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Abstract

Safety-critical embedded software has to satisfy strin-
gent quality requirements. Testing and validation con-
sumes a large – and growing – fraction of develop-
ment cost. The last years have seen the emergence of
semantics-based static analysis tools in various appli-
cation areas, from runtime error analysis to worst-case
execution time prediction. Their appeal is that they
have the potential to reduce testing effort while pro-
viding 100% coverage, thus enhancing safety. Static
runtime error analysis is applicable to large industry-
scale projects and produces a list of definite runtime
errors and of potential runtime errors which might be
true errors or false alarms. In the past, often only
the definite errors were fixed because manually in-
specting each alarm was too time-consuming due to
a large number of false alarms. Therefore no proof
of the absence of runtime errors could be given. In
this article the parameterizable static analyzer Astrée
is presented. By specialization and parameterization
Astrée can be adapted to the software under analy-
sis. This enables Astrée to efficiently compute precise
results. Astrée has successfully been used to analyze
large-scale safety-critical avionics software with zero
false alarms.

1 Introduction

Safety-critical embedded software has to satisfy strin-
gent quality requirements. A system failure or mal-
functioning can have severe consequences and cause
high costs. Testing and validation consumes a large
– and growing – fraction of development cost. Thus,
developers face the challenge of ensuring the correct
functioning of the software, but this has to be done
with reasonable effort.

In the avionics, automotive, and healthcare indus-
tries static analyzers based on abstract interpretation
have increasingly been used to validate program prop-
erties of safety-critical software. The results are only
computed from the software structure without actu-
ally running the software under analysis. The results
thus obtained hold for any possible input scenario and

any possible program execution. Examples are tools
for computing the worst-case execution time [27, 13]
or the maximal stack usage of tasks [12], the accuracy
of floating-point computations [20], and the absence
of run-time errors [2, 5, 8]. Modern semantics-based
static analyzers scale well and support the analysis of
large industrial software projects.

This article focuses on a certain class of errors, the
so-called runtime errors. Examples for runtime errors
are floating-point overflows, array bound violations, or
invalid pointer accesses. Runtime errors lead to unde-
fined program behavior; the consequences range from
erroneous program behavior to wholesale crashes. A
well-known example for the possible effects of runtime
errors is the explosion of the Ariane 5 rocket on its
maiden flight in 1996 [19].

An important goal when developing critical soft-
ware is to prove that no such errors can occur at run-
time. Software testing can be used to detect errors,
but since usually no complete test coverage can be
achieved, it cannot provide guarantees. Semantics-
based static analysis allows to derive such guarantees
even for large software projects. The success of static
analysis is based on the fact that safe overapproxima-
tions of program semantics can be computed. This
means that the results of such analyses will be either
“(i) statement x will not cause an error”, or “(ii) state-
ment x may cause an error”. In the first case, the user
can rely on the absence of errors, in the second case ei-
ther an error has been found, or there is a false alarm.
This imprecision allows sound static analyzers to com-
pute results in acceptable time, even for large software
projects. Nevertheless the results are reliable, i.e., the
analysis will only err on the safe side: if the analyzer
does not detect any error, the absence of errors has
been proven - the coverage is 100%.

Each alarm has to be manually investigated to de-
termine whether there is an error which has to be
corrected, or whether it was just a false alarm. If all
the alarms raised by an analysis have been proven to
be false, then the proof of absence of runtime errors is
completed. This could be checked manually, but the
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problem is that such a human analysis is error-prone
and time consuming, especially since there might be
interdependencies between the false alarms. If the an-
alyzer does not report any alarm the absence of run-
time errors is automatically proven by the analyzer
run. Therefore the ideal solution is to enable the an-
alyzer to finish the analysis with zero alarms.

To that end, it is important that the analyzer is
precise, i.e., produces only few false alarms. This can
only be achieved by a tool that can be specialized to a
class of properties for a family of programs. Addition-
ally the analyzer must be parametric enough for the
user to be able to fine tune the analysis of any partic-
ular program of the family. General software tools not
amenable to specialization usually report a large num-
ber of false alarms. That is the reason why in indus-
try such tools are only used to detect runtime errors,
and not to prove their absence. The analyzer should
also provide flexible annotation mechanisms for users
to communicate external knowledge to the analyzer.
Only by a combination of high analyzer precision and
support for semantic annotations the goal of zero false
alarms can be achieved.

In our article we focus on the static analyzer Astrée
(Analyseur statique de logiciels temps-réel embarqués)
[1], which origins from the École Normale Supérieure
[10]. Since February 2009 Astrée is commercially
available and is now developed and distributed by
AbsInt under license of CNRS/ENS. Astrée has been
specifically designed to meet the above mentioned re-
quirements: it produces only a small number of false
alarms for control/command programs written in C,
and provides the user with enough options and direc-
tives to help reduce this number down to zero. Astrée
has been successfully used to analyze industrial Air-
bus avionics software [26]. We give an overview of the
structure of Astrée and describe how developers can
use it to achieve the goal of zero false alarms and thus
efficiently validate the absence of run-time errors.

2 Static Analyzers

Static analyzers compute their results only from the
program structure by inspecting the source code or
binary code, but without actually executing it.

Static analyzers are sometimes understood as in-
cluding style checkers looking for deviations from
coding style rules, like the MISRA guidelines pre-
scribed by the Motor Industry Software Reliability
Association [24]. Such style checkers are usually not
”semantics-based”, and thus cannot check for correct
runtime behavior.

Furthermore static analyzers can be categorized in
sound vs. unsound analyzers. A program analyzer is
unsound when it can omit to signal an error that
may appear at runtime in some execution environ-
ment. Unsound analyzers are bug hunters or bug
finders aiming at finding some of the bugs in a well-

defined class. Their main defect is unreliability, being
subject to false negatives thus claiming that they can
no longer find any bug while many may be left in the
considered class. Unsoundness can be caused e.g., by
skipping program parts which are hard to analyze,
ignoring some types of errors, disregarding some run-
time executions, or adopting a simplified program se-
mantics. Example tools from this class are ESC Java
[18], Coverity CMC [11], Klocwork K7 [16], PRE-fast
[25], or Splint [17]. A more comprehensive overview
is found in [5].

Such unsound approaches are all excluded in
Astrée. Astrée is a bug eradicator in that sense that all
bugs from a well-defined class, i.e., runtime errors, are
found. Another tool from this class is Polyspace Ver-
ifier [8]. More precisely, Astrée is a sound semantics-
based static analyzer based on Abstract Interpreta-
tion.

2.1 Abstract Interpretation
Static data flow analyzers compute invariants for all
program points by fixed point iteration over the pro-
gram structure or the control flow graph. The the-
ory of abstract interpretation [4] offers a semantics-
based methodology for static program analysis. The
concrete semantics is mapped to an abstract seman-
tics by abstraction functions. While most interesting
program properties are undecidable in the concrete
semantics, the abstract semantics can be chosen for
them to be computable. The static analysis is com-
puted with respect to that abstract semantics. Com-
pared to an analysis of the concrete semantics, the
analysis result may be less precise but the computa-
tion may be significantly faster. By skilful definition
of the abstract domains a suitable trade-off between
precision and efficiency can be obtained.

Abstract interpretation supports formal correct-
ness proofs: it can be proven that an analysis will
terminate and that it computes an overapproximation
of the concrete semantics, i.e., whether the analysis
results are sound. A static runtime error analysis is
called sound if it never omits to signal an error that
can appear in some execution environment. If no po-
tential error is signalled, definitely no runtime error
can occur. If a potential error is reported, the ana-
lyzer cannot exclude that there is a concrete program
execution triggering the error. If there is no such ex-
ecution, this is a false alarm. Thus, imprecision can
occur, but only on the safe side; it can never hap-
pen that there is an error from the error class under
analysis which is not reported.

3 Astrée— Design and Overview

Astrée [2] is a parametric static analyzer based on ab-
stract interpretation that aims at proving the absence
of run-time errors of programs written in C, accord-
ing to “ISO/IEC 9899:1999 (E)” (C99 standard) [3].

http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=29237&ICS1=35


Astrée analyzes structured C programs, with complex
memory usage, but without dynamic memory allo-
cation and unbounded recursion. This encompasses
many embedded programs as found in earth trans-
portation, nuclear energy, medical instrumentation,
aeronautic, and aerospace applications, in particular
synchronous control/command programs such as elec-
tronic flight control. The errors which are currently
reported are: out-of-bound array accesses, integer di-
vision by zero, floating point overflows and invalid
operations (resulting in IEEE floating values Inf and
NaN), integer arithmetics wrap around behavior (oc-
curring mainly in overflows), and casts that result in
wrap around operations (when the target type is too
small to contain a value), and violations of arbitrary
user defined assertions on the software. In addition,
Astrée points out unanalyzed (unreachable) code and
warns about possibly non-terminating code.

Providing a rigorous formal semantics of C pro-
grams as a basis for static analyzers is extremely dif-
ficult since there is considerable leeway for implemen-
tations. As an example the source semantics is un-
defined after a runtime error. A write access via an
invalid pointer or an out-of-bounds array index can
corrupt memory. The result of such a program ex-
ecution cannot be statically determined. Therefore,
Astrée distinguishes between two different types of
runtime errors [5]: runtime errors corresponding to
undefined behaviors, and runtime errors correspond-
ing to unspecified but predictable behaviors. They
differ in the consequences of an actually occurring er-
ror, but in both cases Astrée will go on with an over-
approximation of the considered executions and it will
definitely discover all errors after a false alarm.

3.1 Handling Undefined Behavior
For runtime errors corresponding to undefined behav-
iors Astrée produces an alarm and continues the anal-
ysis only for concrete program executions where the
error does not occur. Examples for this class of run-
time errors are integer division by zero, floating-point
overflow, and invalid array or pointer accesses. E.g.,
the following program:
#include <stdio.h>

int main() {

int n, T[0];

n = 2147483647;

printf("n=%i, T[n]=%i\n", n, T[n]);

}

produces different results on different machines:
n=2147483647, T[n]=2147483647 (PPC Mac)

n=2147483647, T[n]=-1208492044 (Intel Mac)

n=2147483647, T[n]=-135294988 (32-bit PC Intel)

Bus error (64-bit PC Intel)

Since it is not predictable what will happen after
such an error, Astrée does not attempt to make any
prediction. Instead, the analyzer assumes that pro-
gram execution stops after the error and subsequently

only considers scenarios where the error did not occur.
In cases where an error will definitely occur in some
execution context, Astrée reports a definite alarm and
terminates the analysis for this context.

3.2 Handling Unspecified Behavior
For runtime errors corresponding to unspecified but
predictable behavior Astrée emits an alarm and con-
siders all possible outcomes during the rest of the anal-
ysis. An example for this are integer overflows for
which the actual computations are different from the
intended mathematical meaning. Let’s consider the
following example1:
1: void main() {

2: int i;

3: if (i<0) {

4: i = -i;

5: }

6: __ASTREE_assert((i!=-1));

7: }

Astrée reports an alarm because of the potential over-
flow in line 4, but can verify the assertion in line 6.
In fact, Astrée is able to represent the precise result
of the computation which is in the non convex set
[0, 2147483647] ∪ {−2147483648} (cf. Sec.4).

3.3 The Zero-Alarm Goal
For industrial use an important goal is to produce the
fewest possible number of false alarms. An automatic
proof of the absence of runtime errors is only possible
if the analysis terminates without any alarm – in the
terminology of Polyspace Verifier [8] the entire code
must be green. Any alarm has to be manually checked
by the developers – and this manual effort should be
as low as possible. If there is a true error, it has
to be fixed and the analysis has to be restarted. A
false alarm can possibly be eliminated by a suitable
parameterization of Astrée (cf. Sec. 5). If the error
cannot occur due to certain preconditions which are
not known to Astrée, they can be made available to
Astrée via dedicated annotations. These annotations
make the side conditions explicit which have to be
satisfied for a correct program execution.

Thus it is highly important that an analyzer sup-
plies enough information for users to understand the
cause of an alarm and to provide explicit formal means
for suppressing false alarms. Of course for keeping the
initial number of false alarms low, a high analysis pre-
cision is mandatory.

3.4 Alarm Analysis
Consider the following C program:

1: #define BASE 0x80000000

2: #define OFFSET 0x38343031

3: volatile int SwitchPosition;

4:

5: int main()

1We assume that two’s complement hardware has been con-
figured in the ABI settings of Astrée (cf. Sec. 5).



6: {

7: /*...*/

8: int MODULE1 = BASE + OFFSET;

9: /*...*/

10: char sp = SwitchPosition;

11: }

Astrée emits two alarms for potential runtime er-
rors, an arithmetic overflow in line 8 and in line 10,
respectively. The code producing the alarm is marked
in red (cf. Fig.1).

Figure 1: Astrée GUI with highlighted error location.

For each alarm the user has to check whether it can
occur in a real program execution. The alarm from
line 8 is caused by a true runtime error due to the han-
dling of hexadecimal constants according to the C99
standard. The type of such a constant is assumed to
be int if it fits into the signed int range, otherwise
unsigned int, etc. In that case the type unsigned
int is assumed since 0x80000000= 231 which does
not fit into a 32-bit signed int, but into a 32-bit
unsigned int. Since 0x38343031>0 the result of
the addition is of type unsigned int and is outside
the signed int range. A possible fix is to declare
MODULE1 as unsigned int.

If the code has been implemented under the
assumption that the modelled switch can take 8
different positions, the second alarm is a false alarm.
The value of SwitchPosition is indeed volatile, but
can only take values from {0,...,7}. This informa-
tion can be made available to Astrée by the directive
ASTREE volatile input((SwitchPosition,

[0,7])). If the input program changes over time,
the validity of such annotations always has to be
explicitly checked. When running Astrée on the
modified program, no alarms are reported.

Astrée explicitly supports investigating alarms in
order to understand the reasons for them to occur.
When clicking at an alarm message the correspond-
ing code location is highlighted in the original and
preprocessed source code. Alarms can be grouped
by source code locations, and all contexts in which
an alarm occurs are listed. Alarm contexts can be
interactively explored: all parents in the call stack,
relevant loop iterations or conditional statements can

be visited per mouse click, and the computed value
ranges of variables can be displayed for all abstract
domains (cf. Fig. 2). Inversely, clicking on the source

Figure 2: Astrée variable ranges display.

code location for which an alarm has been produced
repositions the focus of the output window to show
the corresponding alarm message. In the output win-
dow alarm locations are collected in the order in which
they are reached by the analyzer. This is very helpful
for alarm investigation since fixing one alarm usually
causes several subsequent alarms to disappear. The
call graph of the software under analysis is visualized
taking function pointer calls into account; an example
call graph is shown in Fig. 3.

Figure 3: Astrée Call graph visualization.

4 Astrée Domains

Astrée offers a variety of predefined abstract domains.
In this section the most important ones are shortly
summarized and illustrated with examples2. The
memory abstract domain is an abstraction of sets of
concrete memory states whose elements, called ab-
stract environments, map variables to abstract cells.
An abstract cell can represent one or several scalar
variables, an expanded array cell, a folded array cell
(cf. Sec. 5.1), or a structure field. The memory domain
empowers Astrée to exactly analyze pointer arith-
metics, as well as struct and union manipulations. In
the following example, Astrée can prove both asser-
tions to be correct:

2The analysis time for all examples shown was below 1 sec
on a 2.4 GHz Centrino 2 laptop.



typedef union _u {

int a ;

char b [ 4 ];

} my_union ;

my_union U;

typedef struct _x {

unsigned int a: 1;

unsigned int b: 1;

} bit ;

void main( ){

bit z ;

z.b = 0 ;

z.a = 1 ;

__ASTREE_assert((z.a == 1));

U.b[0] = 1;

U.b[1] = 1;

U.b[2] = 1;

U.b[3] = 1;

__ASTREE_assert((U.a == 0x1010101));

}

Pointers are supported both for functions and for
data; efficiency and precision are enhanced by several
domains covering symbolic information. Thus, Astrée
reports zero alarms on:
struct s { struct s* next; int data; } ;

struct s A[100];

void main()

{

int i=0;

struct s *ptr;

for (i=0; i<199; i++) {

if (i<99)

A[i].next=&(A[i+1]);

else

A[i-99].data=i;

}

A[99].next=0; A[99].data=99;

ptr = &(A[0]);

while (ptr != 0) {

ptr = ptr->next;

}

}

The interval domain approximates variable values
by intervals. The octagon domain [23] covers rela-
tions of the form x± y ≤ c for variables x and y and
constants c. Over the full polyhedron domain [6] cov-
ering convex polyhedra of the form

∑N
i=1 αixi ≤ c it

has the advantage that is significantly faster and sup-
ports floating-point arithmetics [2]. In the example
program below the relation between X and Y is au-
tomatically discovered so that Astrée can show the
absence of overflows and can prove the assertion that
X<=Y.
void main()

{

int X=100000,Y=1000000;

while (X >= 0) {

X--;Y--;

}

__ASTREE_assert((X<=Y));

}

The modulo-interval domain enables a precise anal-
ysis of overflows on two’s complement hardware.
This is especially useful for code automatically gener-
ated by dSPACE TargetLink [9] with the ”compute-
through-overflow” technique [15]. Consider the fol-
lowing example:
short x,y;

__ASTREE_volatile_input((x, [-1,1]));

__ASTREE_volatile_input((y, [-1,1]));

void main()

{

short z;

z = (short)((unsigned short)x +

(unsigned short)y);

}

Astrée emits three alarms because of overflows on ex-
plicit typecasts but computes the correct value range
for z, i.e., z∈[-2,2]3.

Floating-point computations are precisely modelled
while keeping track of possible rounding errors [22].
Most static analyzers either do not handle floats or
handle them incorrectly because they are based on
mathematical properties of real numbers not valid for
floats. For example (x+ a)− (x− a) = 2a is not valid
for floats:
#include <stdio.h>

int main () {

double x; float a,y,z,r1,r2;

a = 1.0; x = 1125899973951488.0;

y = x+a; z = x-a;

r1 = y - z; r2 = 2*a;

printf("(x+a)-(x-a) = %f\n", r1);

printf("2a = %f\n", r2);

}

The output produced is:
(x+a)-(x-a) = 134217728.0000

2a = 2.0000

The double value x is just in the middle of two
consecutive floating-point numbers to which, respec-
tively, x-1 and x+1 will be rounded in round-to-
nearest mode. Astrée considers the worst-case of all
rounding modes and will always safely overestimate
rounding errors so that fatal losses of precision lead-
ing to overflows are detected.

The clock domain has been specifically developed
for synchronous control programs and supports relat-
ing variable values to the system clock [5].

With the filter domain [14] digital filters can be
precisely approximated. In the following example
the current output P is a function of the two pre-
vious outputs S[0,1], the current input X and the
two previous inputs E[0,1]. Astrée warns about the
non-terminating loop but does not issue any alarm
and thus can automatically prove the absence of run-

3To support overflow-safe code generators, Astrée can be
configured not to emit alarms for explicit typecasts.



time errors. The value range computed for P is
[−1418.3827, 1418.3827].
typedef enum {

FALSE = 0,

TRUE = 1

} BOOLEAN;

BOOLEAN INIT;

float P, X;

void filter ()

{

static float E[2], S[2];

if (INIT) {

S[0] = X;

P = X;

E[0] = X;

} else {

P = (((((0.5*X)-(E[0]*0.7))+(E[1]*0.4))

+(S[0]*1.5))-(S[1]*0.7));

}

E[1] = E[0];

E[0] = X;

S[1] = S[0];

S[0] = P;

}

void main ()

{

X = 5;

INIT = TRUE;

while (1) {

X = 0.9 * X + 35;

filter ();

INIT = FALSE;

}

}

5 Parameterizing Astrée

The C99 standard does not fully specify data type
sizes, endianness nor alignment. An integer can be
represented either by a sign and an absolute value,
by one’s complement, or by two’s complement. Addi-
tionally there are operating system dependencies, e.g.,
whether global or static variables are automatically
initialized to zero, or not. Astrée is informed about
these target settings by a dedicated configuration file
and takes the specified properties into account.

Astrée can be adapted to specific program fami-
lies in order to improve analysis precision. The key
feature here is that Astrée is fully parametric with
respect to the abstract domains: by selecting the set
of active domains the analyzer can focus on the do-
mains relevant to the software under analysis. More-
over Astrée can be extended by new abstract domains
so that specific requirements of individual applications
can be addressed4.

4Note that while, in general, the specialization of Astrée is
under user control, incorporating new domains requires a new
release of Astrée.

In addition to the application domain awareness,
there are two mechanisms for adapting Astrée to in-
dividual programs. First, abstract domains can be
parameterized to tune the precision of the analysis for
individual program constructs or program points [21].
Second, there are annotations for making external in-
formation available to Astrée. Both are presented in
this section.

As current experience shows the parameterization
of the programs under analysis rarely has to be
changed when the analyzed software evolves over time.
So in contrast e.g., to theorem provers the parameter-
ization is very stable.

5.1 Parameterization of Abstract Do-
mains

Let us illustrate the parameterization of abstract do-
mains with two examples: semantic loop unrolling
and variable smashing. They allow to tune the pre-
cision of the analyzer to the software under analysis,
i.e., to analyze critical program parts with high preci-
sion, and improve speed by lowering the precision for
uncritical program parts.

Semantic loop unrolling [21] enables the analyzer
to distinguish different iterations of a loop to improve
analysis precision. When a loop is unrolled n times,
individual invariants are computed for the first n it-
erations and all subsequent iterations are summarized
by a common invariant. In general, the analysis will
become more precise with increasing unrolling and the
analysis time will grow. Users can specify a default
unrolling factor which can be overridden for individual
loops by the ASTREE unroll directive. Astrée also
offers a heuristic loop unrolling which automatically
determines suitable unrolling factors. In the following
example:
int main()

{

int i=0;

char c=0;

char A[255];

for (i=0; i<255; i++) {

if (i<10)

c+=10;

else if (i<100)

c++;

A[i]=c;

}

}

automatic unrolling enables Astrée to report no
alarms and to precisely compute the values of c and
of each cell of A at the program exit.

For large aggregate variables, it would be inefficient
to represent each scalar component with a distinct ob-
ject in Astrée. Variable smashing enables Astrée to
use one single summary cell to represent the value of
many cells at different memory locations. This re-
sults in a loss of precision but can improve memory
consumption and analysis time. In general, Astrée



supports partial variable folding, e.g., an array in-
side a structure can be folded without folding the rest
of the structure. Arrays are automatically smashed
when their size exceeds a certain global threshold that
can be changed with the smash-threshold option.
It is possible to locally override this setting for in-
dividual arrays by a dedicated directive. The direc-
tive ASTREE smash variable((V,n)) indicates that
all arrays with n or more elements in the variable V
should be folded. In the following example:
struct {

int nb;

int tab[10];

struct { int x; int tab2[30]; } tab3[2];

} a;

__ASTREE_smash_variable((a,4));

the arrays tab and tab2 will be folded, but not the
array tab3.

5.2 Semantic Hypotheses

With the directive __ASTREE_known_fact((B)) users
can make additional knowledge available to Astrée. B
is a Boolean expression in C syntax without side ef-
fects. Astrée then assumes that at the program point
of the directive the condition B is satisfied without
checking this hypothesis. However, if Astrée can prove
that B is always false, it issues a warning. A simple
example is __ASTREE_known_fact((i>0)).

Astrée assumes that the value of volatile vari-
ables can change asynchronously at any program
point. However, the volatile declaration some-
times is also used for non-volatile variables to pre-
vent the compiler from performing certain optimiza-
tions. Therefore Astrée offers options for ignoring the
volatile keyword for global, resp. local variables. With
the directive ASTREE volatile input((V)) individ-
ual variables V can be declared as volatile even when
the volatile keyword is ignored. It also supports taking
into account some hypotheses on the possible values of
the volatile variables; then the analysis assumes that
their values can change asynchronously but will al-
ways stay within the specified bounds. The directive
can target global, static and local variables and also
supports structured variables. It is possible to mix
volatile and non-volatile fields in the same structure.
In the example:
typedef volatile int t;

struct {

volatile int x;

t y;

int v;

volatile int z[2];

int *A;

} a;

the following parts of a are volatile: a.x, a.y, a.z[0],
and a.z[1].

The directive __ASTREE_assert((B)) tells Astrée
to check whether the Boolean expression B is always
true at this program point. If there is a context where
B may evaluate to false, Astrée produces an alarm.

All specified hypotheses are summarized in the re-
port file. This way, all conditions that have to be
satisfied for the analysis result to be valid, are doc-
umented with the analysis result. When the execu-
tion conditions of the program change, it is enough to
check whether these directives are still valid.

6 Qualification Support

Ideally, Astrée should be continually used during the
software development process. This way, potential
runtime errors are detected early which contributes to
preventing late-stage design or integration problems.
In the validation stage the goal is to verify that no
runtime errors may occur. To be amenable for cer-
tification according to DO-178B, analysis tools have
be be qualified. The qualification process can be auto-
mated to a large degree by a Qualification Support Kit,
which currently is under development. A qualification
kit consists of a report package and a test package.
The report package lists all functional requirements
and contains a verification test plan describing one or
more test cases to check each functional requirement.
The test package contains an extensible set of test
cases and a scripting system to automatically execute
all test cases and evaluate the results. The generated
reports can be submitted to the certification authority
as part of the DO-178B certification package.

7 Practical Experience

Astrée has been used in several industrial avionics and
space projects. One of the examined software projects
from the avionics industry comprises 132,000 lines of
C code including macros and contains approximately
10,000 global and static variables [2]. The first run
of Astrée reported 1200 false alarms; after adapting
Astrée the number of false alarms could be reduced
to 11. The analysis duration was 1h 50 min on a PC
with 2.4 GHz and 1GB RAM.

[7] gives a detailed overview of the analysis process
for an Airbus avionics project. The software project
consists of 200,000 lines of preprocessed C code, per-
forms many floating-point computations and contains
digital filters. The analysis duration for the entire
program is approximately 6 hours on a 2.6 GHz PC
with 16 GB RAM. At the beginning, the number of
false alarms was 467 and could be reduced to zero in
the end.

8 Conclusion and Outlook

Software errors in safety-critical embedded systems
can cause severe damage. Development standards like
DO178B or ISO26262 increasingly demand to demon-
strate the absence of software errors. Software tools
based on static program analysis offer a complete cov-
erage and can contribute to significantly reducing test-
ing effort. Here it is important to achieve a high anal-
ysis precision in order to keep the number of false



alarms low. An analyzer should give detailed infor-
mation about occurring alarms to help the user un-
derstand the reasons of the alarm. Furthermore the
analyzer should be parameterizable so that users can
tune the analyzer for the software and can eliminate
false alarms.

Astrée has been specifically designed to meet these
requirements: the analysis time scales well even for
industrial applications with several 100KLOC. Even
with default settings it produces only a small number
of false alarms for control/command programs writ-
ten in C. Since human alarm investigation is a time
consuming task, this is essential for keeping the anal-
ysis effort at a reasonable level. Additionally Astrée
supplies developers with all required information to
understand the reasons of alarms and provides them
with enough options and directives to help reduce this
number significantly. Thus, in contrast to many other
static analyzers Astrée cannot only be used to de-
tect runtime errors, but to actually prove their ab-
sence. Industrial synchronous real-time software from
the avionics industry could be successfully analyzed
by Astrée with zero false alarms.
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