
Trace Partitioning in Abstract Interpretation
Based Static Analyzers

Laurent Mauborgne and Xavier Rival

DI, École Normale Supérieure, 45 rue d’Ulm, 75 230 Paris cedex 05, France
Emails: Laurent.Mauborgne@ens.fr and Xavier.Rival@ens.fr

Abstract. When designing a tractable static analysis, one usually needs
to approximate the trace semantics. This paper proposes a systematic
way of regaining some knowledge about the traces by performing the
abstraction over a partition of the set of traces instead of the set it-
self. This systematic refinement is not only theoretical but tractable: we
give automatic procedures to build pertinent partitions of the traces and
show the efficiency on an implementation integrated in the Astrée static
analyzer, a tool capable of dealing with industrial-size software.

1 Introduction

Usually, concrete program executions can be described with traces; yet, most
static analyses abstract them and focus on proving properties of the set of reach-
able states. For instance, checking the absence of runtime errors in C programs
can be done by computing an over-approximation of the reachable states of the
program and then checking that none of these states is erroneous. When com-
puting a set of reachable states, any information about the execution order and
the concrete flow paths is lost.

However, this reachable states abstraction might lead to too harsh an approx-
imation of the program behavior, resulting in a failure of the analyzer to prove
the desired property. For instance, let us consider the following program:

if(x < 0){ sgn = −1; }
else{ sgn = 1; }

Clearly sgn is either equal to 1 or −1 at the end of this piece of code; in particular
sgn cannot be equal to 0. As a consequence, dividing by sgn is safe. However,
a simple interval analysis [7] would not discover it, since the lub (least upper
bound) of the intervals [−1,−1] and [1, 1] is the interval [−1, 1] and 0 ∈ [−1, 1].
A simple fix would be to use a more expressive abstract domain. For instance,
the disjunctive completion [8] of the interval domain would allow the property
to be proved: an abstract value would be a finite union of intervals; hence,
the analysis would report x to be in [−1,−1] ∪ [1, 1] at the end of the above
program. Yet, the cost of disjunctive completion is prohibitive. Other domains
could be considered as an alternative to disjunctive completion; yet, they may
also be costly in practice and their design may be involved. For instance, common

relational domains like octagons [15] or polyhedra [10] would not help here, since
they describe convex sets of values, so the abstract union operator is an imprecise
over-approximation of the concrete union. A reduced product of the domain of
intervals with a congruence domain [12] succeeds in proving the property, since
−1 and 1 are both in {1 + 2 × k | k ∈ N}. However, a more intuitive way to
solve the difficulty would be to relate the value of sgn to the way it is computed.
Indeed, if the true branch of the conditional was executed, then sgn = −1;
otherwise, sgn = 1. This amounts to keeping some disjunctions based on control
criteria. Each element of the disjunction is related to some property about the
history of concrete computations, such as “which branch of the conditional was
taken”. This approach was first suggested by [16]; yet, it was presented in a
rather limited framework and no implementation result was provided. The same
idea was already present in the context of data-flow analysis in [13] where the
history of computation is traced using an automaton chosen before the analysis.

Choosing of the relevant partitioning (which explicit disjunctions to keep
during the static analysis) is a rather difficult and crucial point. In practice,
it can be necessary to make this choice at analysis time. Another possibility
presented in [1] is to use profiling to determine the partitions, but this approach
is relevant in optimization problems only.

The contribution of the paper is both theoretical and practical:

– We introduce a theoretical framework for trace partitioning, that can be
instantiated in a broad series of cases. More partitioning configurations are
supported than in [16] and the framework also supports dynamic partitioning
(choice of the partitions during the abstract computation);

– We provide detailed practical information about the use of the trace parti-
tioning domain. First, we describe the implementation of the domain; second,
we review some strategies for partition creation during the analysis.

All the results presented in the paper are supported by the experience of the
design, implementation and practical use of the Astrée static analyzer [2, 14].
This analyzer aims at certifying the absence of run-time errors (and user-defined
non-desirable behaviors) in very large synchronous embedded applications such
as avionics software. Trace partitioning turned out to be a very important tool
to reach that goal; yet, this technique is not specific to the families of software
addressed here and can be applied to almost any kind of software.

In Sect. 2, we set up a general theoretical framework for trace partitioning.
The main choices for the implementation of the partitioning domain are evoked
in Sect. 3; we discuss strategies for partitioning together with some practical
examples in Sect. 4. Finally, we conclude in Sect. 5.

2 Theoretical Framework

This section supposes basic knowledge of the abstract interpretation framework
[5]. For an introduction, the reader is referred to [9].

2.1 Definitions

Programs: We define a program P as a transition system (S,→,Sι) where S
is the set of states of the program; → is the transition relation describing the
possible execution elementary steps and Sι denotes the set of initial states.

Traces: We write S? for the set of all finite non-empty sequences of states. If σ
is a finite sequence of states, σi will denote the (i+1)th state of the sequence, σ0

the first state and σa the last state. We define ς (σ) as the set of all the states
in σ. We extend this notation to sets of sequences: ς (Σ) def=

⋃
σ∈Σ ς (σ).

If τ is a prefix of σ, we write τ � σ. A trace of the program P is defined
as an element of JP K def= {σ ∈ S? | σ0 ∈ Sι ∧ ∀i, σi → σi+1 }. Note that the set
JP K is prefix-closed. An execution of the program is a possibly infinite sequence
starting from an initial state and such that there is no possible transition from
the final state, if any. Executions are represented by the set of their prefixes,
thus avoiding the need to deal with infinite sequences.

2.2 Reachability Analysis

In order to prove safety properties about programs, one needs to approximate
the set of reachable states of the programs. This is usually done in one step by the
design of an abstract domain D] representing sets of states and a concretization
function that maps a representation of a set of states to the set of all traces
containing these states only. In order to be able to refine that abstraction, we
decompose it in two steps. The first step is the reachability abstraction, the
second one the set of states abstraction.

We start from the most precise description of the behaviors of program P ,
given by the concrete semantics JP K of P , i.e the set of finite traces of P , so the
concrete domain is defined as P�(S?) def= {Σ ⊆ S? |Σ is prefix-closed}.

Reachability Abstraction: The set of reachable states of Σ can be defined by
the abstraction αR(Σ) def= {σa | σ ∈ Σ }. Considering the concretization γR(T) def=

{σ ∈ S? | ∀i, σi ∈ T }, we get a Galois connection P�(S?)
αR

// P(S)
γRoo . This Ga-

lois connection will allow us to describe the relative precision of the refinements
defined in the sequel of this section.

Set of States Abstraction: In the rest of the section, we will assume an
abstract domain D] representing sets of states and a concretization function1

γ : D] → P(S). Basically, γ(I) represents the biggest set of states safely ap-
proximated by the (local) abstract invariant I. The goal of this abstraction is to
compute an approximation of the set of states effectively.

1 Abstract domains don’t necessarily come with an abstraction function.

2.3 Trace Discrimination

Definition 1 (Covering). A function δ : E→P(F) is said to be a covering of
F if and only if

⋃
x∈E(δ(x)) = F .

Definition 2 (Partition). A function δ : E→P(F) is said to be a partition
of F if and only if δ is a covering of F and ∀x, y ∈ E, x 6= y ⇒ δ(x)∩ δ(y) = ∅.

Trace Discriminating Reachability Domain: Using a well-chosen function
δ of E → P(S?), one can keep more information about the traces. We define
the trace discriminating reachability domain Dδ

R as the set of functions from
E to P(S), ordered pointwise. The trace discriminating reachability abstraction
is αδ

R : P�(S?)→Dδ
R, αδ

R(Σ)(x) def= {σa | σ ∈ Σ ∩ δ(x)}. The concretization is
then γδ

R(f) = {σ | ∀τ � σ,∀x, τ ∈ δ(x) ⇒ τa ∈ f(x)} ((αδ
R, γδ

R) form a Galois
connection).

Comparing Trace Discriminating and Standard Reachability: Follow-
ing [8], we compare the abstractions using the associated upper closure operators
(the closure operator associated to an abstraction α, γ is γ◦α). The simple reach-
ability upper closure maps any set of traces Σ to the set {σ | ∀i, ∃τ ∈ Σ, σi = τa }
of traces composed of states in Σ. Thus, in order to give a better approximation,
the new upper closure must not map any Σ to a set containing a state which
was not in Σ. If δ is not a covering, then there is a sequence which is not in⋃

x∈E δ(x), and by definition of γδ
R, that sequence can be in any γδ

R(f), so it is
very likely that Dδ

R is not as precise as the simple reachability domain. On the
other hand, if

⋃
x∈E δ(x) = S?, γδ

R ◦ αδ
R is always at least as precise as γR ◦ αR.

A function δ : E→P(S?) can distinguish a set of traces Σ1 from a set Σ2

if there exists x in E such that Σ1 ⊆ δ(x) and Σ2 ∩ δ(x) = ∅. The following
theorem states that, if the covering δ can distinguish at least two executions
with a state in common, then the abstraction based on δ is more precise than
standard reachability. Moreover, the abstraction based on δ is always at least as
precise as the standard reachability abstraction.

Theorem 1. Let δ be a covering of S?. Then, (Dδ
R, γδ

R) is a more precise ab-
straction of P�(S?) than (S, γR). Moreover, if there are two elements of P�(S?)
which share a state and are distinguished by δ, then the abstraction (Dδ

R, γδ
R) of

P�(S?) is strictly more precise than (S, γR).

Proof. By definition, γδ
R ◦αδ

R(Σ) is the set of traces σ such that ∀τ � σ,∀x, (τ ∈
δ(x) ⇒ ∃υ ∈ Σ∩δ(x), τa = υa). ∃υ ∈ Σ∩δ(x), τa = υa implies ∃υ ∈ Σ, σi = υa.
If δ is a covering, then for all τ , there is at least one x such that τ ∈ δ(x). So
γδ

R ◦ αδ
R ⊆ γR ◦ αR, meaning that the abstraction (Dδ

R, γδ
R) of P�(S?) is more

precise than (S, γR).
To prove that we have a strictly more precise abstraction, we exhibit a set of

traces Σ such that γδ
R ◦αδ

R(Σ) is strictly smaller than γR ◦αR(Σ). Following the
hypothesis, let Σ1, Σ2, s and x be such that s is a state in ς (Σ1) ∩ ς (Σ2), and

Σ1 ⊆ δ(x) and Σ2∩δ(x) = ∅. Let σ be a sequence of Σ1 such that σa = s (this is
always possible because Σ1 is an element of P�(S?), and as such prefix-closed).
Let Σ = (ς (δ(x))− {s})? ∪Σ2. Then ς (σ) ⊆ ς (Σ), so σ is in γR ◦ αR(Σ). But
whatever υ ∈ Σ ∩ δ(x), υ does not contain s, so it cannot end with s, hence
σ 6∈ γδ

R ◦ αδ
R(Σ). ut

Corollary 1. If δ is a non trivial partition of S? (no δ(x) is S?), then the
abstraction (Dδ

R, γδ
R) of P�(S?) is strictly more precise than (S, γR).

Proof. Suppose that for an x, ∀s ∈ ς (δ(x)), ∀y 6= x, s 6∈ ς (δ(y)). Then, because
δ is a covering, all sequences containing a state of δ(x) is in δ(x), which means
δ(x) = (ς (δ(x)))?. Since δ is a non trivial partition of S? not all δ(x) can be of
this form. So there is an x and a y such that δ(x) distinguishes between δ(x)
and δ(y) having a state in common. ut

In practice so far, only partitions will be considered, so the results of Theorem 1
apply.

2.4 Some Trace Partitioning Abstractions

In this paragraph, we instantiate the framework to various kinds of partitions. In
this instantiation we suppose a state can be decomposed into a control state in L
and a memory state in M. Thus S = L×M. We also assume that the abstract
domain D] forgets about the control state, just keeping an approximation of the
memory states.

We illustrate some partitions with a simple abstract program containing a
conditional on Fig 1.

Final Control State Partition: Let δL : L → P�(S?) be the partition of
S? based on the final control state: δL(l) def= {σ ∈ S? | ∃ρ, σa = (l, ρ)}. This
partition is very common and usually done silently when designing the abstract
semantics. It leads to the abstraction (D]

l , γ) of D, where D]
l

def= L → D] and
γ(I) def= {σ ∈ P�(S?) | ∀i, σi = (li, ρi) ∧ ρi ∈ γ(I(li))}.

Control Flow Based Partition: In [16], Tzolovski and Handjieva introduced
trace-based partitioning using control flow. To simplify, they proposed to extend
the control states with an history of the control flow in the form of lists of tags
ti or fi (meaning that the test number i was true or false). Then, they perform
a final control state partition on this new set of control states. In order to keep
the set of control states finite, they associate with each while loop an integer
limiting the number of ti to be considered.

Formally, let B ⊆ L be the set of control points introducing a branching (e.g.
conditionals, while loops...). We define C def= {(b, l) ∈ B × L| ∃ρ, ρ′ ∈M, (b, ρ) →
(l, ρ′)} as the set of possible branch choices in the program. Note that in a branch
choice (b, l), l is necessarily directly accessible from b. In order to define the trace

partition used in [16], we define the control flow abstraction of a trace as the
sequence cf (σ) ⊆ C? made of the maximal sequence of branch choices taken
in the trace. Then, the control flow based partition is defined as the partition
δcf : L × C?→P(S?), δcf(l, β) def= {σ ∈ δL(l) | cf (σ) = β }.

In order to keep the partition finite, [16] limits the number of partitions per
branching control points. They use a parameter κ : B → N in the abstraction
function. The κ-limiting abstraction is defined as λκ(β) which is the subsequence
of β obtained by deleting the branching choices βi = (b, l) such that if b is the
conditional of a loop, the loop have been taken more than κ(b) consecutive times
(if b is a simple branching, it is deleted if κ(b) is 0). Then, if we use λκ◦cf instead
of cf , the effect will be to merge partitions distinguishing the simple branchings
for which κ is 0 and the iterations of the loops after some point. So the partition
finally used is δcf : L × λκ(C?)→P(S?).

l0

��
l1

~~}}
AA

l2

AA

l3

~~}}
l4

��
l5

〈l0,ε〉

��
〈l1,ε〉

vvnnnn ((PPP
P

〈l2,(l1,l2)〉

��

〈l3,(l1,l3)〉

��
〈l4,(l1,l2)〉

��

〈l4,(l1,l3)〉

��
〈l5,(l1,l2)〉 〈l5,(l1,l3)〉

〈l0,ε〉

��
〈l1,ε〉

vvnnnn ((PPP
P

〈l2,(l1,l2)〉

��

〈l3,(l1,l3)〉

��
〈l4,(l1,l2)〉

((PPP
P 〈l4,(l1,l3)〉

vvnnnn
〈l5,ε〉

a. Control State Partition b. Control Flow Partition c. Merging Control Flow

Partition

Fig. 1. Some partitions for the program l0 : s0; l1 : if(c){ l2 : s1; } else { l3 : s2; } l4 :
s3; l5 : s4;

2.5 Designing Pertinent Partitions

The control flow based partition can give very precise results but is also very
expensive. Even if the parameter κ is very restrictive (keeping the useful parti-
tions only) the setting will keep the partitions after they are needed. This is very
costly because each partitioning point multiplies the cost by 2 at least. Using
the more general setting we describe, it is possible to define more pertinent and
less expensive partitions. We describe here two examples.

Merging Control Flow: In order to reduce the cost it is possible to include
in the same partition, not only the traces before a branching point, but also the
traces exceeding a certain following control point. We do that if we guess that
the partition based on the branching is not useful after this point. In conjunction
with the final state control partition, it means that at each control point, we keep

only some presumably useful partitions. Formally, we introduce a new parameter,
M ⊆ L and modify cf such that we forget everything that is before a control
point in M. To be more precise, it is even possible to use a function M→B and
forget only the branching points corresponding to the merging point. On the
example of Fig. 1, if M = {l5}, we get the partition in Fig. 1-c.

Value Based Trace Partition: The most adapted information for the defini-
tion of the partitions might not lie in the control flow. For instance, to regain
some complex relationship between a variable with a few possible values and
the other variables, we can add a partition according to the values of the vari-
able at a given control point. The advantage of this approach is the very low
implementation cost compared to the design of a new relational domain.

2.6 The Trace Partitioning Abstract Domain

The partitions of S? are naturally ordered by the notion of being finer (they
even form a complete lattice).

Definition 3. A partition δ1 is finer than δ2 if ∀x, ∃y, δ1(x) ⊆ δ2(y). We write
δ1 - δ2.

This lattice can be the basis of an abstract domain, using techniques inspired
of the cofibered domains of [17]. The interest of such a domain is twofold. First, it
allows dynamic partitioning by changing the partitions during the analysis (de-
pending on the properties of the program inferred during the analysis). Second,
it gives the possibility of using infinite partitions (or very big partitions) which
can be abstracted away during the computation of the invariants by widening.

Basis: We introduce the notion of equivalence between partitions: δ1 is equiv-
alent to δ2 if ∀x, ∃y, δ1(x) = δ2(y). The basis of the trace partitioning abstract
domain is the set T of all partitions of S? up to equivalence.

Let δ1 and δ2 in T. If δ1 - δ2, then the abstraction Dδ1
R is more precise than

Dδ2
R if compared as closure operators, as seen in Sect. 2.3. The most precise

(finest) partition distinguishes all traces: it is {{σ} | σ ∈ S?}. Note that the
standard reachability domain corresponds to the supremum element of T: we
define δ0 : {0}→P�(S?) as δ0(0) def= S?. It is obvious that (S, αR) is isomorphic
to (Dδ0

R , αδ0
R).

Definition 4 (partitioning abstract domain). The trace partitioning ab-
stract domain, D], is defined as: D] = {(δ, I) | δ ∈ T ∧ I ∈ Dδ

R}

Application of Dynamic Partitioning: Choosing the partitions at analysis
time is crucial in many cases. For instance, the analyzer should be able to decide
whether or not to operate value based partitioning (Sect. 2.5) during the analy-
sis; indeed, in case the analysis gives no precise information about the range of

an integer variable i, partitioning the traces with the values of i would lead to
a dramatic analysis cost, possibly for no precision improvement. Other applica-
tions include the dynamic choice of the number of unrolled iterations in a loop
(Sect. 4.4) or the analysis of recursive functions [4].

Widening: Because the basis contains infinite ascending chains, we need a
widening to use the trace partitioning domain in practice. We can produce a
widening on D] as soon as we have a widening on the basis ∇T and a widening
on the set of states abstract domain. This widening ∇ can be derived by a con-
struction similar to [17]. To compute (δ1, I1)∇(δ2, I2), we compute δ = δ1∇Tδ2

and then widen the best approximations of I1 and I2 in Dδ
R.

3 Implementation of the Domain

We now provide an overview of the data structures and algorithms which turned
out the most efficient for the implementation of the trace partitioning domain.

3.1 Partition Creation and Merge

Partitions are created at partition begin control points. Such points are defined by
partitioning directives The choice of the points where partition directives should
be inserted will be discussed in Sect. 4.1. The main directives we implemented
are: If-partitioning, Loop-partitioning, Call-stack handling, Value-partitioning.
A partition end point merges some or all partitions. Partition begins and parti-
tion ends may or may not be well parenthesized as far as the soundness of the
analysis is concerned. We may imagine some partitioning strategies that would
merge older partitions first and result in more precise results. Astrée assumes
that partition begins and partition ends are well parenthesized for the sake of
efficiency only.

A token stands for an element of the partitions observed at a (set of) con-
trol point(s). As suggested in Sect. 2.5, we partition traces according to some
conditions like the choice of a branch in a conditional structure. We let such a
condition be denoted by a pre-token. Then, a token is defined as the series of
such conditions the execution flowed through, hence can be considered a stack of
tokens. We choose a stack here instead of a list or a set, since the last partition
opened should be closed first so the order of pre-tokens should be preserved.

Definition 5 (tokens). Pre-tokens (p ∈ P) and tokens (t ∈ T) are defined by
the following grammar (which can be extended):

p ::= If true(l) | If false(l) | Val Var(v, k, l)
| While unroll(l, k) | While iter(l) | Fun Call(f, l)

t ::= ε
| t.p

where f is a function name, l a program point, v a program variable, k an integer.

For instance, the pre-token Fun Call(f, l) characterizes traces that called the
function f at point l and have not returned yet. The pre-token If true(l) char-
acterizes the traces that flowed through the true branch of the conditional at
point l and have not reached the corresponding merge point yet. The pre-token
Val Var(v, k, l) characterizes the traces that have reached l with the condition
v = k satisfied and have not reached the corresponding merge point yet. The
pre-token While unroll(l, k) characterizes the traces that spent exactly k itera-
tions in the loop at point l; the pre-token While iter(l) characterizes the traces
that spent more iterations in the loop than the number of unrolls for this loop.

A partition in the sense of Sect. 2.3 is defined by a tuple (l, t) where l is a
control state and t a token, since we partition the system with the control states.
In other words, we fix E = L × T .

3.2 Abstract Values

Let us consider a control point l and a set P of partitions observed at this
point, during the analysis. Then, the prefix of the tokens corresponding to the
partitions in P can be shared. By construction, the set of tokens corresponding
to the partition at a given program point is prefix-closed; hence, a local invariant
is represented by a tree; a path from the root to a leaf in such a tree corresponds
to a uniquely defined token. We write D] for the underlying domain abstracting
sets of states. We assume that D] features a least element ⊥ and a lub t.

Definition 6 (abstract value). The abstract partitioning domain is defined
by D] = L → D]

p, with the pointwise ordering, where elements of D]
p are defined

by induction as follows:

d ::= leaf[v] (v ∈ D]) | node[φ] (φ ∈ P → D]
p)

Roughly speaking, an element of D]
p encodes a function T → D]; so an element

of D] corresponds to an element of L → (T → D]) (which is equivalent to
(L×T) → D]). Hence, D] is obtained from the trace discriminating reachability
domain (Sect. 2.3) by composition the abstraction γ : D] → P(S) pointwise. It
is a particular instance of a partitioning abstract domain as defined in Sect. 2.6.
Furthermore, we insure sharing of common parts of the underlying numerical
invariants across partitions, which reduces memory requirements.

Let us consider the program below (example of Sect 2.4 continued). We as-
sume that the conditional at point l1 is partitioned and that the corresponding
merge-point is l4. The shape of the partitions (hence, the local abstract invari-
ants) at various program points is displayed below (the • symbol stands for a
value in D]).

l0 : s0;
l1 : if(c){
l2 : s1

}else{
l3 : s2}
l4 : s3;
l5 : s4;

PSfrag replacements

l0, l1, l5
l2
l3
l4
t
f

⊥

3.3 Iteration Scheme

The computation of an approximation of JP K requires some counterpart for the
transition relation →. For all l, l′ ∈ L, we let ϑl,l′ : D]

p → D]
p denote the abstract

transfer function corresponding to the edge (l, l′). It is sound if and only if
∀d ∈ D]

p, ∀ρ, ρ′ ∈M, ρ ∈ γp(d) ∧ (l, ρ) → (l′, ρ′) ⇒ ρ′ ∈ γp(ϑl,l′(d)).
In case (ϑl,l′) is a family of sound abstract transfer functions, an abstract

semantic function can be derived, such that F ◦ γ ⊆ γ ◦F]; iterating it from the
least element and using standard widening techniques yield a sound approxima-
tion of JP Kt, i.e. the definition of a sound abstract semantics JP K] ∈ D].

3.4 Abstract Transfer Functions

We let C denote the set of conditional expressions. We define the main abstract
transfer functions below:

– Non partitioning-related transfer functions. we consider the case of
the operator guard : C×D]

p → D]
p, which is the abstract counterpart of the

concrete condition testing (guardn is the operator provided by D]):

guard(C, leaf[v]) = leaf[guardn(C, v)]
guard(D,node[φ]) = node[p 7→ guard(D,φ(p))]

– Partition creation (create : (T → C)×D]
p): if C : T → C is a family of

conditions associated to all the created partitions, then create(C, d) creates
a new partition defined by the condition C(t) for each token t (Sect. 2.4). It
can be written with an auxiliary function to accumulate prefixes:

create(C, d) = create0(C, ε, d)
create0(C, t, leaf[v]) = node[p 7→ leaf[guardn(C(t), v)]]

create0(C, t, node[φ]) = node[p 7→ create0(C, t.p, φ(p))]

– Partition merge (merge : P(T) × D]
p → D]

p): merge(X, d) yields a
new abstract value whose partitions are elements of the set X (where the
elements of X denote covering of the traces at the current program point
and form another prefix-closed set of tokens); basically merge merges some
existing partitions so as to restrict to a smaller set of partitions (Sect. 2.5).

In practice X is a subset of the set of prefixes of the tokens corresponding
to the partitions in d. It is defined in a similar way as merge:

merge(X, d) = merge0(X, ε, d)
merge0(X, t, leaf[v]) = leaf[v]

merge0(X, t,node[φ]) = leaf[tn{v | node[φ] ancestor of leaf[v]}] if t ∈ X
merge0(X, t,node[φ]) = node[p 7→ merge0(X, t.p, φ(p))] otherwise

The program displayed in Sect. 3.2 exemplifies partition creation (between l1
and l2, l3) and partition merge (between l4 and l5).

4 Trace Partitioning in Practice

The theoretical framework and our implementation of the trace partitioning
abstract domain allow the introduction of a huge number of different partitions
to refine the analysis. One last issue is to find which partition will indeed help
the analysis while not impending too much on the complexity.

4.1 Manual Directives and Automatic Strategies

Our implementation allows the end-user to make such choices by specifying par-
titioning directives such as control flow or value partitions, or partition merges
in the program code. Some functions to be partitioned according to the control
flow (as in [16]) can also be specified (a merge is inserted at the return point).
Although this possibility proved very useful for static analysis experts to im-
prove the precision of an analysis, it is quite likely that most end-users would
miss opportunities to partition or propose too costly partitions. That is why
we believe that static analyzer designers should also devise automatic strategies
adapted to the kind of programs they wish to analyze precisely.

Automatic strategies for trace partitioning stem from imprecisions observed
in the analysis of the target programs. When those imprecisions are understood,
they can be captured by semantic patterns. In the three following sections, we
present typical examples of imprecisions solved by a partitioning, together with
the strategy which provides the ad-hoc partitions.

4.2 Linear Interpolations

Example: Computing functions defined by linear interpolation is a rather com-
mon task in real-time embedded software (e.g. functions describing the command
reaction laws). We consider here the case of the piece of code below that inputs a
value in variable x and computes in variable y the result of a linear interpolation.
The loop checks in which range the variable x lies; then, the corresponding value
is computed accordingly.

l0 : int i = 0;
l1 : while(i < n && x > tx[i + 1])
l2 : i + +;
l3 : y = tc[i]× (x− tx[i]) + ty[i]
l4 : . . .

tc = {0; 0.5; 1; 0}
tx = {0;−1; 1; 3}
ty = {−1;−0.5;−1; 2}

y =

8>><>>:
−1 if x ≤ −1
−0.5 + 0.5× x if − 1 ≤ x ≤ 1
−1 + x if 1 ≤ x ≤ 3
2 if 3 ≤ x

Fig. 2. Linear interpolation

Non Relational Analysis: The execution of this fragment of code is expected
to yield a value in the range [−1, 2] whatever the value of x. However, inferring
this most precise range is not feasible with a standard interval analysis, even if
we partition the traces depending on the values of i at point l3. Let us try with
−100 ≤ x ≤ 0: then, we get i ∈ {0, 1} at point l3. The range for y at point
l4 is [−0.5 + 0.5 × (−100.),−0.5] ≡ [−50.5,−0.5] (this range is obtained in the
case i = 1; the case i = 0 yields y = −1). Accumulating such huge imprecisions
during the analysis may cause the properties of interest (e.g. the absence of
runtime errors or the range of output values) not to be proved. We clearly see
that some relations between the value of x and the value of i are required here.

Analysis with Trace Partitioning: Our approach to this case is to partition
the traces according to the number of iterations in the loop. Indeed, if the loop
is not iterated, then i = 0 at point l3 and x < −1; if it is iterated exactly once,
then i = 1 at point l3 and −1 ≤ x ≤ 1 and so forth. This approach yields
the most precise range. Let us resume the analysis, with the initial constraint
−100 ≤ x ≤ 0. The loop is iterated at most once and the partitions at point l3
give:

– no iteration: i = 0; x < −1; y = −1
– one iteration: i = 1; −1 ≤ x ≤ 0; −1 ≤ y ≤ −0.5.

Therefore, the resulting range is y ∈ [−1,−0.5], which is the optimal range (i.e.
exactly the range of all values that could be observed in concrete executions).

The partitions generated in this example correspond to l0, (l1, 0), (l2, 0),
(l1, 1), (l2, 1), (l3, 0), (l3, 1), l4; the partition associated to li is the set of traces
ending at li; the partition associated with (li, j) is the set of traces ending at
li after completing j iteration in the loop. This set of partitions is determined
during the analysis, with directives requesting partitioning at point l1 and merge
at point l4.

As we noted before, the trace partitioning turns out to be a reasonable al-
ternative to the design of a more involved relational domain.

Strategy Implemented in Astrée: The imprecision observed when analyzing
the linear interpolation have two causes: first, the expression at point l3 computes
the sum of two expressions which are not independent. Non-relational domains
are quite imprecise in such cases (e.g. if x ∈ [−1, 1], a dumb interval analysis
will find x − x ∈ [−2, 2]). The second cause is that, through the use of arrays,
the expression makes an implicit disjunction. Most efficient relational domains
are imprecise on disjunctions (unions is usually the abstract operation that loses
the most precision).

In Astrée, we use the following strategy to build partitions solving this
kind of problem: first, we identify expressions e with an array access in a sum,
such that another element of the sum is related to the index of the array access
(it is the case for the expression at l3, Fig 2). Then, we look backward for the
last non-trivial assignment of that index. If it is in a loop, then we partition
the loop, otherwise, we partition the values of the index after its assignment.
In addition, we partition all the control flow between the index assignment and
the expression e. We keep the analysis efficient by merging those partitions right
after the expression e is used.

4.3 Barycenter

Finding precise invariants when analyzing divisions sharing a variable in the
dividend and divider require either complex ad-hoc transfer functions (as in [11])
or guessing an appropriate linear form [3]. If the variable found in the dividend
and divider ranges in a small set (less than, say, a thousand) we can get very
precise results by partitioning the traces according to the dynamic values of that
variable. Such partition will be quite cheap because its scope will be very local:
it is only necessary to partition right before the assignment, and then we can
merge right after the assignment.

A simple example using division is the computing a barycenter between two
values. One expects the barycenter to be between those two values. But it is in
fact a difficult task with classical abstract domains. In the following figure, we
show an example of classical barycenter computation. As it is the case in many
real-time embedded systems, this computation is inside an infinite loop.

l0 : int r = 0; float x = 0.0;
l1 : while(true){
l2 : r = random(0, 50);
l3 : x = (x ∗ r + random(−100, 100))/(r + 1);
l4 : }

Using non-relational domains, one cannot prove that x will never overflow,
whereas it is a simple matter, partitioning the values during just one instruction,
to prove that x stays in [−100, 100]. If we suppose x ∈ [−100, 100] and r ∈ [0, 50],
we get (x ∗ r + random(−100, 100))/(r + 1) in [−5100, 5100]. whereas if we take
any particular r in [0, 50], we can compute that the expression is in [−100, 100].

4.4 Loop Unrolling

Analyzing separately the n first iterations of a loop may greatly improve the
precision of the final result, as is the case of the following examples:

– Some families of embedded programs –as those addressed by Astrée– con-
sist in a large loop; the initialization of some variables might be done during
the first iteration(s), so it might be helpful to distinguish the first iterations
during the analysis so as to take into account their particular role.

– Unrolling a loop might turn weak updates into strong updates. For instance,
let us consider the program for(i = 0; i < n; i = i + 1){t[i] = i}, which
initializes an array t (we assume that all cells are equal to 0 before the loop).
If we perform no unrolling of the loop, a simple interval analysis infers the
interval constraint i ∈ [0, n − 1]; so the assignment to t[i] is a weak update
and in the end we get the family of constraints ∀j, t[j] ∈ [0, n− 1].
The body of the loop is very small; hence, the complete unrolling of all the
iterations of the loop is not too costly. It leads to the much more precise
family of constraints ∀j, t[j] = j.

In practice, defining the control point corresponding to the loop as the par-
titioning point and the control points right after the loop as the merging point
leads to the unrolling of the n first iterations. This allows for more precise re-
sults in the analysis of the loop; yet does not make the analysis of the subsequent
statements more costly.

The analysis of an unrolled loop starts with the computation of an invariant
for the n first iterations; after that an invariant for all the following iterations is
achieved thanks to the standard widening techniques. It is also possible to start
with a partition of the whole loop, and decide during the computation of the
invariants, that because of the growth of n, this partition might not be finite (or
be too large) and thus, as described in Sect. 2.6, to use a coarser partition.

4.5 Experimental Results

We tested Astrée on a family of industrial size embedded codes. All partitions
where chosen automatically. In the following table, we show the results for the
analysis without partitioning and then with partitioning. For each program,
we provide the size of the code as a number of LOCs, the number of iterations
required for the analysis of the main loop (these programs all consist in a series
of tasks executed at every clock tick, which is equivalent to a main loop), the
analysis time in minutes (on a 3 GHz Bi-opteron, with 8 Gb of RAM), the
memory consumption in megabytes and the number of alarms.

Program test 1 test 2 test 3 test 4

Code size (LOCs) 70 000 65 000 215 000 380 000

Iterations 48 43 33 32 80 59 163 62

Analysis time (minutes) 44 70 21 28 180 330 970 680

Memory peak (Mb) 520 550 340 390 1 100 1300 1 800 2200

Alarms 658 0 552 2 4 963 1 6 693 0

The results show the expected positive impact on the precision, as the num-
ber of alarms of the analyzer is always reduced with partitioning; in all cases
the analysis with partitioning results in a very low number of alarms whereas
the analysis without partitioning yields huge numbers of false positives –much
beyond what the end-user could check by hand. The analysis being more precise,
less iterations to reach a post fixpoint are required with trace partitioning. In the
case of test 4, the number of iterations required by the analysis with partitioning
disabled even causes a much higher analysis time. Of course, using partitioning
each iteration takes longer, but the cost in time and memory is very reasonable.

5 Conclusion

The partitioning of abstract domains was first introduced in [6]; it describes
trace partitioning on the concrete level (sets of traces). We proposed to use
such partitions to guide a restricted kind of disjunctions. Disjunctive completion
usually gives very precise results, but has an exponential cost, that is why in
practice, one must restrict the number of disjunctions. The idea of using the
control flow to chose which disjunctions to keep was first introduced in [16],
but still their proposal was not practical, especially for large programs. What
we proposed here is a more general and flexible framework which allowed the
Astrée static analyzer to be very precise on industrial programs [3].

Future work includes the extension of the partitioning abstract domain with
backwards transfer functions, so as to do backwards analysis. A second extension
would be to partition traces with the number of times a property of the memory
state P was satisfied at a control point l, generalizing the condition-guided par-
titioning we presented here. This would allow expressing some kind of temporal
properties of traces, by distinguishing traces that satisfied P at least once and
the others.

References

[1] Ammons, G., and Larus, J. R. Improving data-flow analysis with path profiles.
In Conference on Programming Language Design and Implementation (PLDI’98)
(1998), ACM Press, pp. 72–84.

[2] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,
A., Monniaux, D., and Rival, X. Design and implementation of a special-
purpose static program analyzer for safety-critical real-time embedded software,

invited chapter. In The Essence of Computation: Complexity, Analysis, Transfor-
mation, T. Mogensen, D. Schmidt, and I. Sudborough, Eds., no. 2566 in LNCS.
Springer-Verlag, 2002.

[3] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,
A., Monniaux, D., and Rival, X. A static analyzer for large safety-critical
software. In Conference on Programming Language Design and Implementation
(PLDI’03) (2003), ACM Press, pp. 196–207.

[4] Bourdoncle, F. Abstract interpretation by dynamic partitioning. Journal of
Functional Programming 4, 2 (1992), 407–435.

[5] Cousot, P. Méthodes itératives de construction et d’approximation de points
fixes d’opérateurs monotones sur un treillis, analyse sémantique des programmes.
PhD thesis, Université de Grenoble, 1978.

[6] Cousot, P. Semantic foundations of program analysis. In Program Flow Analysis:
Theory and Applications, S. Muchnick and N. Jones, Eds. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1981, ch. 10.

[7] Cousot, P., and Cousot, R. Abstract intrepretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In 4th
ACM Symposium on Principles of Programming Languages (POPL’77) (1977),
ACM Press, pp. 238–252.

[8] Cousot, P., and Cousot, R. Systematic design of program analysis frameworks.
In 6th ACM Symposium on Principles of Programming Languages (POPL’79)
(1979), ACM Press, pp. 269–283.

[9] Cousot, P., and Cousot, R. Basic concepts of abstract interpretation. In
Building the Information Society. Kluwer Academic Publishers, 2004, ch. 4.

[10] Cousot, P., and Halbwachs, N. Automatic discovery of linear restraints among
variables of a program. In 5th ACM Symposium on Principles of Programming
Languages (POPL’78) (1978), ACM Press, pp. 84–97.

[11] Feret, J. Static analysis of digital filters. In European Symposium on Program-
ming (ESOP’04) (2004), no. 2986 in LNCS, Springer-Verlag.

[12] Granger, P. Static Analysis of Arithmetical Congruences. Int. J. Computer.
Math. 30 (1989).

[13] Holley, L. H., and Rosen, B. K. Qualified data flow problems. In 7th ACM
Symposium on Principles of Programming Languages (POPL’80) (1980), ACM
Press, pp. 69–82.

[14] Mauborgne, L. ASTRÉE: Verification of absence of run-time error. In Building
the Information Society. Kluwer Academic Publishers, 2004, ch. 4.

[15] Miné, A. The octagon abstract domain. In AST (2001), IEEE, IEEE CS Press.
[16] Tzolowski, S., and Handjieva, M. Refining static analyses by trace-based

partitionning using control flow. In Static Analysis Symposium (SAS’98) (1998),
vol. 1503 of LNCS, Springer-Verlag.

[17] Venet, A. Abstract cofibered domains: Application to the alias analysis of un-
typed programs. In Static Analysis Symposium (SAS’96) (1996), vol. 1145 of
LNCS, Springer-Verlag.

