) System P0

(l0, t0)

zzvv
vv

$$
II

II

(l1, t1)

��

(l2, t2)

��

(l3, t1)

$$
II

II
(l3, t2)

zzvv
vv

(l4, t0)
(b) System P1

(l0, t0)

zzvv
vv

$$
II

II

(l1, t1)

��

(l2, t2)

��

(l3, t1)

��

(l3, t2)

��

(l4, t1) (l4, t2)
(c) System P2

Fig. 2: Partitioned systems

For all T, T ′ ∈ T and τ : T → T ′, we define the forget functions for control states,
for states and for traces as follows:

π �τ : � T → � T ′

(l , t) 7→ (l , τ(t))
π

�
τ : � T → � T ′

((l , t), ρ) 7→ (π �τ (l , t), ρ)

π
� ?

τ : � ?
T → � ?

T ′

〈s0, . . . , sn〉 7→ 〈π
�
τ (s0), . . . , π

�
τ (sn)〉

We consider the extended systems PT = (� T , � i
T ,→T) and PT ′ = (� T ′ , � i

T ′ ,→T ′),
and the function τ : T → T ′.

(1) PT is a τ -covering of PT ′ if and only if:
— � i

T ′ ⊆ π
�
τ (� i

T)

— ∀s0 ∈ � T , s ′1 ∈ � T ′ , π
�
τ (s0)→T ′ s ′1 =⇒ ∃s1 ∈ � T ,

{

s ′1 = π
�
τ (s1)

s0 →T s1
(2) PT is a τ -partition of PT ′ if and only if:

— ∀s ′ ∈ � i
T ′ , ∃!s ∈ � i

T , s ′ = π
�
τ (s)

— ∀s0 ∈ � T , s ′1 ∈ � T ′ , π
�
τ (s0)→T ′ s ′1 =⇒ ∃!s1 ∈ � T ,

{

s ′1 = π
�
τ (s1)

s0 →T s1
(3) PT is τ -complete with respect to PT ′ if and only if:

— ∀s ∈ � i
T , π

�
τ (s) ∈ � i

T ′

— ∀s0, s1 ∈ � T , s0 →T s1 =⇒ π
�
τ (s0)→T ′ π

�
τ (s1)

The notions of “complete covering” or “complete partition” are derived from the
above definition as well.

Example 3.2.3. (Partitioned systems) We make the assumption that � is
a singleton here, so that transitions relations are mere relations among control
states. Let us consider the two extended systems P0 and P1, displayed respectively
in Figure 2(a) and in Figure 2(b).

— the original system represents a program with a conditional statement fol-
lowed by one statement (each branch of the conditional contains exactly one state-
ment);

— P0 is isomorphic to the original system; it corresponds to T0 = {t}

— P1 is an extended system defined by T1 = {t0, t1, t2}.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 13

We consider the following forget function τ : λ(ti ∈ T1) · t .
Then, any execution of P0 corresponds to exactly one execution of P1: for in-

stance, 〈(l0, t), (l1, t), (l3, t), (l4, t)〉 corresponds to 〈(l0, t0), (l1, t1), (l2, t1), (l4, t0)〉. In
particular, any transition step in P0 is mimicked by a transition step in P1 as men-
tioned in Definition 3.2.2, 2. Therefore, P1 is a τ -partition of P0.

Similarly, we can check that any execution, including one-step transitions of P1

corresponds to some execution of P1. Hence, P1 is τ -complete with respect to P0.
These two properties make P1 a very useful extended system, in the analysis of

P0.
Intuitively, the extended system P1 corresponds to a partition of P0 obtained

by delaying the merge in the exit of the conditional statement after the statement
following the conditional, i.e. at point l4; this amounts to doing the following
rewriting:

l0 : if(e){
l1 : s1

}else{
l2 : s2

}
l3 : s3

l4 : . . .

−→

(l0, t0) : if(e){
(l1, t1) : s1;
(l3, t1) : s3

}else{
(l2, t2) : s2;
(l3, t2) : s3

}
(l4, t0) : . . .

In particular, applying this partitioning to the example presented in the introduc-
tion (Section 1.1) would solve the imprecision. Indeed, it would allow proving that
sgn cannot be equal to 0 at l5, so that the division by sgn is safe; moreover, it
allows proving that the absolute value of x computed in y is always positive.

The System P2 displayed in Figure 2(c) is also a complete partition of P0. It
amounts do performing a similar partitioning of the conditional structure without
merging the traces at point l4. Such a partitioning would be more costly if applied
to many if -statements in a large program.

In fact, we can also note that P2 is a complete partition of P1.

Remark 3.2.4. (Extending the notion of covering) We may extend the
definition of covering, by replacing the τ function with a relation (⇒τ) ⊆ T × T ′.
Then, the function π �τ becomes a relation (⇒ �τ) ⊆ � T × � T ′ .

Intuitively, t ⇒ �τ t ′ means that the token t is “simulated” by t ′ in PT ′ . Clearly,
this definition is weaker, since a token t may be simulated by several tokens in PT ′ .

The results in the following would extend to this weaker definition of covering
system.

Note that we do not require the set of partitions to be finite. This assumption is
not required in order to prove the partitioning correct.

3.2.3 Trivial Extension. We let tε ∈
�

and write Tε = {tε}. The trivial exten-
sion of P is the extended system Pε = (� ε, � i

ε,→ε), where:

— � ε = � × Tε;

— � i
ε = {((l , tε), ρ) | (l , ρ) ∈ � i};

— ((l0, tε), ρ)→ε ((l1, tε), ρ) ⇐⇒ (l0, ρ)→ (l1, ρ).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · X. Rival and L. Mauborgne

This extended system is isomorphic to P (the traces of both programs are equal up
to isomorphism); it is the “simplest” extension of P . We write π

� ?

ε for the trivial
mapping of traces of Pε into traces of P .

3.3 Soundness of Control Partitioning

The goal of Section 4 is to define an abstraction as the data of a partition (or
covering) and an abstraction of the semantics of the corresponding extended sys-
tem. Therefore, in the two following subsections, we set up an ordering, so as to
compare the semantics of partitioned systems and build an ordering among parti-
tioned systems (these are two crucial requirements, before we can set up the trace
partitioning domains in Section 4).

The semantics of extended systems is defined in the usual way, as in Section 2.1.2.
Furthermore, we propose to partition the semantics with the partitioned control
states including the token (i.e., we choose E = � T = � × T), of the last state in
the traces, which amounts to applying the same abstraction as αP(�) (Section 3.1)
in the case of the extended system:

Definition 3.3.1. (Partitioned semantics) If PT is the extended system de-
fined by (T, � i

T ,→T), we let JPT Kp be the partitioned semantics defined by:

JPT Kp = αP(δ �
T

)(JPT K)

where δ � T
is defined by:

δ � T
: P(� ?) → (� T → P(� ?))
E 7→ λ((l , t) ∈ � T) · {σ ∈ E | ∃ρ ∈ � , σ = 〈. . . , ((l , t), ρ)〉}

The properties of covering (resp. partitioning, complete) systems extend to their
semantics, as pointed out in the following lemma (the definitions for covering,
partitioning and complete extended systems were designed so as to achieve these
properties): for instance, a complete partition PT of PT ′ provides a unique coun-
terpart σ for any trace σ′ of PT ′ . In the following, we consider the programs
PT = (T, � i

T ,→T) and PT ′ = (T ′, � i
T ′ ,→T ′), and τ : T → T ′.

Lemma 3.3.1. (semantic adequacy – traces) Then:

— If PT is a τ -covering of PT ′ , then:

∀l ′ ∈ � T ′ , ∀σ′ ∈ JPT ′Kp(l ′), ∃l ∈ � T ,

{

l ′ = π �τ (l)

∃σ ∈ JPT Kp(l), σ′ = π
� ?

τ (σ)

— If PT is a τ -partition of PT ′ , then:

∀l ′ ∈ � T ′ , ∀σ′ ∈ JPT ′Kp(l ′), ∃!(l , σ) ∈ � T × � ?
T ,

l ′ = π �τ (l)
σ ∈ JPT Kp(l),

σ′ = π
� ?

τ (σ)

— If PT is τ -complete with respect to PT ′ , then:

∀l ∈ � T , ∀σ ∈ JPT Kp(l), π
� ?

τ (σ) ∈ JPT ′ Kp(π �τ (l))

Proof. The proofs for these properties are similar, so we consider the last one
only.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 15

Therefore, we assume that PT is τ -complete with respect to PT ′ , and that l ∈
� T , σ ∈ JPT Kp(l), and we attempt to prove that π

� ?

τ (σ) ∈ JPT ′ Kp(π �τ (l)).
We write σ = 〈s0, . . . , sn〉 and ∀i, s ′i = π

�
τ (si) (so that σ′ = 〈s ′0, . . . , s ′n〉 = π

� ?

τ (σ)).

— First, we prove by induction on the length of σ that σ′ ∈ JPT ′ K:
— s0 ∈ � i

T ; since PT is τ -complete with respect to PT ′ , s ′0 = π
�
τ (s0) ∈ � i

T ′ ;
— Let i ∈

�
, 0 ≤ i < n. Since σ ∈ JPT K, si →T si+1; hence, s ′i →T ′ s ′i+1, because

PT is τ -complete with respect to PT ′ .

— Second, we prove that π
� ?

τ (σ) ∈ JPT ′Kp(π �τ (l)): since σ ∈ JPT Kp(l), σ ∈ JPT K;
hence, π

� ?

τ (σ) ∈ JPT ′ K (as proved in the first point). Moreover, σ′ ends at point
π �τ (l), since s ′n = π

�
τ (sn). Hence, π

� ?

τ (σ) = σ′ ∈ JPT ′ Kp(π �τ (l))

The cases of partitioning and covering systems are similar.

Let Γτ be the function defined as:

Γτ : (� T → P(� ?
T)) → (� T ′ → P(� ?

T ′))

Φ 7→ λ(l ′ ∈ � T ′) ·
⋃

{π
� ?

τ (Φ(l)) | l ∈ � T , τ(l) = l ′}

Here are a few trivial properties of the Γτ functions:

Lemma 3.3.2. (Properties of Γτ) For all τ , Γτ is monotone.
If τ0 : T0 → T1, τ1 : T1 → T2, then Γτ1◦τ0 = Γτ1 ◦ Γτ0 .

The following theorem comes as a straightforward consequence of Lemma 3.3.1;
it is an important step in proving the soundness of the partitioning abstractions.

Theorem 3.3.2. (Semantic adequacy) With the above notations:

— If PT is a τ -partition or a τ -covering of PT ′ , then JPT ′ Kp ⊆ Γτ (JPT Kp) (sound-
ness).

— If PT is τ -complete with respect to PT ′ , then Γτ (JPT Kp) ⊆ JPT ′ Kp (complete-
ness).

— Hence, if PT is a τ -complete partition of PT ′ , or a τ -complete covering of
PT ′ , then JPT ′Kp = Γτ (JPT Kp) (adequacy).

— If PT is a partitioning system of PT ′ , then:

∀l , l ′ ∈ � T , l 6= l ′ =⇒ Γτ (JPT Kp)(l) ∩ Γτ (JPT Kp)(l) = ∅

3.4 Pre-Ordering Properties of Partitions

In the following, we use an ordering among partitions. Therefore, we study the pre-
ordering properties of the following relations, among extended transition systems:

— “is a covering of” (for some forget function τ);

— “is a partition of” (for some forget function τ);

— “is complete with respect to” (for some forget function τ).

Then, we can prove that, any such ordering 2 is transitive:

Lemma 3.4.1. (Transitivity) Let PT be (T, � i
T ,→T), PT ′ be (T ′, � i

T ′ ,→T ′),
and PT ′′ be (T ′′, � i

T ′′ ,→T ′′). Furthermore, we consider the forget functions τ : T →
T ′, and τ ′ : T ′ → T ′′. Then:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · X. Rival and L. Mauborgne

— if PT is a τ -covering (resp. τ -partition) of PT ′ and PT ′ is a τ ′-covering (resp.
τ -partition) of PT ′′ , then PT is a (τ ′ ◦ τ)-covering (resp. (τ ′ ◦ τ)-partition) of PT ′′ .

— if PT is τ -complete with respect to PT ′ and PT ′ is τ ′-complete with respect to
PT ′′ , then PT is (τ ′ ◦ τ)-complete with respect to PT ′′ .

Proof. We can first remark that π �τ ′◦τ = π �τ ′ ◦ π �τ (and similarly for the other
forget functions).

Let us prove the second point (transitivity of completeness).

— Let s ∈ � i
T . Then, π

�
τ (s) ∈ � i

T ′ , since PT is τ -complete with respect to PT ′ .
Moreover, π

�
τ ′◦τ (s) = π

�
τ ′ ◦ π

�
τ (s) ∈ � i

T ′′ , since PT ′ is τ ′-complete with respect to
PT ′′ .

— Let s0, s1 ∈ � T , such that s0 →T s1. Again, we apply successively the two
assumptions of completeness and derive π

�
τ (s0)→T ′ π

�
τ (s1) (since PT is τ -complete

with respect to PT ′ and then π
�
τ ′◦τ (s0)→T ′′ π

�
τ ′◦τ (s1), since PT ′ is τ ′-complete with

respect to PT ′′ .

The proof of the first point is similar.

Moreover, the relations mentioned above are clearly reflexive

Lemma 3.4.2. (Reflexivity) Let PT = (T, � i
T ,→T) and τ : T → T ; t 7→ t .

Then, clearly PT is a τ -covering (resp. partition) of PT and PT is τ -complete with
respect to itself.

Such an ordering should allow to compare the precision of partitions (yet, note
that the more precise partition is the greater element, instead of the smaller, as
is usually the case in static analysis) and to define valid computational orderings
[Cousot and Cousot 1992b], which we will illustrate in the next section.

4. TRACE PARTITIONING DOMAINS

In this section, we address the design of trace partitioning domains. Basically, an
element of such a domain defines a partition of the initial system, together with a
semantic denotation, relative to this partition. In the concrete level, this denotation
associates sets of traces to each control state; in the concrete level it maps control
states into local invariants.

After we define the domains, we also discuss the design of widening operators
and static analyses using trace partitioning domains.

4.1 The Trace Partitioning Domain

First, we consider the definition of a concrete trace partitioning domain.

4.1.1 Definition of the Basis. In this section, we assume that a transition system
P = (� , � i,→) is given, and we consider the complete coverings of P ; we write B

for the set of the extended systems which satisfy these properties.
First, we let 2 be the order among extended systems defined by:

PT0 2 PT1 ⇐⇒ ∃τ : T1 → T0, PT1 is a τ -covering

As remarked in Section 3.4, we may choose other definitions for 2, such as:

PT1 2 PT1 ⇐⇒ ∃τ : T1 → T0,

{

PT1 is a τ -partition of PT0

PT1 is τ -complete with respect to PT0

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 17

In case the property on the right side is satisfied, we also write PT0 2τ PT1 for τ ,
so as to make τ explicit.

The trivial extension of P is clearly the least element of B for 2.
Note that other choices for B and 2 could have been made and would have

allowed to prove the same results in the following.

Example 4.1.1. (The ordering over the basis) We showed in Example 3.2.3
that the systems P0, P1 and P2 are such that:

P0 2 P1 2 P2

4.1.2 The Domain. At this point we can define the trace partitioning domain.
An element of this domain should denote:

— a covering PT of the original transition system;

— and a semantic denotation for each control state l of the covering PT :
— in the basic domain, this denotation shall be a set of traces ending at point l);

— in the abstract domain, this denotation shall be an invariant in D]� .

More formally:

Definition 4.1.2. (Trace partitioning domain) An element of the trace par-
titioning domain is a tuple (T, PT , Φ), where:

— T ∈ T;

— PT denotes a complete covering (T, � i
T ,→T) of P ;

— Φ is a function Φ : � T → P(� ?
T).

We write
�

for the set of such tuples.
Let (T0, PT0 , Φ0), (T1, PT1 , Φ1) ∈

�
. Then, we write (T0, PT0 , Φ0) 0τ (T1, PT1 , Φ1)

–or, for short (T0, PT0 , Φ0) 0 (T1, PT1 , Φ1)– if and only if:

— PT0 2τ PT1 for τ ;

— Φ0 ⊆ Γτ (Φ1).

It follows from the results presented in Section 3.4 that 0 defines a pre-ordering on
�

.

4.1.3 The Concretization Function. The concretization of an element (T, PT , Φ)
of

�
is a set of traces of the initial system, which is computed by:

(1) merging all the partitions together, by projecting Φ onto the trivial extension
Pε of P (i.e., applying function Γτε

) and then collapsing the partitions with γP(� T);

(2) applying the isomorphism π
� ?

ε between traces of Pε and P .

It is defined formally in the following definition:

Definition 4.1.3. (Concretization function) We let γ � be the concretiza-
tion function defined by

γ � = π
� ?

ε ◦ γP(� T) ◦ Γτε

Or equivalently, by:

γ � :
�

→ � ?

(T, PT , Φ) 7→ {π
� ?

ε (σ) | ∃l ∈ � T , σ ∈ Φ(l)}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · X. Rival and L. Mauborgne

PSfrag replacements

Structure

Hierarchy of domains

(tε, Pε)

(T0, PT0)

(T1, PT1)

tε → � ?
tε

T0 → � ?
T0

T1 → � ?
T1

τ1⇀ε

Γτ1⇀ε

τ1⇀0

Γτ1⇀0

τ0⇀ε

Γτ0⇀ε

least element

Fig. 3: Structure of the partitioning domain

Clearly, this function is monotone.

Example 4.1.4. (Trace partitioning domain) Let us consider the case of the
systems introduced in Example 3.2.3. An element of the domain is characterized by
the data of a system and denotation corresponding to this element. For instance, if
the element of the basis is P1, then the last element of the tuple should be a function
mapping each element of the set {(l0, t0), (l1, t1), (l3, t1), (l2, t2), (l3, t2), (l4, t0)} into
a set of traces.

The concretization removes all the tokens; hence, it generates sets of traces of
the initial system (which is isomorphic to P0).

4.1.4 Soundness of the Partitioned Systems. A last, trivial yet very important
remark is that the partitioning of the initial system is sound:

Theorem 4.1.5. (Soundness of control partitioning) Let (T0, PT0) and
(T1, PT1) ∈ T×B, such that PT0 2τ PT1 . Then, (T0, PT0 , JPT0 K

p) 0τ (T1, PT1 , JPT1K
p).

In particular, in case (T0, PT0) = (Tε, Pε), then we get the soundness with respect
to the original transition system: JP K ⊆ γ � (T1, PT1 , JPT1 K

p).

Proof. The first point follows from Theorem 3.3.2; the second is a corollary of
the first point.

This domain structure can be related to the cofibered domain structure defined
in [Venet 1996]. More precisely, the element of the basis fixes a partition of the
original system, and the last argument of the tuple corresponding to an element
of the domain

�
provides a semantic denotation defined in a domain relative to

the basis element. Figure 3 gives an overall intuition about the structure of the
partitioning domain

�
.

The presentation in [Venet 1996] relies on categories; we use orderings instead,
but the principle is similar: the structure of the basis provides the frame for a
hierarchy of domains. The comparison of elements across different domains can be
done thanks to the projection functions Γτ provided by the ordering on the basis.

4.1.5 Gain in Precision. Let (T, PT , Φ) ∈
�

be an element of the domain. This
element describes the same set of traces as the initial program P . However, it

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 19

allows for a more precise description of sets of traces ending at each control state
than the usual abstractions (i.e., the αP(�) abstraction defined in Section 3.1), if
there exists a control state l ∈ � , σ, σ′ ∈ JP K, such that σ and σ′ both end at l but
are not in the same partitions, when mapped into the extended system PT . This
gain in precision really pays off, when a further abstraction (such as the abstraction
defined by γ

�
) is composed, as done in the next subsection.

4.1.6 Comparison with Other Approaches to Partitioned Systems. Our approach
considerably generalizes the trace partitioning technique of [Handjieva and Tzolovski
1998], since we leave the choice of partitions as a parameter: various partitioning
strategies can be implemented (for instance, we allow the merge of partitions).

The path sensitive techniques [Holley and Rosen 1980] proposed in data flow
analysis context do not allow for abstractions of sets of paths to be considered. In
our settings, a token stands for an approximation for a set of paths, which renders
the design of analyses more flexible.

Other authors proposed to perform a partitioning of memory states or to convert
part of the data into control structures, as can be done for booleans [Jeannet
et al. 1999]. However, this solution presents several drawbacks in our opinion. In
particular, the relations partitions are based on may not be found straightforwardly
in the memory states; in the other hand, a partitioning guided by the conditions is
rather intuitive. Another drawback comes from the fact that the method exposed
in [Jeannet et al. 1999] is based on a refinement process, which would not be so
effective in the case of the Astrée analyzer. By contrast this approach seem to be
more effective for the analysis of synchronous programs.

The following subsections express fundamental properties of
�

:

— composition of further abstractions (such as the abstraction of sets of stores
into collections of predicates), in Section 4.2;

— application to static analysis and definition of widening operators on such
domains, in Section 4.3;

— implementation of efficient analyzers in Section 4.4.

4.2 Composing Store Abstraction

We now propose to design an abstract trace partitioning domain.
We derive from Definition 4.1.2 the definition of a new partitioning abstraction,

by abstracting sets of stores into collections of constraints in the same way as
in Section 2.2. Therefore, we assume that an abstraction (D]� ,v) is defined for
representing sets of stores is defined, together with a concretization function γ

�
:

D]� → P(�), which defines the meaning of a set of abstract constraint as the set
of stores which satisfy them.

The partitioning abstract domain is derived from
�

by replacing functions map-
ping extended labels into sets of traces with functions mapping extended labels into
elements of D]� :

Definition 4.2.1. (Partitioning abstract domain) An element of the parti-
tioning abstract domain is a tuple (T, PT , Φ]), where:

— T ∈ T;

— PT is a complete covering of P (T, � i
T ,→T);

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · X. Rival and L. Mauborgne

— Φ] is a function Φ] : � T → D]� .

We write
�

] for the set of such tuples.

Remark 4.2.2. (Representation of abstract values) An abstract value is

a value in � T → D]� = (� × T) → D]� . By curryfication; it is isomorphic to a

value in � → (T → D]�). This latter representation turns out to be very natural
in practice: each control state corresponds to an abstract value in the partitioning
domain D]

� ,
� = T → D]� , mapping partitioning tokens into sets of stores; hence,

it allows to describe precisely the partitions associated to each program point.

The ordering is also inherited from Definition 4.1.2. Indeed, we let:

Γ]
τ : (� T → D]�) → (� T ′ → D]�)

Φ] 7→ λ(l ′ ∈ � T ′) ·
⊔

{Φ(l) | l ∈ � T , τ(l) = l ′}

If the join operator t of D]� is not associative, commutative, the definition of Γ]
τ

would not be unique, which would cause various technical complications; therefore,
we assume that t is associative and commutative in our presentation. Then:

Definition 4.2.3. (Ordering) Let (T0, PT0 , Φ
]
0), (T1, PT1 , Φ

]
1) ∈

�
, and a func-

tion τ : T1 → T0. Then, we write (T0, PT0 , Φ
]
0) 0]

τ (T1, PT1 , Φ
]
1) (or, for short

(T0, PT0 , Φ
]
0) 0] (T1, PT1 , Φ

]
1)) if and only if:

— PT0 2τ PT1 for τ ;

— Φ]
0 v Γ]

τ (Φ]
1).

It follows from the results presented in Section 3.4 that 0 defines a pre-ordering on
�

.

The concretization of an element of
�

] into an element of
�

applies the con-
cretization function γ

�
pointwise, i.e. by applying it to Φ].

Definition 4.2.4. (Concretization)

γ]
� :

�
] →

�

(T, PT , Φ]) 7→ (T, PT , λ(l ∈ � T) · γ
�
◦ Φ](l))

We remark, that (T, PT , Φ]) may provide a better approximation of JP K than an

element in D] = � → D]� whenever the extended systems distinguishes traces of
P , i.e., if there exists a control state l , and σ, σ′ ∈ JP K such that σ and σ′ both end
at l and are in different partitions, when mapped into traces of PT .

In the other hand, any approximation for JP K in D] can be translated in an equiv-
alent abstraction in (T, PT , Φ]), for any choice of (T, PT). As a consequence, we
expect the partitioning domain to provide results at least as good as the non par-
titioning domain, and strictly better results when the (T, PT) allows to distinguish
real traces of P .

At this point, we can state a few remarks, which should give a better understand-
ing of the structure of the partitioning domain.

Remark 4.2.5. (2 is a computational ordering) The ordering introduced in
Definition 4.2.3 is essentially a computational ordering [Cousot and Cousot 1992b].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 21

Indeed, an analysis starts with a coarse partition, defined by the program control
structure and then may perform some refinements of the system. When a refinement
is performed, the basis element is replaced with a greater element, and so is the
current abstract invariant. Therefore, the abstract computation should produce
monotone sequences of elements for the ordering of Definition 4.2.3.

Next subsection proposes the definition of an extrapolation operator based on
the same computational order.

Remark 4.2.6. (Direction of the ordering on the basis) We pointed out
that the ordering among elements of the basis is an inverse for the “refinement”
ordering in the end of Section 3.4: the greater for 2, the more refined the partition.

Therefore, one may suggest using the opposite ordering, so that smaller elements
represent finer partitions, but:

— The inverse of 2 would not capture the precision ordering better than 2. In-
deed, the precision ordering is usually defined as the ordering of the concretizations;
and, we may have (T0, PT0 , Φ

]
0) 0] (T1, PT1 , Φ

]
1) even though PT0 and PT1 are not

comparable for 2; opposing the ordering on the basis would not change anything
here. In fact, the definition of the precision ordering in

�
would be much more

complicated (and not interesting when designing static analyses)·

— It would be possible to write the analysis so that it starts with a completely
partitioned system (which may not be easy to define, depending on the instantiation
of the partitioning framework) and use the opposite ordering as a computational
ordering also (the analysis should merge partitions so as to ensure termination):
however, we found this idea less intuitive; in particular, it is easier to reason about
creating partitions instead of not deleting partitions.

4.3 Static Analysis with Partitioning and Widening Operator

The domain introduced in Section 4.2 allows to carry out a static analysis of P , with
a partitioning domain. However, several approaches to such analyses are feasible:

— static partitioning relies on the choice of a fixed partition;

— dynamic partitioning allows for the partition to be changed during the
static analysis.

The latter approach is more powerful but may also result in a more involved im-
plementation. In particular, in case infinitely many partitions might be chosen and
different partitions can be used for successive iterations in an abstract fixpoint com-
putation, the termination of the analysis shall be enforced by the use of a widening
operator. For instance, it may start analyzing a loop by unrolling the first iterates
and decide to give up the unrolling at some point, so as to guarantee termination
of the analysis.

The definition of a widening operator on
�

] is necessary when infinite or very
large sets of partitions shall be used, and when (quick) termination is required, e.g.
for static analysis. This issue would not occur in case the set of partitions was
chosen once for all.

We propose to define a widening operator for
�

] by:

— choosing a widening ∇
�

over D]� ;

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · X. Rival and L. Mauborgne

— choosing a widening ∇B over the basis (in the sense of Definition 2.2.2);

— defining a pairwise widening over
�

].

Formally, the widening operator for the partitioning domain is defined by:

Definition 4.3.1. (Widening for the partitioning domain) If (T0, PT0 , Φ
]
0),

(T1, PT1 , Φ
]
1) ∈

�
, then, we let:

(T0, PT0 , Φ
]
0)∇p(T1, PT1 , Φ

]
1) = (T2, PT2 , Φ

]
2)

where:

— PT2 = PT0∇BPT1 , so that PT0 2τ0 PT2 and PT1 2τ1 PT2 ;

— Φ]
2 = (Φ]

0◦τ0)∇
�

(Φ]
1◦τ1) (pointwise application of ∇

�
to elements of � T2 →

D]�).

Indeed, this approach leads to a widening over the partitioning abstract domain,
as shown in the following theorem:

Theorem 4.3.2. (Widening for partitioning domains) The operator ∇p

is a widening operator on
�

, in the sense of Definition 2.2.2.

Proof. Proving point 1 in Definition 2.2.2 is straightforward, so we consider
point 2.

Let (Tn, PTn
, Φ]

n)n∈ � be a sequence elements of
�

, and (T ′
n, PT ′

n
, Φ′]

n)n∈ � be
defined as:

(T ′
0, PT ′

0
, Φ′]

0) = (T0, PT0 , Φ
]
0)

(T ′
n+1, PT ′

n+1
, Φ′]

n+1) = (T ′
n, PT ′

n
, Φ′]

n)∇p(Tn, PTn
, Φ]

n)

Then:

— by definition of the widening over the basis ∇B, the element of the basis
stabilizes after a finite number of iterations: ∃n ∈

�
, ∀m ∈

�
, m ≥ n =⇒ PTm

=
PTn

.

— if we consider the subsequence (T ′
m, PT ′

m
, Φ′]

m)m∈ � ,m≥n, then ∀m ≥ n, T ′
m =

T ′
n ∧ PT ′

m
= PT ′

n
and the sequence of the last arguments form a widening sequence

in � T ′
n
→ D]� ; � T ′

n
is finite and ∇

�
is a widening over D]� , therefore this sequence

is ultimately stationary.

This proves that the sequence (T ′
n, PT ′

n
, Φ′]

n)n∈ � is ultimately stationary; hence, ∇p

is a widening operator over
�

.

Again, the proof of the widening operator can be compared with the definition of
a widening on cofibered domains [Venet 1996]. Basically, a widening operator for
�

should stabilize the basis first (i.e., enforce the termination of the refinement of

the partition), and then stabilize the image in the abstract domain D]� ; therefore,

an alternate definition for ∇p would delay the widening in D]� until the element of
the basis reaches a limit.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 23

4.4 Denotational Style Partitioning Static Analysis

The design of static analyzers as abstractions of the denotational semantics of
statements was proposed in Section 2.3. In particular, we showed that this design
allows for natural and efficient iteration strategies. Therefore, we propose to adapt
this scheme to partitioning analyses.

4.4.1 Partitioning Denotational Semantics. First, we apply the “from point to
point” denotational abstraction αtF [l `,l a].

More precisely, we consider in this subsection an extended system PT , such that
P 0τ PT , and let l `, la ∈ � . The concrete denotational semantics from l ` to l a
maps an “input” state at l ` to the set of possible “output” states at l a. Hence,
the denotational semantics in the extended system should map tuples made of a
partitioning token and a store into similar tuples:

Definition 4.4.1. (Partitioned denotational semantics) We define the ab-
straction function αtF � [l `,l a] : P(� ?)→ ((

�
× �)→ P(

�
× �)), where αtF � [l `,l a](E)

is defined by:

αtF � [l `,l a](E) : (
�
× �) → P(

�
× �)

(t`, ρ`) 7→ {(t a, ρa) | ∃σ ∈ E , σ = 〈((l `, t`), ρ`), . . . , ((l a, ta), ρa)〉}

We write γtF � [l `,l a] for the corresponding concretization function.
Last, the partitioned denotational semantics is αtF � [l `,l a](JPT Kp).

4.4.2 Abstract Partitioning Denotational Semantics. The denotational-style static
analyzer of Section 2.3 was derived as an abstraction of the denotational seman-
tics; therefore, we propose to derive a static analyzer for the partitioned system in
the same way. However, we should note a slight difference: in Definition 4.4.1, an
initial state consists in a pair made of a partitioning token and a store. Hence, the
abstract semantics follows the same scheme:

Definition 4.4.2. (Partitioned abstract denotational semantics) We write

D]
� ,

� for T → D]� . A function JPT K]
� [l `,l a] : D]

� ,
� → D]

� ,
� is a sound abstract

semantics of PT , between l ` and l a if and only if:

∀(t , ρ), (t ′, ρ′) ∈
�
× � , ∀dp ∈ D]

� ,
�

(t ′, ρ′) ∈ αtF � [l `,l a](JPT K)(t , ρ)
ρ ∈ dp(t)

}

=⇒ ρ′ ∈ JPT K]
� [l `,l a](dp)(t ′)

In this sense, JPT K]
� [l `,l a] should be an approximation of the denotational semantics

introduced in Definition 4.4.1.
The partitioned denotational abstract semantics is sound with respect to the

standard semantics of the initial system:

Theorem 4.4.3. (Soundness of the static partitioning analysis) Let
(T, PT) ∈ B such that (Tε, Pε) 2τ (T, PT).

Let dt ∈ D]
� ,

� , (t , ρ) ∈
�
× � such that ρ ∈ dt(t). Moreover, we let ρ′ ∈

αtF [l `,l a](JP K)(ρ). Then, there exists t ′ such that:

ρ′ ∈ JPT K]
� [l `,l a](dp)(t ′)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · X. Rival and L. Mauborgne

Proof. The above result follows from the soundness of the control partitioning
(Theorem 4.1.5) and the soundness of the abstract semantics JPT K]

� [l `,l a] (Definition

4.4.2).

In practice, an abstract semantics JPT K]
� [l `,l a] is defined in a similar way as the

abstract semantics of statements described in Section 2.3, and in Figure 1.
Moreover, we can remark that the abstract semantics JPT K]

� [l `,l a] may postpone

the computation of abstract joins so as to approximate flows in distinct partitions.
This ability allows in many cases for a greater precision (even if a local improvement
in precision does not always guarantee a global improvement, since several abstract
operators including widening usually are not monotone).

Example 4.4.4. (Denotational style abstraction of a if-statement)
We consider the program introduced in Example 3.2.3. In particular, this program
is equivalent to the transition system P0, displayed in Figure 2(a). We consider
the partition defined by the system P1 (Figure 2(b)): the analysis partitions the
traces depending on the branch of the if-statement they visited until point l4 (the
partitions are merged at this point).

We present the static analysis of various statements in this piece of code (the
analysis is carried out on P1):

— statement s1 (true branch of the conditional): the only partitions before and

after this statement is t1, to Js1K
]

� [l1,l3]
is a function:

Js1K
]

� [l1,l3]
: ({t1} → D]�) −→ ({t1} → D]�)

(the analysis propagates the partition t1);

— conditional structure (statement s = if(e) s1 else s2): it splits the partition

t0 into two sets of traces corresponding to t1 and t2; hence, JsK]
� [l1,l3]

is a function:

JsK]
� [l1,l3]

: ({t0} → D]�) −→ ({t1, t2} → D]�)

— statement s3 (statement right after the conditional): it inputs two partitions
corresponding to t1 and t2 and outputs similar partitions; however, the partitions
are merged right after the analysis of the statement (at point l4), so we can write

down Js3K
]

� [l3,l4]
as a function:

Js3K
]

� [l3,l4]
: ({t1, t2} → D]�) −→ ({t0} → D]�)

— the whole program inputs and outputs only one partition, corresponding to
t0, so its abstract semantics is a function:

JP1K
]

� [l1,l3]
: ({t0} → D]�) −→ ({t0} → D]�)

4.4.3 Making the Partitioning Dynamic. The above definition introduces a static
form of partitioning: the analysis of the statement may not change the partitions,
e.g. by refining the system. Therefore, we propose a new definition for an abstract
semantics for statements, which may refine the partitions.

First, we define a new partitioning abstract domain for approximating sets of
stores and partitions:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 25

Definition 4.4.5. (Domain for dynamic partitioning) An element of the
domain is a tuple (T, PT , dT), where:

— T ∈
�

;

— PT is a complete covering (T, � i
T ,→T) of the initial system P ;

— dp ∈ D]
� ,

� is such that ∀t ∈
�
\ T, dp(t) = ⊥.

We write D]
δ � ,

� for this domain; the ordering is the pointwise extension of the

orderings on the basis and on D]� .

The latter condition ensures that dp assigns invariants to “relevant” tokens only:
the invariant corresponding to a token not in T (i.e., not in the current extended
system) should be ⊥.

A partitioning abstract semantics can be defined as follows:

Definition 4.4.6. (Dynamic partitioning analysis) The abstract semantics

of PT between l ` and l a is a function JPT K]
� [l `,l a] : D]

δ � ,
� → D]

δ � ,
� such that, if

(T, PT , dT), (T ′, PT ′ , dT ′) ∈ D]
δ � ,

� are such that (T ′, PT ′ , d′T ′) = JPT K]
� [l `,l a](T, PT , dT),

then, there exists τ : T ′ → T satisfying the following conditions:

— PT ′ refines PT , i.e. PT 2τ PT ′ ;

— d′T ′ approximates the output of PT ′ at l a when the input at l ` is described by
dT in the previous system in a sound manner, which is expressed by the following
condition, where dT ′ = dT ◦ τ :

∀(t , ρ), (t ′, ρ′) ∈
�
× � ,

(t ′, ρ′) ∈ αtF � [l `,l a](JPT ′K)(t , ρ)
ρ ∈ dT ′(t)

}

=⇒ ρ′ ∈ d′T ′(t ′)

Note that the soundness of the “abstract transfer function” in the second of point of
Definition 4.4.6 is expressed in the refined system: the input invariant dT is refined
into dT ′ first, and then the abstract transition is performed in T ′.

This abstract semantics is sound as well:

Theorem 4.4.7. (Soundness of the dynamic partitioning analysis) Let

(T, PT) ∈ B such that (Tε, Pε) 2τ (T, PT). Let dt ∈ D]
� ,

� , (t , ρ) ∈
�
× � such that

ρ ∈ dt(t). We write (T ′, PT ′ , d′T ′) for the result of the analysis JPT K]
� [l `,l a](T, PT , dT).

Moreover, we let ρ′ ∈ αtF [l `,l a](JP K)(ρ). Then, there exists t ′ such that

ρ′ ∈ d′T ′(t ′)

Proof. Similar to the proof of 4.4.3.

Again, the core of the soundness of the analysis lies in the definition of the abstract
transformer in the refined transition system, which should soundly approximate the
partitioning of the transitions of the original system.

Example 4.4.8. (Denotational style abstraction of a if-statement)
Example 4.4.4 demonstrates the analysis of a conditional statement, based on a
static partitioning of P0 into P1.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · X. Rival and L. Mauborgne

In the case of dynamic partitioning, the main difference is that, before the analysis
of the conditional, the system under consideration is P0 and that the analysis refines
P0 into P1 at point l1 (beginning of the conditional). After this refinement, the
book-keeping of the partitions is the same as in Example 4.4.4.

5. STATIC ANALYSIS WITH A TRACE PARTITIONING DOMAIN

We now introduce the trace partitioning domain integrated in the Astrée analyzer,
together with some examples showing how it contributes to improving precision.

Basically, this domain is an instantiation of the framework for defining trace
partitioning domains, which we set up in Section 3 and in Section 4. This domain is
tailored in order to cope with imprecisions observed when analyzing real programs.

5.1 Partitioning Criteria

First, we list the criteria for trace partitioning in Astrée:

(1) Partitioning of conditional structures, by delaying the merge of flows
in the end of the conditional;

(2) Partitioning of loop structures, by distinguishing the first iterations in
the analysis of the loop body and delaying the merge of flows after the end of the
loop. This criteria allow for:

— more precise invariants to be derived in the first iterations, thanks to unrolling;

— relations between numbers of iterations and values to be inferred and used after
the loop, thanks to the delayed abstract join;

(3) Partitioning guided by the value of a variable x at some point l (the
partitions are computed at point l and not modified by an assignment to x): this
partitioning is similar to a case analysis based on the value of a variable (this
partitioning scheme is most useful when dealing with weak updates, and array
accesses);

(4) Inlining of functions (as suggested in Section 3.1);

(5) Merge of partitions: the cost of successive creations of partitions would
be prohibitive in practice. For instance, the partitioning of a conditional struc-
ture multiplies by 2 the number of partitions in the current flow, so a series of
n conditional structures would lead to a 2n blow-up, which is not acceptable (no
scalable analysis can afford an exponential cost). Therefore, we avail ourselves the
possibility of merging together unnecessary partitions (i.e. partitions which are not
expected to lead to further improvements in precision), in any order.

Some of these cases could be handled by rewriting the code. This approach is
depicted in Figure 4(a), in the case of the partitioning of a conditional structure
(case 1), as suggested in Example 3.2.3: the statements following the conditional
are duplicated in the end of both branches. Case 2 (loops) and case 4 (function
inlining) could be handled in a similar manner. For instance, Figure 4(b) displays
the rewriting equivalent to the unrolling of the first iteration of a loop.

However, we show in Section 5.3 that the design of a trace partitioning domain
was preferable, so that finer partitions can be handled.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 27

l0 : if(e){
l1 : s1

}else{
l2 : s2

}
l3 : s3

l4 : . . .

−→

(l0) : if(e){
(l1) : s1;
(l3) : s3

}else{
(l2) : s2;
(l3) : s3

}
(l4) : . . .

(a) Partitioning of a conditional

l0 : while(e){
l1 : s;
l2 : }
l3 : . . .

−→

(l0) if(e){
(l1) s;
(l0) while(e){
(l1) s;
(l2) }
(l2) }
(l3) . . .

(b) Loop unrolling

Control states in parentheses denote partitioned control states.

Fig. 4: Code rewriting

PSfrag replacements

x

y

0

1

1

y =

−1 if x ≤ −1
−0.5 + 0.5× x if − 1 ≤ x ≤ 1
−1 + x if 1 ≤ x ≤ 3
2 if 3 ≤ x

(a) Function

l0 : int i = 0;
l1 : while(i < n && x > tx[i + 1])
l2 : i + +;
l3 : y = tc[i]× (x− tx[i]) + ty[i]
l4 : . . .

tc = {0; 0.5; 1; 0}
tx = {0;−1; 1; 3}
ty = {−1;−0.5;−1; 2}

(b) Implementation

Fig. 5: Linear interpolation, via indirection arrays

5.2 Applications of Trace Partitioning to the Computation of More Precise Invariants

Before we set up the partitioning domain, we provide a few examples, so as to
show how the main criteria for partitioning introduced in Section 5.1 are useful, in
Astrée.

5.2.1 Linear Interpolation Function, via Indirection Arrays. We consider the
case of the interpolation function flin described in Figure 5 first.

The piece of code for this function determines what formula should be used
by localizing in what range x can be found, using a loop and an array of input
values. Then, two arrays contain the coefficients which should be used in order
to compute the value of flin(x). Clearly, the output of this function is bounded:
∀x, flin(x) ∈ [−1, 2].

However, inferring this most precise range is not feasible with a standard interval
analysis, even if we partition the traces depending on the values of i at point l3.
Let us try with −100 ≤ x ≤ 0: then, we get i ∈ {0, 1} at point l3. The range for y
at point l4 is [−0.5 + 0.5× (−100.),−0.5] ≡ [−50.5,−0.5] (this range is obtained in
the case i = 1; the case i = 0 yields y = −1). Accumulating such huge imprecision

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · X. Rival and L. Mauborgne

during the analysis may cause the properties of interest (e.g. the absence of runtime
errors or the range of output values) not to be proved. We clearly see that some
relations between the value of x and the value of i are required here.

Our approach is to partition the traces according to the number of iterations in
the loop. Indeed, if the loop is not iterated, then i = 0 at point l3 and x < −1; if it
is iterated exactly once, then i = 1 at point l3 and −1 ≤ x ≤ 1 and so forth. This
approach yields the most precise range. Let us resume the analysis, with the initial
constraint −100 ≤ x ≤ 0. The loop is iterated at most once and the partitions at
point l3 give:

— 0 iteration: i = 0; x < −1; y = −1

— 1 iteration: i = 1; −1 ≤ x ≤ 0; −1 ≤ y ≤ −0.5.

Therefore, the resulting range is y ∈ [−1,−0.5], which is the optimal range (i.e.
exactly the range of all output values that can be observed in concrete executions).

This optimal result is obtained thanks to a partitioning of the traces by the
number of iterations in the loop. The partitions can be merged after the output of
the function, since they should not result in any further gain in precision.

5.2.2 Linear Interpolation Function, via Discretization. The second example
consists in another kind of interpolation function: the input value is disctretized,
and then a formula depending on the discretized value is applied to it. More
precisely, if |x| = n, and f is the function to approximate, then the interpolation flin
returns f(n)+(x−n)×(f(n+1)−f(n)). From the mathematical point of view, it is a
particular case of the interpolation function considered in the previous paragraph,
where the values of the array tx are successive integer values. In the example
presented in Figure 6, the array ty is such that ty[n] = f(n). Any interpolation
based on a regular partition of a bounded range could be implemented in a similar
way, by applying a linear function to the argument so as to recover a partition of
the form 0, 1, . . . , n.

We found that this kind of interpolations were rather common, e.g. for approxi-
mating trigonometric functions. For the same reason as in the case of the previous
interpolation function, the computation of a precise range for the output of flin
requires some precise relation between n and x.

However, the possible values for n cannot be related to distinct control flow paths;
therefore, we propose to perform a partitioning guided by the value of n computed
at l1. Doing the same partitioning at point l2 would not allow for relations between
x and i to be obtained.

5.3 The Domain

We now introduce the trace partitioning domain used in Astrée formally.

5.3.1 Need for a Trace Partitioning Domain. As we pointed out in Section 5.1,
some of the partitioning configurations could have been carried out by rewriting
the code. However, we enumerate a number of reasons in favor of the design of a
real domain.

First, the “syntactic transformation” approach is limiting. In particular,
it would not allow to represent and handle large sets of partitions in the same way
as a dedicate domain would:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 29

PSfrag replacements

x

y

0 1 2 3 4 5

if n ≤ x < n + 1, where n ∈ �
y = f(n) + (x− n)× (f(n + 1)− f(n))

(a) Mathematical definition

l0 : int n = 0;
l1 : n = castfloat→intx;
l2 : y = ty[n] + (x− castint→floatn)∗

(ty[n + 1]− ty[n])
l3 : . . .

(b) Implementation

Fig. 6: Linear interpolation function, via discretization

— a domain allows to represent more partitions than mere syntactic rewriting,
since not all possible partitions need to be generated during the analysis despite
the syntactic approach would require to generate them all prior to the analysis;

— a syntactic rewriting of the code would be inherently static, which is not
practically compatible with very large sets of partitions. For instance, a partitioning
guided by the values of a variable may generate a huge number of partitions if the
variable may take a large number of values (e.g., thousands of values); in this case, a
built-in strategy would not perform the partitioning (by not sending the partitioning
order to the domain), whereas the decision whether to partition or not would need
to be made prior to the analysis in the case of syntactic partitioning. In this
case, the implementation of a partitioning domain allows to tune the partitioning
strategy during the analysis, so that better decisions can be taken about whether
or not some partitions should be generated.

Secondly, as we pointed out above, the partitions sometimes need to be

merged together. Currently, where and which partitions are merged is the re-
sult of some strategies (Section 6.2). However, the last partition created may not
be merged first, which implies that the structure of partitions should be found in
abstract elements (as a consequence, the code rewriting approach would fail to offer
the same flexibility).

Thirdly, in some cases, partitions could be created in a lazy way only not only
for cost reasons, as in the following cases:

— in the case of a function call, where the function is the result of the dereference
of a pointer, the control flow can only be known at analysis time;

— some strategies may determine that a loop should be unrolled n times and the
analysis may prove that after m < n iterations the execution of the loop terminates;
then a syntactic unrolling would not make sense.

Last, the inspection of analysis results is easier, when the invariants can be
related to the original program, with accurate partition names (i.e., tokens in the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · X. Rival and L. Mauborgne

d ::= part〈If , l , b〉 traces in the b branch of the conditional at point l
| part〈While, l , n〉 traces with exactly n iterations in the loop at point l
| part〈While, l , > n〉 traces with more than n iterations in the loop at point l
| part〈Val, l , x = n〉 traces such that x = n at point l
| part〈Fun, l , f〉 traces calling f at point l
| part〈None〉 void directive

(a) Directives (notation for directives: d ∈ D)

t ::= ε empty stack, initial partition
| d :: t ′ addition of a directive on top of t ′

(b) Tokens (t ∈ �)

Fig. 7: Naming partitions

scheme of Section 3). Rewriting large pieces of code as suggested in Figure 4 would
make the understanding of the result of static analyses more difficult, since the
user would have to relate the invariants computed for the transformed program to
the original program. By contrast, the values of the partitioning domain should
tell what partitions numerical constraints correspond to, thanks to the partitioning
tokens.

5.3.2 Elements. We now define formally the instantiation of the framework pre-
sented in Section 4 corresponding to the criteria listed in Section 5.1.

Intuitively, the creation of a partition corresponds to a partitioning directive,
as defined in Section 5.1. We provide the formal definition of directives in Figure
7(a). The name of each directive corresponds very intuitively to a criterion listed
in Section 5.1, except for the last one: the directive part〈None〉 is included here
for the sake of implementation only, and stands for a void directive (we explain the
use of this directive in Section 6.1).

The name of a partition (i.e., token corresponding to it, in the sense of Section
3.2) consists in the series of the partitioning directives encountered before creating
this partition. We give the formal definition for tokens in Figure 7(b). We note
that each partitioning directive encloses a control state, which stands for the point
the partition was created at. The directive part〈None〉 stands for a void directive,
and as such, it can be removed from tokens without changing their meaning: in
other words, the equality on tokens is defined modulo removal of void directives
(i.e., part〈None〉 :: part〈If , l , b〉 = part〈If , l , b〉).

For instance, in the case of a conditional at point l , two partitions are created
right after the testing of the condition, corresponding to the directives “true branch
of the conditional at point l ” and “false branch of the conditional at point l ”.
When these partitions are merged, these directives are removed from the names of
the partitions.

As usual, we write D]� for the domain for representing sets of stores (Section

2.2). In the same way as in Section 4.4, the domain D]
� ,

� is defined as
�
→ D]� .

5.3.3 Hints (or Directives) in the Code. A pre-processing phase inserts direc-
tives as special commands in the source code. We do not introduce them formally
here (the directives are represented as text between braces in programs). Intuitively,
directives in the code cause directives to be added in tokens (partition creation) or

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 31

be deleted from tokens (partition merge).

5.3.4 Widening. The set of tokens is clearly infinite, since the length of tokens
as sequences of directives is not bounded. Even in case we limit the length of tokens
the number of tokens is very large: indeed, if we fix l ∈ � and x ∈ � , the number
of directives of the form part〈Val, l , x = n〉 is equal to the number of integer values
in the language (i.e., in practice 232). Therefore, the termination of the analysis
should rely on a widening operator, designed as in Section 4.3.

In practice,

— the widening operator on the basis forbids the synthesis of arbitrary long to-
kens, by preventing the generation of tokens containing two directives correspond-
ing to the same control point: basically, this operator interrupts the generation of
partitions;

— the generation of partitions after a directive recommending the partitioning
guided by the values of a variable x is performed only if the size of the set of possible
values for x determined by the analysis is small enough (e.g., below 1000);

— the current partitioning strategy is designed so as not to keep partitions be-
yond the scope they should improve the precision in; this strategy allows to merge
partitions soon enough, so that the widening operator does not need to collapse
partitions down (widening is applied at loop heads only [Bourdoncle 1993]).

5.4 Structure of the Abstract Interpreter

As stated in Section 2.3, the iterator consists in a function mapping statements
into abstractions of their denotational semantics, as defined in Section 2.3. As a
consequence, the design of the abstract interpreter follows the principle described
in Section 4.4: the abstract interpretation JsK] of a statement s should map a pair

(PT , dT) ∈ B×D]
� ,

� , where ∀t 6∈ T, dT (t) = ⊥ into a pair (PT ′ , d′T ′) ∈ B×D]
� ,

� ,
where PT ′ is a refinement of PT and d′T ′ is an over-approximation of the output of
s when applied to the input dT (Definition 4.4.6).

The iterator of Astrée does not keep track of the whole refined program PT .
Instead, it keeps track of the current partitions, i.e. of the tokens corresponding to
a set of partitions covering the ongoing flows:

Definition 5.4.1. (Ongoing token set) The ongoing token set corresponding

to the abstract flow dT ∈ D]
� ,

� is tokensT 〈dT 〉 = {t ∈
�
| dT 6= ⊥}.

This notion was implicitly illustrated in Example 4.4.4 (we described the partition-
ing abstract interpretation of an if -statement).

If (T, PT , dT) is the result of the static analysis of a statement, then, the property
tokensT 〈dT 〉 ⊆ T is straightforward.

The abstract interpretation JsK] of a statement s simply maps an element dT ∈

D]
� ,

� into a second element d′
T ′ ∈ D]

� ,
� : all the information about the partitioning

carried out by the analysis are enclosed in the dT element.
This is a common advantage of denotational style abstract interpreters: this

iteration scheme keeps only the information which are useful for the end of the
analysis and discards the values which were useful only in the past and will not
be required anymore. For instance, we remarked that the analyzer presented in

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · X. Rival and L. Mauborgne

Section 2.3 does not need to store invariants at every control point. The restriction
to the set of tokens corresponding to the ongoing flows is similar.

This approach is feasible, since the partitioning tokens contain all the information
about the transitions associated to them.

Last, we note that the pre-processing phase inserts hints in the code and selects
this way a family of extended systems which may be used during the analysis. As
a consequence, most of the partitioning decisions are made statically; the only de-
cisions taken at analysis time are whether or not to obey to some directives. In
this sense, the partitioning implemented in Astrée is dynamic, but mostly deter-
mined statically; reducing the number of choices made at analysis time simplifies
the implementation.

5.5 Transfer Functions

We consider three kinds of transfer functions:

— the “partition creation” transfer function generate new partitions;

— the “partition merge” folds partitions together;

— the “standard” transfer functions (i.e., which are not specific to partitioning
analyses) stand for e.g., abstract assignments, condition testing...

5.5.1 “Usual” transfer function, e.g. assignment. we extend pointwisely the
usual transfer functions presented in Section 2.2 to D]

� ,
� .

5.5.2 Partition creation. we let generate : D × D]
� ,

� → D]
� ,

� be the partition
creation abstract transfer function. It inputs a directive ∂ and an abstract element
d ∈ D]

� ,
� and adds the directive ∂ to all ongoing tokens in d. Formally, it outputs

an element d′, defined by:
{

tokensT 〈d′〉 = {(∂ :: t) | t ∈ tokensT 〈d〉}
∀t ∈ tokensT 〈d〉, d′(∂ :: t) = d(t)

5.5.3 Partition merge. we let merge : P(D) × D]
� ,

� → D]
� ,

� be the transfer
function for merging partitions. It folds partitions by removing any directive in D
for the partition names (tokens). Therefore merge inputs a set of directives D and
an abstract element d and returns a new abstract element d′, where any reference
to the directives in D are removed. Formally, if D = {∂}, then d′ is defined by:

(∂i0 :: . . . :: ∂im
) ∈ tokensT 〈d′〉 ⇐⇒

(∂0 :: . . . :: ∂n) ∈ tokensT 〈d〉
{ik | k ∈ L0, mM} = {i ∈ L0, nM | ∂i 6= ∂}
i0 < . . . < im

With the above notations, d′(∂i0 :: . . . :: ∂im
) = d(∂0 :: . . . :: ∂n)

The above definition extends straightforwardly to the general case (D not neces-
sarily a singleton).

Example 5.5.1. (Transfer functions in a partitioning analysis) Figure
8 displays a simple piece of code, containing an if -statement (Figure 8(a)). The
pre-processing phase of Astrée includes some directives in the code, which specify
what partitions should be created. We assume that the strategies recommend to
partition the traces in the beginning of the if -statement and to merge the partitions
at point l5, as shown in Figure 8(b)).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 33

l0 : s0;
l1 : if(c){
l2 : s1

}else{
l3 : s2

}
l4 : s3;
l5 : s4;

(a) Initial pro-
gram

l0 : s0;
HPartition the traces

in the following if statementI
l1 : if(c){
l2 : s1

}else{
l3 : s2

}
l4 : s3;

HMerge the partitions of
the if statement at this pointI

l5 : s4;
(b) Program with directives added

Fig. 8: Partitioning analysis of a if-statement: directives

Here are the main steps of the analysis:

— at point l0, only one partition exist; it corresponds to the void token ε;

— when entering the if -statement, the analyzer creates two partitions corre-
sponding to the directives part〈If , l0, true〉 (true branch) and part〈If , l0, false〉
(false branch): at this step it applies the transfer function which associates the ab-
stract element generate(part〈If , l0, true〉, d) to d and d 7→ generate(part〈If , l0, false〉, d);

— the analysis of the body of both branches involve usual transfer functions;

— at point l4 the join of the invariants corresponding to both branches should be
computed, so that we get an invariant d4, such that tokensT 〈d4〉 ={part〈If , l0, true〉 ::
ε, part〈If , l0, false〉 :: ε};

— at point l5 the analyzer merges the partitions together, by applying the trans-
fer functions d 7→ merge({part〈If , l0, true〉, part〈If , l0, false〉}, d).

6. TRACE PARTITIONING IN THE ASTRÉE ANALYZER

In this section, we deal with practical issues related to the implementation of the
trace partitioning domain presented in Section 5 in Astrée. We describe the data
structures and the partitioning strategies. Last, we provide extensive implementa-
tion results.

6.1 Implementation of the Domain

6.1.1 The Data-Structure. In practice, tokensT 〈dT 〉 can be considered the set
of paths into the leaves of a tree, where each branch in the tree is labeled with a
directive. Therefore, trees are a natural representation for the elements of D]

� ,
� ,

with elements of D]� at the leaves and with directives as labels for the branches:

Definition 6.1.1. (Representation of the elements of D]
� ,

�) The physical

representation of the elements of D]
� ,

� is defined by induction by:

dT ::= leaf[d] where d ∈ D]� (leaf D]� element)

| node[φ] where φ ∈ D → D]
� ,

� (function mapping directives into D]
� ,

�)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · X. Rival and L. Mauborgne

The use of this representation is exemplified in Example 6.1.3, after we define the
transfer functions.

Remark 6.1.2. (Use of the part〈None〉 directive) In some cases, we may
have to represent an invariant dT , such that t ∈ tokensT 〈dT 〉 and (∂ :: t) ∈
tokensT 〈dT 〉 (for some token t and some directive ∂). Then, the above definition
does not provide a way to represent the invariant corresponding to t since t is a
prefix of ∂ :: t and Definition 6.1.1 does not allow for numerical invariants to be
assigned to nodes of the trees (numerical invariants correspond to leaves only).

The part〈None〉 directive solves this problem: indeed, part〈None〉 :: t is equiv-
alent to t , and a numerical invariant can be assigned to the leaf corresponding to
part〈None〉 :: t .

Such configurations do not occur in the analysis; they may arise in the invariant
export (Section 2.3), when all local invariants corresponding to a control state l0
(possibly in different contexts, e.g., for different function calls) should be repre-
sented together. In particular the abstract join operator may generate part〈None〉
directives.

6.1.2 The Transfer Functions. The implementation of the transfer functions
proceeds by induction on the structure of the trees. Indeed, let us consider the three
kinds of transfer functions, which we introduced in Section 5.5 (in the following, we
augment the names of the transfer functions for the partitioning domain with the
index �):

— Abstract binary operators, e.g. join are defined by induction on the
structure of trees.

If the join of the set of paths in both trees contains two tokens t0, t1 such that t0 is
a strict prefix of t1, then t0 is replaced with part〈None〉 :: t0 so that the result can
be represented, as explained in Remark 6.1.2.

— “Usual” transfer functions: we consider the case of the guard � : � × � ×
D]

� ,
� → D]

� ,
� transfer function, which inputs a condition e ∈ � , a boolean b ∈ � ,

and an abstract element d and outputs an over-approximation of the stores in d
which evaluate e into b (in the case of assignments, variable forget... are similar).

The definition of guard � is based on the function guard defined over D]� :

∀e ∈ � , ∀b ∈ � ,

{

guard � (e, b, leaf[d]) = leaf[guard (e, b, d)]
guard � (e, b, node[φ]) = node[∂p 7→ guard (e, b, φ(∂p))]

— Partition creation: the partition creation abstract transfer function generate :

D×D]
� ,

� → D]
� ,

� inputs a partitioning directive ∂ and an abstract element d and
pushes the token ∂ on top of the tokens. Basically, it mimics the creation of a
partition triggered by the directive ∂, which amounts to adding a node on top of
each leaf in d, with a branch indexed by ∂ in between:

∀∂ ∈ D,

{

generate(∂, leaf[d]) = node[∂ 7→ leaf[d]]
generate(∂, node[φ]) = node[∂p 7→ generate(∂, φ(∂p))]

In practice, the partition generation function takes into account the names of the
partitions, so as to create only some partitions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 35

— Partition merge: the transfer function merge : P(D)×D]
� ,

� → D]
� ,

� inputs

D ⊆ D, d ∈ D]
� ,

� ; it goes recursively through the tree representing d and removes
all occurrences of a directive in D. The implementation follows the following algo-
rithm:

∀D ∈ P(D),

merge(D, leaf[d]) = leaf[d]
merge(D, node[φ]) = node[φ′]

where φ′ :

{

∂ 6∈ D 7→ merge(D, φ(∂))
part〈None〉 7→

⊔

{d at a leaf of φ(∂) | ∂ ∈ D}

The directive part〈None〉 allows to fold together some branches leaving from a
node. In case all branches can be folded, then these directives can be safely removed
from trees:

node[{part〈None〉 7→ d0}]→ d0

Example 6.1.3. (Application to the partitioning of an if-statement)
We consider the program considered in Example 5.5.1, with the partitioning strat-
egy displayed in Figure 8(b). We assume that the analysis starts with a single
partition (i.e., only one ongoing token at point l0).

Figure 9 displays the partitions obtained when the analysis reaches each control
state in this program:

— statement s0 does not generate any new partition, so the layout of the abstract
element for l1 (Figure 9(a)) is the same as for l0 (Figure 9(b));

— the conditional causes a partitioning of the traces at l1, so two trees are created
after this point (yet, the partition corresponding to false is not created explicitly
in the true branch, since it would be empty), which are depicted in Figure 9(c) and
Figure 9(d);

— the abstract join outputs a new abstract element, with two partitions corre-
sponding to both sides of the conditional at point l4 (Figure 9(e));

— the merge of partitions is performed after the analysis of s3, so that the tree
in l5 consists in only a leaf (Figure 9(f)) at in l0.

As a shortcut, we write ∂t for part〈If , false, l1〉 and ∂f for part〈If , true, l1〉, and d for

any invariant in D]� . Dotted lines denote the partitions which are not generated,
since the analysis proves them empty.

6.2 Strategies for Trace Partitioning

6.2.1 Implementation of a Partitioning Strategy. As mentioned in Section 2.3,
a pre-processing phase generates hints for the abstract domains, including the par-
titioning domain. Such hints specify the cases where partitions might be helpful
in order to compute tighter invariants. In the analysis phase, partitioning may or
may not be performed at these points, depending on the choice of the interpreter.
Indeed, in case the pre-processing phase recommends a partitioning guided by the
values of a variable v and the analyzer infers too large a range for v (i.e., the num-
ber of generated partitions would be prohibitive), the analyzer will not perform the
partitioning. Similarly, it will not create empty partitions: for instance, in the case
of a conditional statements which should be partitioned, if the analysis proves the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · X. Rival and L. Mauborgne

PSfrag replacements

d

(a) l0

PSfrag replacements

d

(b) l1

PSfrag replacements

d d

∂t ∂f

(c) l2

PSfrag replacements

d d

∂t ∂f

(d) l3

PSfrag replacements

d d

∂t ∂f

(e) l4

PSfrag replacements

d

(f) l5

Fig. 9: Application to the partitioning of an if-statement

condition always evaluates to true, then, the partition corresponding to the false

branch will not be generated.

6.2.2 Strategies for Generating “Good” Partitions. We enumerate a few cases
where the current pre-processing phase suggests partitions to be generated:

— sequences of conditional statements: partitioning the traces in the first if -
statement may greatly improve the precision in the following conditional state-
ments, if the condition of the second if -statement depends on the content of the
branches of the first one, or if its value depends on the value of the condition of the
first if -statement.

— assignment to an integer variable i used as an array index: the partitioning
guided by the value of i generates some relations with the variables in the right
hand side of the assignment and may improve the precision of the subsequent array
operation, since distinct array cells are treated separately, in a refined environment.
This criterion causes the right partitions to be generated in the case of the inter-
polation function with regular discretization of the input, which we presented in
Section 5.2, and Figure 6.

— small loops assigning an integer variable i used e.g., as an array index: the
unrolling of the loop allows for the same kind of relations to be computed as in the
previous point; hence, it results in the same opportunities for gains in precision.
This criterion triggers the generation of the right partitions in the case of the
interpolation function with indirection arrays, which we described in Section 5.2
and Figure 5.

6.3 Experimental Evaluation

6.3.1 Methodology for the Benchmarks. The results below were obtained on 2
GHz Bi-opteron machines, with 8 Gb of RAM (total) and 1 Mb of cache memory
(per processor), running Linux. All the analyses reported in the sequel used only
one processor, despite Astrée also features the ability of being ran in “parallel”
mode.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 37

Table I. Benchmarks
Program Size Functions Variables

(LOCs) Global and static Local

int float int float

P1
1 370 20 23 87 2 0

P1
2 9 500 236 35 100 835 4 8

P1
3 70 000 2 010 11 700 27 400 22 516

P2
1 70 000 1 150 71 400 8 670 11 700 5 700

P2
2 226 000 3 410 35 700 24 900 44 300 21 900

P2
3 400 000 5 680 58 700 35 500 83 400 35 100

Table II. Partitioning Strategy
Program Size Conditional Loops Value-based

(LOCs) partitioned total partitioned total partitioning

P1
1 370 4 28 1 1 0

P1
2 9 500 18 283 1 3 0

P1
3 70 000 498 4 617 3 5 112

P2
1 70 000 300 2 624 106 106 0

P2
2 226 000 1 805 9 381 591 591 19

P2
3 400 000 2 802 17 562 906 916 32

The analyzer was ran on a series of programs, chosen among two families of
embedded codes, which we detail in table I. Programs in family 1 (denoted with
P 1

i) are older, and of smaller size than programs in family 2 (denoted with P 2
i).

6.3.2 Partitioning Strategy. Table II displays the results of the partitioning
strategy. We give the total number of conditional structures, and the number of
partitioned conditional structures. We provide similar information about the parti-
tioning of loop structures; however, only the internal loops are taken into account
here (we recall that a program in either families consists in a main loop, which con-
tains most of the code). Last, we mention the number of directives recommending a
partitioning guided by the values of a variable. Overall, partitioning directives are
inserted in the case of 10 % to 20 % of the conditional structures and for almost all
internal loops. The partitioning guided by the values of variables tend to have less
importance (much fewer directives inserted, and only in the larger applications).

6.3.3 Analysis with Partitioning Enabled. In the following T.p.I. stands for
“Time per iteration”; it corresponds to the average time spent in one iteration
of the main loop of the program being analyzed. This time is roughly representa-
tive of the efficiency of the transfer functions and of the precision of the abstract
control flow. The number of iterations assesses the efficiency of the convergence.
The global time of the analysis depends both on the efficiency of transfer functions
and the speed of the convergence.

Times are written in seconds (s); amounts of memory in megabytes (Mb).
The first benchmark displays the result of the analysis with the default settings:

trace partitioning is enabled and the directives are inserted by the automatic strat-
egy, evoked in Section 6.2.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · X. Rival and L. Mauborgne

Table III. Results of the Analysis with Trace Partitioning
Size Memory peak Analysis time Iterations Alarms

(LOCs) (Mb) (s)] T.p.I. (s)

P1
1 370 45 1.96 9 0.21 0

P1
2 9 500 175 104 17 6.1 8

P1
3 70 000 636 2 818 35 80.5 0

P2
1 70 000 434 1 064 20 53.2 0

P2
2 226 000 1 533 17 035 51 334 0

P2
3 400 000 2 423 36 480 72 507 0

Table IV. Analysis without Partitioning
Size Memory peak Analysis time Iterations Alarms

(LOCs) (Mb) (s)] T.p.I.

P1
1 370 45 (-) 1.55 (-21 %) 9 0.17s 0 (0)

P1
2 9 500 170 (- 3 %) 87 (- 17 %) 17 5.1s 8 (8)

P1
3 70 000 660 (+ 3 %) 1 614 (- 43 %) 35 46.1s 750 (0)

P2
1 70 000 376 (-13 %) 921 (- 13 %) 20 46s 443 (0)

P2
2 226 000 1 341 (- 12 %) 37 274 (+ 112 %) 282 134s 5 402 (0)

P2
3 400 000 2 040 (- 16 %) 34 147 (- 6 %) 127 269s 7 524 (0)

6.3.4 Global Impact of Partitioning. First, we compare the results of the analy-
ses with or without trace partitioning enabled: table IV displays the results without
trace partitioning. Note that the partitioning inherent in the function calls (func-
tion inlining) is not affected by the disabling of trace partitioning: turning off
partitioning removes the partitioning relative to loop iterations, conditional and
variables values only.

The number in parentheses allow to compare with the default, partitioning analy-
ses. This first comparison shows the great impact of partitioning in most cases, and
especially in the case of the large applications, i.e., the programs which compare
most closely with real applications due to their size and structure. The first two
programs are experimental programs, which do not comprise all the features of the
largest applications and involve smaller chains of computations, so the trace parti-
tioning does not impact the number of alarms. Yet, the invariants are noticeably
less precise, even in the case of the first example. The analyses of larger, real-
world applications generate dramatic number of alarms: trace partitioning proves
a crucial technique in Astrée.

Secondly, we remark that the execution time is not necessarily better when trace
partitioning is disabled. In particular, the analysis of the two largest programs
require a much larger number of iterations when trace partitioning is turned off:
this effect was most noticeable in the case of the second program in the second
family (282 iterations instead of 52!). In fact, a lower precision may result in a
longer analysis time for many reasons related to the exploration of a larger state
space:

— the widening of the analyzer attempts to stabilize variables, with a widening
threshold scale [Blanchet et al. 2003]; therefore, if some variable cannot be stabilized
to a small range (for instance, because some property cannot be proved due to the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 39

Table V. Impact of the Partitioning of Conditional Structures
Size Memory peak Analysis time Iterations Alarms

(LOCs) (Mb) (s)] T.p.I.

P1
1 370 45 (-) 1.96 (-) 9 0.17s 0 (0)

P1
2 9 500 173 (- 1 %) 88 (- 15 %) 17 5.2s 8 (8)

P1
3 70 000 616 (- 3 %) 5 004 (+ 76 %) 32 156s 398 (0)

P2
1 70 000 467 (+ 8 %) 1 466 (+ 38 %) 20 73.2s 389 (0)

P2
2 226 000 1 680 (+ 10 %) 199 500 (+ 1 071 %) 290 688s 5 190 (0)

P2
3 400 000 2 735 (+ 12 %) 187 773 (+ 415 %) 125 1 502s 5 542 (0)

trace partitioning being turned off), it goes through a longer sequence of widened
ranges (the analyzer attempts to find a larger, stable range), before it eventually
reaches the “top” value (i.e., range containing all concrete values). This is an
explanation for larger numbers of iterations in the case of less precise analyses.

— the control flow of the static analysis need to be more exhaustive when the
precision is worse: for instance, in the case of a conditional, a less precise input
invariant may require the analysis of both branches of the conditional whereas a
more precise invariant may require analyzing only one branch, hence, require less
time to complete.

Overall, we remark that the time per iteration is lower in the case of non-partitioning
analyses and the partitioning analyses tend to require a lower number of iterations
However, it is difficult to say for sure what is the most important factor: we may
guess that only the first factor plays a significant role here (longer analyses due
to longer widening chains), however, we should remark that the non-partitioning
transfer functions handle much simpler data-structures; the latter factor may ex-
plain the shorter iterations.

Moreover, it is rather intuitive that one iteration of a partitioning analysis should
take longer than one iteration of a non-partitioning analysis; however, the cost in
time of trace partitioning (whether global analysis time or time per iteration) never
turns out prohibitive.

Last, we remark that partitioning analyses require more memory in most cases;
this result is to be expected, since partitioning analyses generate more data-structures
and handle more numerical invariants. Yet, this cost is rather reasonable, since it
never goes above 20 % (10 % average). This is mostly due to the fact that most
partitioning criteria are local: they do not yield to huge sets of global partitions,
thanks to the insertion of merge directives (Section 5.1).

In the following, we focus on several kinds of partitioning criteria and measure
their impact on the results of the analysis.

6.3.5 Impact of the Partitioning of Conditional Structures. Second, we compare
the default, partitioning analysis with analyses carried out without some partitions.
Table V reports the result of the analysis without partitioning of conditional struc-
tures. The results in precision fall between the results of the partitioning analysis
and the results of the non-partitioning analysis. In the case of the largest applica-
tions, the number of alarms is still dramatic.

In the resource usage point of view, these results are much worse than those of
the non-partitioning analysis and of the partitioning analysis. Not only the number

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 · X. Rival and L. Mauborgne

Table VI. Impact of Inner Loops Partitioning
Size Memory peak Analysis time Iterations Alarms

(LOCs) (Mb) (s)] T.p.I.

P1
1 370 45 1.96 (-) 9 0.21s 0 (0)

P1
2 9 500 173 (-1 %) 85 (-18 %) 17 5s 8 (8)

P1
3 70 000 596 (- 6 %) 3 928 (+ 39 %) 63 62.3s 529 (0)

P2
1 70 000 391 (- 10 %) 12 319 (+1 058 %) 292 42.2s 208 (0)

P2
2 226 000 1 400 (- 9 %) 14 277 (- 16 %) 75 190s 2 954 (0)

P2
3 400 000 2 204 (- 9 %) 41 932 (+ 15 %) 115 364s 4 017 (0)

Table VII. Impact of Value-Guided Partitioning
Size Memory peak Analysis time Iterations Alarms

(LOCs) (Mb) (s)] T.p.I.

P1
1 370 45 (-) 1.58 (- 27 %) 9 0.18s 0 (0)

P1
2 9 500 173 (-) 82 (- 20 %) 17 4.8s 8 (8)

P1
3 70 000 682 (+ 7 %) 2 236 (+ 26 %) 33 67.8s 563 (0)

P2
1 70 000 438 (+ 1 %) 1 335 (+ 25 %) 20 66.7s 4 (0)

P2
2 226 000 1 550 (+ 1 %) 16 589 (- 3 %) 66 251s 3 (0)

P2
3 400 000 2 434 (-) 26 165 (- 28 %) 64 409s 8 (0)

of iterations but also the time per iteration tend to be worse than those of the
partitioning analysis (despite simpler structures being used). At this point, we can
imagine that not only the disabling of the partitioning of if -statements caused the
analyzer to go through longer widening chains but also that it resulted in a coarser
approximation of control flow. Another possibility is that the imprecision due to
the absence of partitioning after if -statement may cause more imprecise partitions
based on other criteria (loops, values of variables) to be generated, resulting in
worse performances.

6.3.6 Inner Loops Partitioning. Table VI reports the result of the analysis with-
out partitioning of loops. Again, we remark that loop partitioning is crucial for the
precision of the analyses in the case of large applications, since the analysis of the
four larger applications generate hundreds or thousands of false alarms. The in-
variants generated for the other programs are also significantly less precise (even
though, the imprecision does not cause a larger number of alarms).

In the analysis time point of view, the same comments as above apply: in general
the number of iterations is bigger, the time per iteration is smaller. In some cases
(P 2

2), the analysis is faster; in other cases (P 1
3 , P 2

1 , P 2
3) it is slower. We note that P 2

1

requires a very large number of iterations.

6.3.7 Impact of Value-Guided Partitioning. The impact of partitioning guided
by values is less significant than the impact of the previous partitioning criteria,
except in the case of the program P 1

3 (dramatic number of alarms).
We report no very important difference in execution time. Yet, we note that the

more precise analysis of P 2
2 requires more iterations.

Overall, it turns out extremely difficult to explain all variations in resources
required by static analyses: no rule allows to predict the speed of an analysis; and,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 41

in practice, too many factors play a role, even though one may be able to tell in
some cases what the most important ones are.

7. CONCLUSION

7.1 Contribution

We proposed a generic framework for defining trace partitioning domains, which
allow the partitioning of traces to be based on the history of the control flow. In
particular, we allow for static partitioning analyses (the partition is chosen before
the abstract iteration is carried out) and dynamic partitioning analyses (the analysis
may refine the choice of partitions) to be designed in this framework.

We described an instantiation of this framework in the context of the Astrée
project and presented the main data-structures and the strategies used in order to
choose the partitions which should be created. In particular, the structure of the
domain does not require any specific assumption to be made about the numerical
domain; moreover, the iterator does not need much adaptation either.

Last, we provided experimental evidence of the role played by trace partitioning
in the success of the analyzer, which can analyzer very large industrial applications,
and prove their safety (or at least, produce a very low number of false alarms). In
fact, we noticed that trace partitioning not only improved the precision (which was
to be expected) but also significantly reduces the execution time (which was not so
intuitive), mainly due to faster convergence to stable ranges.

7.2 Related Work

The partitioning of control systems was introduced early in the static analysis field,
e.g., in [Cousot 1981].

Among the closest related works, we can cite the trace partitioning static analysis
framework proposed in [Handjieva and Tzolovski 1998]; however, this framework
does not allow for the merge of partitions. Therefore, it incurs an exponential cost
(in the number of if and while statements). Moreover, it does not allow for the
dynamic partitioning guided by the values of a variable.

Another approach to partitioning in static analysis can be found in [Jeannet et al.
1999; Jeannet 2003]. It is based on a partitioning defined by predicates about the
memory state, such as the value of boolean variables. The main difference is that
we focus on the history of control flow, instead of the values of some variables. We
believe our approach is more adapted to our case, since the predicate partitioning
should be based on might not be expressed with a single variable, whereas distinct
partitions correspond intuitively to control flow paths (overall, the control flow
properties we use in order to guide the partitioning are rather simple).

We can also find several occurrences of refinements of the control structure in the
literature about data-flow analysis. For instance, [Sharir and Pnuelli 1981] stud-
ied the most common approaches to interprocedural analyses. A finer handling of
paths in control flow graphs was proposed in [Holley and Rosen 1980]: it proceeds
by integrating some information about the paths in the edges of the control flow
graph, so as to allow for a finer approximation of the control flow to be computed.
In particular, this technique was used in order to infer sets of feasible paths, so as
to allow for more precise data-flow analyses. Similarly [Bod́ık et al. 1997] deter-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

42 · X. Rival and L. Mauborgne

mines branch correlations so as to detect incompatible branchings and cut down
the approximation set of feasible paths. Our approach not only performs intuitive
abstractions of the paths, but also takes the path into account dynamically during
the analysis.

The qualified flow analysis technique was extended with path profiles [Ball and
Larus 1996] in [Ammons and Larus 1998]: profiling data should determine a set of
hot paths (i.e., more frequently taken); then, these paths can be analyzed separately,
with a higher precision (no path joins). Similarly, the express lane transformation
[Melski and Reps 2003] aims at duplicating hot paths, so as to improve precision.
However, this approach does not apply in our case. First, profiling very large
applications with very large numbers of variables does not seem a realistic solution
(at least in the time point of view). Secondly, this approach analyzes all “non-hot
paths” together (i.e., with no partitioning), which would result in a low precision,
with possibly many alarms. Indeed, the precision required in the analysis of a path
for proving it safe is not related to how frequently it is used; therefore, our approach
ignoring the frequency of paths is more adapted to program certification.

Recently, a large number of path sensitive analyses were proposed and imple-
mented in various frameworks, such as [Ball and Rajamani 2001; Flanagan et al.
2002] and contributed to the verification of complex properties. However, path
sensitivity is very costly in practice: we could not apply this technique to a single
iteration of the main loop of either of the programs considered in Section 6.3. An
interesting solution to the cost of path sensitivity (yet, not applicable in our case)
proposed in [Das et al. 2002] relies on the encoding of the property of interest into
an automaton (finite state machine): the transitions in the automaton can be used
as criteria for partitioning the paths, and a heuristic is introduced so as to merge
paths as well.

7.3 Exploring Other Partitioning Criteria

The definition of other kinds of partitioning criteria is a nice area for future work.
In particular, we are working on another instantiation of the framework described

in Section 4, so as to partition traces according to an abstraction of the history of
program executions defined by a collection of “events”.

This approach should allow to discriminate traces which satisfy some conditions
defined from the history of program executions (such as: condition P was satisfied
at point l0 at the previous iteration in a loop and is violated at the current iteration)
prove some functional properties of programs. We can relate this technique with the
notion of synchronous product of the program to analyze with an adapted control
structure: this method has been proposed and widely used for the verification of
synchronous programs [Halbwachs et al. 1993].

We already applied this technique to the semantic slicing involved in the inves-
tigation of alarms raised by Astrée in [Rival 2005]. Though, we only considered
rather simple abstractions of control flow history (based on automata), and we plan
to consider more ambitious families of abstractions.

ACKNOWLEDGMENTS

We would like to thank the other members of the Astrée team, Patrick Cousot,
Radhia Cousot, Jérôme Feret, Antoine Miné and David Monniaux for their help,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The Trace Partitioning Abstract Domain · 43

suggestions and comments during the early developments of this work. We also
acknowledge Bruno Blanchet for his contribution to the Astrée project.

REFERENCES

Ammons, G. and Larus, J. R. 1998. Improving data-flow analysis with path profiles. In Proc.
of the Conference on Programming Languages, Design and Implementation (PLDI’98). ACM
Press, New York, NY, Montréal (Canada), 72–84.

Ball, T. and Larus, J. R. 1996. Efficient path profiling. In ACM International Symposium on
Microarchitecture (MICRO 96). IEEE Computer Society, Washington DC, USA, 46–57.

Ball, T. and Rajamani, S. K. 2001. Automatically validating temporal safety properties of
interfaces. In 8th International SPIN Workshop. Lecture Notes in Computer Science. Springer-
Verlag, Toronto (Canada), 103–122.

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., and Rival, X. 2002. Design and Implementation of a Special-Purpose Static Program
Analyzer for Safety-Critical Real-Time Embedded Software, invited chapter. In The Essence
of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones,
T. Mogensen, D. Schmidt, and I. Sudborough, Eds. Lecture Notes in Computer Science 2566.
Springer-Verlag, Berlin, Germany, 85–108.

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
and Rival, X. 2003. A Static Analyzer for Large Safety Critical Software. In Conference on
Programming Languages, Design and Implementation (PLDI’03). ACM Press, New York, San
Diego (USA), 196–207.

Bod́ık, R., Gupta, R., and Soffa, M. L. 1997. Refining data flow information using infeasible
paths. In 6th European Software Engineering Conference and 5th ACM SIGSOFT Symposium
on Foundations of Software Engineering. Springer-Verlag, Zurich (Switzerland), 361–377.

Bourdoncle, F. 1993. Efficient chaotic iteration strategies with widenings. Lecture Notes in
Computer Science 735, 128–142.

Bryant, R. 1986. Graph based algorithms for boolean function manipulation. IEEE Trans.
Comput. C-35, 677–691.

Cousot, P. 1981. Semantic foundations of program analysis. In Program Flow Analysis: Theory
and Applications, S. Muchnick and N. Jones, Eds. Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, Chapter 10, 303–342.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record of
the 4th Symposium on Principles of Programming Languages (POPL’77). ACM Press, New
York, NY, Los Angeles, California, 238–252.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frameworks. In Con-
ference Record of the 6th Symposium on Principles of Programming Languages (POPL’79).
ACM Press, New York, NY, San Antonio, Texas, 269–282.

Cousot, P. and Cousot, R. 1992a. Abstract interpretation and application to logic programs.
Journal of Logic Programming 13, 2–3, 103–179.

Cousot, P. and Cousot, R. 1992b. Abstract interpretation frameworks. Journal of Logic and
Computation 2, 4 (Aug.), 511–547.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., and Rival, X.
2005. The ASTRÉE analyzer. In European Symposium On Programming (ESOP’05). Lecture
Notes in Computer Science, vol. 3444. Springer-Verlag, Edimburgh (Scotland).

Cousot, P. and Halbwachs, N. 1978. Automatic discovery of linear restraints among variables
of a program. In Conference Record of the 5th Symposium on Principles of Programming
Languages (POPL’78). ACM Press, New York, NY, Tucson, Arizona, 84–97.

Das, M., Lerner, S., and Seigle, M. 2002. Esp: Path-sensitive program verification in polynomial
time. In Proc. of the Conference on Programming Languages, Design and Implementation
(PLDI’02). ACM Press, New York, NY, Berlin (Germany), 57–68.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

44 · X. Rival and L. Mauborgne

Feret, J. 2004. Static analysis of digital filters. In European Symposium On Programming

(ESOP’04). Number 2986 in Lecture Notes in Computer Science. Springer-Verlag, Barcelona,
Spain, 33–48.

Feret, J. 2005. The arithmetic-geometric progression abstract domain. In 6th conference on
Verification, Model-Cecking and Abstract Interpretation (VMCAI’05), R. Cousot, Ed. Lecture
Notes in Computer Science 3385. Springer-Verlag, Paris, France, 2–18.

Flanagan, C., Leino, K. R., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata, R. 2002.
Extended static checking for java. In Proc. of the Conference on Programming Languages,
Design and Implementation (PLDI’02). ACM Press, New York, NY, 234–245.

Granger, P. 1989. Static analysis of arithmetical congruences. In International Journal of
Computer Mathematics. Vol. 30. 165–190.

Halbwachs, N., Lagnier, F., and Raymond, P. 1993. Synchronous observers and the verifica-
tion of reactive systems. In Algebraic Methodology and Software Technology (AMAST ’93).
Workshops in Computing. Springer, Twente (Netherlands), 83–96.

Handjieva, M. and Tzolovski, S. 1998. Refining static analyses by trace-based partitioning
using control flow. In 5th International Static Analysis Symposium (SAS’98). Lecture Notes
in Computer Science. Springer Verlag, 200–214.

Holley, L. H. and Rosen, B. K. 1980. Qualified data flow problems. In Proc. of the 7th ACM
Symposium on Principles of Programming Languages (POPL’80). ACM Press, New York, NY,
Las Vegas (Nevada), 68 – 82.

Horwitz, S., Reps, T., and Binkley, D. 1988. Interprocedural slicing using dependence graphs. In
Conference on Programming Languages, Design and Implementation (PLDI’03). ACM Press,
New York, Atlanta (USA), 35–46.

Jeannet, B. 2003. Dynamic partitioning in linear relation analysis: Application to the verification
of reactive systems. Formal Methods in System Design 23, 1, 5–37.

Jeannet, B., Halbwachs, N., and Raymond, P. 1999. Dynamic partitioning in analyses of
numerical properties. In 6th Static Analysis Symposium SAS. Lecture Notes in Computer
Science, vol. 1694. Springer-Verlag, Venice (Italy), 39–50.

Mauborgne, L. 2004. ASTRÉE: Verification of absence of run-time error. In Building the Infor-
mation Society. Kluwer Academic Publishers, Toulouse, France, Chapter 4, 384–392.

Melski, D. and Reps, T. W. 2003. The interprocedural express-lane transformation. In 12th
International Conference on Compiler Construction (CC’03). Lecture Notes in Computer Sci-

ence. Springer-Verlag, Varsaw (Poland), 200–216.

Miné, A. 2001. The Octagon Abstract Domain. In Analysis, Slicing and Transformation (in
WCRE). IEEE. IEEE CS Press, Stuttgart, Germany, 310–319.

Plotkin, G. D. 1981. A structural approach to operational semantics. Tech. Rep. DAIMI FN-19,
Aarhus University, Denmark. Sept.

Reps, T., Horwitz, S., and Sagiv, M. 1995. Precise interprocedural dataflow analysis via graph
reachability. In 22nd Symposium on Principles of Programming Languages (POPL’95). ACM
Press, New York, San Francisco (USA), 49–61.

Rival, X. 2005. Understanding the origin of alarms in astrée. In 12th Static Analysis Symposium
(SAS’05). LNCS, vol. 3672. Springer-Verlag, London (UK), 303–319.

Sharir, M. and Pnuelli, A. 1981. Two approaches to interprocedural data flow analysis. In
Program Flow Analysis: Theory and Applications, S. Muchnick and N. Jones, Eds. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, Chapter 7, 189–233.

Venet, A. 1996. Abstract Cofibered Domains: Application to the Alias Analysis of Untyped
Programs. In Static Analysis Symposium (SAS’96). Lecture Notes in Computer Science, vol.
1145. Springer-Verlag, Aachen, Germany.

Received September 2005.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

