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Abstract. We present a new representation for possibly infinite sets of
possibly infinite trees. This representation makes extensive use of shar-
ing to achieve efficiency. As much as possible, equivalent substructures
are stored in the same place. The new representation is based on a first
approximation of the sets which has this uniqueness property. This ap-
proximation is then refined using powerful representations of possibly
infinite relations. The result is a representation which can be used for
practical analysis using abstract interpretation techniques. It is more
powerful than traditional techniques, and deals well with approximation
strategies. We show on a simple example, fair termination, how the ex-
pressiveness of the representation can be used to obtain very simple and
intuitive analysis.

1 Introduction

1.1 Trees and Static Analysis

Trees are one of the most widespread structures in computer science. And
as such, it is not surprising that sets of trees appear in many areas of static
analysis. One of the first practical use of sets of trees in an analysis was
presented by Jones and Muchnick in [15], using regular tree grammars
to represent sets of trees. The problem was with tree grammars, which
are far from ideal, mainly because of the use of set variables. Computing
the intersection of two sets, for example, requires the introduction of a
quadratic number of variables [1].

In fact, the use of sets of trees have been proposed many times (see [20,
2, 22], and recently all the developments around set based analysis [13]).
But all these applications suffer from the same drawbacks, namely the
inadequacy of the representation. Practical implementations have been
exhibited using tree automata instead of grammars (or sets constraints)
[10]. But even tree automata have been introduced at the origin as a
theoretical tool for decision problems [23], and they are quite complex
to manipulate (see [4, 14, 3] for useful investigations on implementations).
Tree automata are also limited in their expressiveness, in that we cannot



express sets of trees with real relationship between subtrees, such as sets
of the form {f(an, bn, cn)|n ∈ N}. They become very complex when we
want to add infinite trees, whereas considering infinite behaviors is known
to be important in static analysis [21, 24, 6].

When we look closely at those analysis, we see that, due to some lack
of expressiveness in the representations, the actual behavior of programs
is always approximated in practice. We know a theory to deal smartly
with approximations, namely abstract interpretation [7, 8]. And in this
framework, we do not need too much from the representations we work
with. In particular, there is no need that the sets we can represent be
closed by boolean operations, as long as we can approximate these op-
erations. What we propose is an entirely new representation for sets of
trees —tree schemata—, which is practical and more expressive than tra-
ditional techniques (which means finer analysis), taking advantage of the
possibilities offered by abstract interpretation.

1.2 How to Read the Paper

Tree schemata cannot be extensively described in the frame of one paper.
It is the reason why the main ideas leading to these structures have been
published in three papers, the present one being the final synthesizing
one. The main idea of tree schemata is the use of a first raw approxima-
tion, the skeleton, which is then refined by the use of relations. The first
approximation is called skeletons, and is described in [18]. A short sum-
mary of what a skeleton is can be found in this paper in section 2. The
relations used in tree schemata may need to relate infinitely many sets,
which is why new structures where developed and presented in [16]. These
new representations for infinite structures are also described section 3.3.

The rest of the paper is organized as follows: after some basic defini-
tions and the description of skeletons, we show in section 3 how we can
enhance them with relations, and still have an incremental representa-
tion. The next section describes the expressiveness and some properties
of tree schemata, and how they fit in the abstract interpretation frame-
work. Section 5 describes an example of simple analysis exploiting a little
bit of the expressiveness of tree schemata.

1.3 Basic Definitions and Notations

The trees we consider in this article are possibly infinite trees labeled over
a finite set of labels F of fixed arity. A path of the tree is a finite word
over N. We write ≺ for the prefix relation between paths. The subtree of



a tree t at position p is denoted t[p]. A tree is said to be regular when it
has a finite number of non-isomorphic subtrees. In this case, we can draw
it as a finite tree plus some looping arrows.

We will write
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for a generic tree. The label of its root is f of

arity n, and its children are the ti’s.
We will also consider n-ary relations and infinite relations. An n-ary

relation is defined as a subset of the cartesian product of n sets. The entry
number i in such a relation corresponds to the ith position (or set) in the
relation. An infinite relation is a subset of an infinite cartesian product.

We will usually use a, b, f , g... for labels, t, u, v... for trees, x, y, z for
variables and capitalized letters for sets of trees or structures representing
sets of trees.

2 Skeletons

Skeletons (see Fig 1) were introduced in [18] as an efficient, yet limited,
representation of sets of trees. This representation is based on a canonical
representation of infinite regular trees which allows constant time equality
testing and very efficient algorithms.
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Fig. 1. Examples of skeletons

2.1 Set Represented by a Skeleton

A skeleton is a regular tree —possibly infinite— with a special label, ©,
which stands for a kind of union node.

Let F be a finite set of labels of fixed arity (© 6∈ F ). A skeleton
©
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will represent the union of the sets represented by the Si, and

f

���� ��
88

S0 Sn−1

will represent the set of trees starting by an f and such that



its child number i is in the set represented by Si. This definition of the
set represented by a skeleton is recursive. In fact, it defines a fixpoint
equation. We have two natural ways of interpreting this definition: either
we choose the least fixpoint (for set inclusion) or the greatest fixpoint. In
the least fixpoint interpretation, a skeleton represents any finite tree that
can be formed from it. In the greatest fixpoint interpretation, we add also
the infinite tree. As we want the skeletons to be a first approximation to
be refined, we choose the greatest fixpoint.

2.2 Uniqueness of the Representation

In order to have an efficient and compact representation, skeletons are
unique representations of sets of trees. It means that if two sets of trees
are equal, they will be stored in the same memory location, making reuse
of intermediate results very easy.

In order to achieve this uniqueness, as skeletons are infinite regular
trees, we use a representation with this property for infinite regular trees
[18]. But we don’t have a unique representation for sets of trees yet. We
need to restrict skeletons to regular trees labeled by F ∪ {©} and even
more:

– in a skeleton, no subtree is the empty skeleton1 unless the skeleton is
the empty skeleton,

– a choice node has either 0 or at least two children,
– a choice node cannot be followed by a choice node,
– each subtree of a choice node starts with a different label. In this way,

the choices in the interpretation of a skeleton are deterministic. As a
consequence, in addition to common subtrees, we also share common
prefixes of the trees, for a greater efficiency.

With these restrictions, skeletons have the uniqueness property, and they
are indeed easy to store and manipulate. But the last two rules imply that
not every set of trees can be represented by a skeleton. The limitation is
that we cannot have any kind of relation between two sets of brother sub-

tree. For example, in the set

{
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}
, the presence of the subtree

b is related to the right subtree a, but with a skeleton, the best we can

1 The empty skeleton is the tree ©, which is a choice with no child.



do is
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. If we did not have infinite trees, the expressive power

would be the same as top down deterministic tree automata.

3 Links

3.1 Choice Space of a Skeleton

Skeletons can be used to give a first upper approximation of the sets we
want to represent. Then, we can enrich the skeletons to represent finer
sets of trees. A first step towards the understanding of what that means
is to define what is the set of possible restrictions we can impose on a
skeleton.

The only places in the skeletons where we have any possibility of
restriction are choice nodes. Let us consider a choice node with n children.
The restrictions we can make are on some of the choices of this node,
forbidding for example the second child. So the choice space of a choice
node will be the set {0, 1, . . . , n − 1}. Now, let S be a skeleton. We can
make such a restriction for every path of S leading to a choice, and each
such restriction can depend on the others.

Thus, the choice space of a skeleton is the cartesian product of all the
choice spaces of its choice nodes. Indeed, it gives a new vision of skeletons:
we can now see them as a function from their choice space to trees. Each
value (which is a vector) in the choice space corresponds to a commitment
of every choice nodes in the skeleton to a particular choice.

Example 1. Let S be the skeleton
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. Then the choice space of

S is {0, 1} × {0, 1}. And if we consider S as a function from its choice

space, S(01) =
f
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++

a d
.

3.2 Links are Relations

Now we can see clearly what is a restriction of a skeleton: it is a subset of
the set of trees it represents which can be defined by choosing a subset of
its choice space. And a subset of a cartesian product is merely a relation.



So we have our first definition of tree schemata: a tree schema is a skeleton
plus a relation on its choice space.

But this definition raises some problems. First of all, how do we rep-
resent the relation? Second, this definition is not incremental. A repre-
sentation is incremental when you do not need to build again the en-
tire representation each time you make a tiny little change in the data.
Changes can be made locally, in general. For example, tree automata are
not incremental, especially when they are kept minimal, because for each
modification of the set, you have to run the minimization algorithm on
the whole automaton again. Skeletons are incremental [18]. The advan-
tage of incrementality is clear for the implementation, so we would like
to keep tree schemata as incremental as possible. The problem with tree
schemata as we have defined them so far is that the relation which binds
everything together is global. To change the relation into more local ob-
jects, we address two problems: the entries in the relation should not
be the paths starting from the root of the tree schema, and the relation
should be split if possible. These problems are solved by the notion of
links in the tree schema.

A link is a relation with entry names (or variables) [16] plus a function
from entry names to sets of choice nodes of the tree schema (formally, a
couple (relation, function)). The splitting of the global relation is per-
formed by means of independent decomposition. A relation R is indepen-
dently decomposed in R1 and R2 if: the entries of R1 and R2 partition the
entries of R, and R(e) is true if and only if R1(e1) and R2(e2) are true,
where ei is the subvector of e on the entries of Ri. The idea is that the
global relation is true for a given element of the choice space if and only
if it is true on every link. Each choice node is associated with at most one
link, and one entry name of that link.

Example 2. Consider the following skeleton:
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Its choice space is {0, 1}00 × {0, 1}01 (we use subscripts to denote the
entries in the relation, which is the path from the root to the choice node).



A possible restriction would be to consider the set
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The associated global relation would be {000001, 000101, 100101}. In order
to define the local link, let us call �1 and �2 the memory locations of
the left and right choice nodes respectively. The local link l would be
(R, x→ {�1}, y → {�2}), where R is the relation {0x0y, 0x1y, 1x1y}. In
the tree schema, the first choice node would be associated with (x, l)
and the second one with (y, l). If we represent the relation by a Binary
Decision Diagram (BDD) [5], the tree schema can be depicted this way:
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Note that in this example, the letter R appears just for graphical con-
ventions, in tree schemata, links are named just by the representation of
their relations and the function from entry names to choice nodes that
are associated with them.

3.3 Representation of Relations

The last problem concerns the representation of the independent rela-
tions. Binary Decision Diagrams [5] having entry names (variables) seem
to be a good candidate, as long as the relations are finite! Because the
skeleton is an infinite tree, we may have an infinite number of paths lead-
ing to choice nodes, and it may be useful to link them together. To achieve
this, we need to represent infinite relations, which raise some problems.
Those problems have been studied, and a possible solution is presented
in [16], which we briefly summarize here. Note that the actual represen-
tation of relations is but a parameter of tree schemata, and one could
choose different representations to change the balance between efficiency
and precision, or expressiveness.

Entry Names One problem which is common to all representations of
infinite relation is that we have an infinite number of entries in the rela-
tions, and each of them should be named in order to perform operations



such as restrictions. In BDDs, entry names are the variables, one for each
entry in the relation. For infinite relations we can use the notion of equiv-
alent entries: two entries i and j are equivalent if for every vector v in
the relation, the vector obtained by exchanging its values on the entries
i and j is also in the relation. In this case, we show that we can use the
same name for i and j. This allows the use of a finite number of names,
if the relation is regular enough.

Binary Decision Graphs In [16], a new class of infinite relations is
defined, the set of omega-deterministic relations. Intuitively, we can see
in relations a finite behavior part, which deals with the prefixes of the
vectors, and an infinite behavior. The idea is that for omega-deterministic
relations, the finite behavior is regular, and at any point in the decision
process, there at most one infinite regular behavior.

The representation of such relations is an extension of BDDs: instead
of having just DAGs (directed acyclic graphs), we allow cycles in the
representation (which are uniquely represented, thanks to the techniques
developed in [18]), and we add a special arrow, �//, which signals the
beginning of a new infinite behavior. One can read those graphs as follows
(see examples of Fig 2): to accept a vector in the relation, we must follow
the decisions in the graph, and count a infinite number of true. Each
time we encounter a �//, we reset our count, and each time we encounter
a true, we start again at the last encountered �// (or the beginning of
the graph if none was encountered yet). Finite BDDs correspond to the
graphs with no cycle and a �// before the true.
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Fig. 2. Examples of Binary Decision Graphs

This class of relations is closed by intersection, and has a best (in the
sense of relation inclusion) representation property for all boolean opera-
tions. Also, the representation is canonical, which gives the constant time
equality testing, as with BDDs. It is possible also to represent a bigger



class of infinite relations, the class of regular relations, which is closed
under all boolean operations, but with far less efficient data structures.

3.4 A Pseudo-Decision Procedure

In order to help reading tree schemata, we give a pseudo2 decision proce-
dure to decide whether a tree is in the set represented by a tree schema.
This procedure is performed by going through the tree and the tree
schema at the same time. We call t the current subtree, and T the current
subtree of the tree schema.

– If T =
©
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T0 Tn

then

• if no Ti has the same label as t, then the tree is not in the tree
schema;

• otherwise, let i be the index corresponding to the label of t. If
R(x = i) = false then the tree is not in the tree schema. Else
proceed on Ti and t, while keeping the fact that R is partially
evaluated on x with value i.

– T =
f
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• if f 6= g then the tree is not in the tree schema,
• else proceed with each (Ti, ti).

If in this procedure, we need to evaluate a relation on an entry which is
already evaluated, we stack a new version of the relation. The procedure
is a success if we can go through the entire tree t in this way without
failing, and the infinite valuations of relations are accepted. Note that if
a relation is not entirely evaluated and there is a possibility of evaluation
accepted by the relation, then the process is still a success.

3.5 Restrictions on the Links

Just as not every regular tree labeled on F ∪ {©} is a skeleton, not
every skeleton with any link is a valid tree schema. There are two main
reasons for that: the whole thing must be kept finite (it is a constraint on
the representation of the relations only), and we want only one possible
representation for the empty set and no infinitely increasing (for the size
of the representation) chain of tree schemata representing the same tree.
2 We call this procedure a “pseudo decision” procedure because the trees and tree

schemata being infinite, it cannot end.



Concerning the second constraint, the first thing we need to fix is
the skeleton on which the tree schema is based. Because the tree schema
represents a subset of the set represented by the skeleton, this skeleton
could be any one approximating the set we want to represent. If the set
we want to represent admits a best skeleton approximation, it is natural
that we choose this skeleton, because the better the first approximation
(the skeleton), the more efficient the algorithms. So we choose to put as
much information as possible in the skeleton, which corresponds to the
arborescent backbone of the set of trees, sharing every possible prefixes
and subtrees. In this article, we will restrict tree schemata to such sets
of trees, although it is possible to represent sets of trees with no best
skeleton approximation, such as {anbnc|n ∈ N}. The reader is referred to
[17] for further description.

To restrict the sets we represent to sets with best skeleton approxi-
mation, and to keep the skeleton of a tree schema be that best skeleton,
we just need to enforce the following two local properties:

Property 1. Whatever the link l between two choice nodes C1 and C2,
either there is no path from one choice node to the other, or if there is
one from C1 to C2, then the choice leading to that path from C1 does not
restrict the choices in C2.

Property 2. Whatever the link l in a tree schema, the relation of the link
is full, that is for every entry in the relation and for every possible value
at that entry, there is always a vector in the relation with that value on
that entry.

A tree schema respecting those properties is said to be valid. In the sequel,
we will only consider valid tree schemata.

Corollary 1. Whatever the valid tree schema T based on the skeleton
S, S is the best (for set inclusion) skeleton approximation for the set
represented by T .

Proof. Suppose there is a skeleton S′ such that S′ 6= S and the set repre-
sented by S′ is included in the set represented by S, but still contains the
set represented by T . It means that there is a path p in S such that S[p]

is a choice node and there is a choice i which is not possible in S′. The
choice node T[p] is associated with the link l. If there is no other choice
node in p linked to l, we know by property 2 that there is a vector v such
that v is admitted by l and the value of v on the choice node is i. Because
of the independence of the other links with l, there is a tree in T which



corresponds to the choice i in p, and necessarily this tree is not in S′. If
there is a choice node in p linked to l, say at path q. There is a j such
that qj � p. By induction on the number of choice nodes linked to l along
p, and by the same argument as above, we show that there is an element
of the choice space that leads to q and allows the choice j. But then, by
property 1, such a choice allows the choice of i at p. Once again, we have
a tree in T which is not in S′. ut

4 Tree Schemata and Abstract Interpretation

Tree schemata were designed to be used in abstract interpretation. In
this section, we show what is gained by this choice, and how abstract
interpretation can deal with tree schemata.

4.1 Properties of Tree Schemata

Expressiveness One of the interesting properties of tree schemata is
that they are more expressive than their most serious opponents, tree
automata. Of course, tree schemata can easily express sets containing
infinite trees, and even complex ones, but even when restricted to finite
trees, the second example of Fig 3 shows that tree schemata can express
some sets of trees which cannot be represented by tree automata.
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Note that E is the equality relation.

Fig. 3. Examples of Tree Schemata

With the appropriate representation for relations, we can also repre-
sent any regular set of trees with a tree schema. We give hereafter an
idea of the construction. Let L be the set of binary trees accepted by the
finite top-down non-deterministic tree automaton, A = (Q,A, q0,∆, F )



(see [12] for a definition). To build the tree schema representing L, the
first step is to build a non valid tree schema based on a non valid skeleton,
but which represents L, and then to apply some rules that give a valid
tree schema, without changing its meaning. The first graph is built using
the rules of Fig 4 and connecting the states together. For the final states,

we just add the labels of arity 0 to the first choice. For any tree
f
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t0 t1

recognized by the automaton starting at q, there is a rule (q, f, q0, q1) ∈ ∆
such that each ti is recognized by the automaton starting at qi. According
to the pseudo decision procedure, it means that the tree is accepted by
the tree schema starting at the choice node pointed by q, and the converse
holds because of the relations = which force a valid (q0, q1) to be taken.
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Fig. 4. Rules to build the non valid tree schema

In order to simplify the skeleton on which the non valid tree schema is
built, we can suppress choice nodes everywhere there is only one outgoing
edge, but we still have some possible cascading choices, one of them with
a relation, which cannot so easily be simplified. Fig 5 shows how this case
can be reduced, by choosing the set of S0’s and S1’s to be exactly the
sets of T 0’s and T 1’s, but without repetitions, and the relation R to be
{(a, b)|∃c, d, e such that S0

a = T 0
c,d and S1

b = T 1
c,e}. The relation R is finite,

and so easy to represent with the techniques of [16]. The last step will
combine the relations to make the skeleton deterministic: for each choice
node such that there is an Si and an Sj starting with the same label, we
must merge the two schemata and incorporate their choice nodes in R.
The immediate looping in the schema will result in the construction of
infinite relations.
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Fig. 5. Simplification rule to eliminate cascading choices

Other Properties Deciding the inclusion of tree schemata can be ef-
ficiently implemented. If the relations used in tree schemata are closed
by union intersection and projection, then tree schemata are closed by
union, intersection and projection. See [17] for proofs and algorithms.
It seems that BDGs are the best suited so far to represent relations in
tree schemata, and we will use them in the example of section 5. But as
BDGs are not closed by union, tree schemata using BDGs are not closed
by union, although we can indeed compute a best approximation (for set
inclusion) of the union of two tree schemata.

Concerning the limits of tree schemata, it seems that we cannot repre-

sent the set of balanced trees, or the set
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 because it

would require an infinite number of entry names in the relation denoting
the equality between the infinite number of trees.

4.2 Interactions with Abstract Interpretation

Abstract interpretation deals with concrete and abstract domains to de-
scribe different semantics of programs. The semantics is generally com-
puted via the resolution of a fixpoint equation. Such equations can be
expressed with formal language transformers [9] using unions and projec-
tion (which subsumes intersection). The fixpoint can then be computed
by an iteration sequence, possibly with widening. Such iteration can be



computed with tree schemata, where the approximation for union can be
seen as a widening. One of the most common operations is the inclusion
testing to decide whether we have reached a post-fixpoint. And inclusion
testing is quite efficient with tree schemata.

The structure of tree schemata can easily be used to perform mean-
ingful approximations (using widening techniques) when the size of the
schemata is too big, as this size often comes from the relations, and we
can choose to relax some relations. We can also simplify the skeletons if
necessary.

One limitation of tree schemata is the finite number of labels for the
trees. In the next section, we will see how an infinite domain can be
approximated by a finite partition.

5 Example: Proving Fair Termination

In order to show the interests of one of the features of tree schemata —the
ability to deal with infinite trees—, we chose a problem where using tree
schemata can simplify a lot of things. We show how to prove automatically
the termination under fairness assumption of concurrent processes with
shared variables using abstract interpretation.

5.1 Semantics of the Shared Variables Language

We choose a simple language originated from [19] to describe concur-
rent processes sharing their variables. A program will be of the form
P := I; [P1|| . . . ||Pn];T , where I, Pi and T are sequential deterministic
programs composed of assignments of integers or booleans, if-then-else
branching and while loops. In addition, the parallel processes Pi have an
await instruction of the form await B then S end where B is a boolean
expression and S a sequential program without await instruction.

Informally the semantics of the program uses a global state. It executes
I, and when I ends each Pi are executed in parallel with a notion of atomic
actions which cannot interact (no simultaneous assignment to the same
variable). The effect of the await instruction is to execute its program as
an atomic action starting at a time when the boolean expression is true.
The boolean expression is guaranteed to be true when the sequential
program starts. Finally, when every parallel program has terminated, the
program executes T .

We give the notion of atomic actions through a relation → defined
by structural induction (following [11]). The definition is described in



〈x:=e, σ〉 → 〈E, σ[e/x]〉 E;S = S;E = S

σ |= B
〈while B do S, σ〉 → 〈S;while B do S, σ〉

σ |= ¬B
〈while B do S, σ〉 → 〈E, σ〉

σ |= B and 〈S, σ〉 →∗ 〈E, τ〉
〈await B then S end, σ〉 → 〈E, τ〉

〈S1, σ〉 → 〈S2, τ〉
〈S1;S, σ〉 → 〈S2;S, τ〉

〈Pi, σ〉 → 〈P ′
i , τ〉

〈[P1|| . . . ||Pn], σ〉 → 〈[P1|| . . . ||Pi−1||P ′
i ||Pi+1|| . . . ||Pn], τ〉

Fig. 6. Definition of the Transition Relation →

figure 6 using a special empty program E. Based on this relation, we can
define a semantics based on interleaving traces. We incorporate a notion of
program points in the states. The program points of the parallel programs
are the vectors of their program points. We have the following definition
of the semantics T (〈i : S, σ〉) of a program point i with expression S and
environment σ:

T (〈i : S, σ〉) def=

{
〈i,σ〉
��
t

∣∣∣∣∣ t ∈ T (〈j : P, τ〉) and 〈S, σ〉 → 〈P, τ〉

}
T (〈i : S, σ〉) def= 〈i, σ〉 if there is no state reachable from 〈S, σ〉

A program P is said to be terminating if and only if for every σ
T (〈P, σ〉) does not contain any infinite trace. We can also define a dead-
lock as the end of a trace with index different from the last index of the
program. We define T (P ) as the union of the T (〈P, σ〉) for all environ-
ment σ. The elements of T (P ) are called the traces of P .

5.2 Expressing Program Properties as Sets of Traces

It is possible to express many program properties using just sets of traces.
For example, termination is expressed as the set of all finite traces. To
check that the program terminates, we just have to check that its set of
traces is included in the termination property. In the same way, we can
express termination without deadlock.

We can also express different kinds of fairness to decide whether a
given trace of the program satisfies the fairness property. Every fairness
property contains all finite traces. If it is an unconditional fairness [11]



property then it contains also the infinite traces either with a finite pas-
sage in the concurrent part of the program, or such that each concurrent
program that is not terminated progresses infinitely often.

We can prove that a program fairly terminates by proving that its set
of traces intersected with the set of fair traces is included in the set of
terminating traces.

Example 3. Consider the program

P =0 b:=true[0while b do 1skip2||0b:=false1]1

The set of traces of P can be described by the following tree schema (we
omit the beginning, which is not important):

T (P ) =
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The termination property is expressed as:

Term =
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To express the fairness property, we first describe the infinite fair
traces, then we add the finite traces3:

Fairω =
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Fair = Fairω ∪ Term

Then, to prove the fair termination of the program P , we just have
to compute Fair ∩ T (P ) and verify that it is included in Term.
3 We use this presentation just for the clarity of the schemata, we could just as well

define Fair directly.



5.3 Abstraction of the set of traces

One of the limitations of tree schemata (necessary for a finite represen-
tation) is that we need a finite set of labels. Choosing the states to be
the labels, we can have infinite sets of labels. To cope with this difficulty,
we define an abstract semantics which approximates the concrete one
described above, using the techniques of abstract interpretation.

Because we are interested in the control flow of the program, we just
need to distinguish between states that evaluate differently on the boolean
expressions in the program we analyze. We define abstract states to be
each such partition of the set of states. We write states] to denote this
set of states. We define now abstract traces as traces labeled by states].
The concrete semantics is a set of concrete traces, the abstract semantics
is a set of abstract traces. There is a Galois connection (for set of traces
inclusion) [7] between those two semantics. Let trace be the set of sets
of concrete traces, and trace] be the set of sets of abstract traces. The
concretisation of a trace t] is the set of traces obtained by replacing every
abstract state by a concrete state in the set of states it defines. The
concretisation of a set of abstract traces is the union of the concretisations
of its elements.

Sets of abstract traces are represented as tree schemata, but for our
analysis to be ready, we need also to translate the properties into sets
of abstract traces which will then be represented by tree schemata. The
problem is that, whereas the fairness property can safely be over-approxi-
mated, we cannot over-approximate the termination property. The good
news is that we can always represent this property exactly. Because of the
way we chose the abstract states, the set of states with no successor for
→ is represented exactly by the set of abstract state with no successor.
Thus the concretisation of the set of finite abstract traces is exactly the
set of finite concrete traces. The set of finite abstract traces can easily be
represented by a tree schema, the general method is the same as in the
previous example.

For more powerful results, we need also to take into account the de-
creasing chains of integers in the states. For our purpose, such decreasing
chains can be seen as a further constraint that some loop can only be taken
finitely often, a fact that can be exactly expressed with tree schemata.

Of course, even with that analysis, we still manipulate abstractions
of the sets of traces, so there will be some programs fairly terminating
and not proved by this technique. This is inherent to approximation tech-
niques, and unavoidable anyway when dealing with termination.



Example 4. Let P be the following program:

P = 0x:=?1; b:=true; [0while b do 1x:=x− 12||
0await x < 0 then 1b:=false end2]

In this example, the set of abstract states is {(x ≥ 0, t), (x ≥ 0, f), (x <
0, t), (x < 0, f)} to which we add the indexes of the program. The abstract
state corresponding to the set of all the sets which are terminating is
(22, x < 0, f).

Due to this approximation, the two possible states following (10, x ≥
0, t) are (20, x ≥ 0, t) and (20, x < 0, t). The first state leads to a loop
towards (00, x ≥ 0, t). It is a very simple analysis that reveals that in this
loop we have a decreasing chain, so this loop cannot be taken for ever.
By adding this constraint we can perform the same analysis as in the
previous example and still conclude that the program fairly terminates.

6 Conclusion

We presented a new representation for sets of trees. This representation
has been developed with tractability in mind. It is based on a structure,
the skeleton, which is an upper approximation of the set we represent.
Tree schemata benefit from the great efficiency of the operations on skele-
tons. The skeletons are enriched with possibly infinite relations. With
them, they are more powerful than tree automata, while more adapted
to approximation techniques.

The example of fair termination showed that with such expressiveness
it is possible to model very easily the behavior of programs. There was no
need for complicated program transformations, introduction of variables
or deep proofs. It is to be noted that the full power of tree schemata
have not been used in this example, as no relation between distinct traces
occurs.

The main drawbacks of this representation is that it is not fully tested
yet. But the algorithms presented in [17] show that it is very promis-
ing, due to the unique representation of many elements of tree schemata.
Moreover, the canonical decomposition of sets of trees in a tree structure
and relations, allows for a very natural introduction of counters which can
be very useful in analysis, especially if some of these counters are related
to the programs we analyze.
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