Solving Inverse Problems with Piecewise Linear
Estimators: From Gaussian Mixture Models to
Structured Sparsity

Guoshen Y*!, Guillermo S\pIRo!, and Stéphane MLLAT ?

1ECE, University of Minnesota, Minneapolis, Minnesota, 584USA
2CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex, France

EDICS: TEC-RST approach using more elaborated models, such as beta and
Dirichlet processes, which leads to excellent results moggng
Abstract—A general framework for solving image inverse prob- and interpolation[[84].
lems with piecewise linear estimations is introduced in tis paper. The now popular sparse signal models, on the other hand,

The approach is based on Gaussian mixture models, estimated . .
via a FI)\E)AP-EM algorithm. A dual mathematical interpretation assume that the signals can be accurately represented with

of the proposed framework with structured sparse estimatin is @ few coefficients selecting atoms in some dictionéry! [53],
described, which shows that the resulting piecewise lineastimate [64]. Recently, very impressive image restoration reshlise
stabilizes the estimation when compared to traditional spese peen obtained with local patch-based sparse represergatio
inverse problem techniques. We demonstrate that in a number lculated with dicti ies | df wral i "
of image inverse problems, including interpolation, zoomg, and caiculated wi Ic 'Ona”es_ earne er na_ur_‘a 'mag B[
deblurring of narrow kernels, the same simple and computawnally  [24], [48], [51], [7€]. Relative to pre-fixed dictionariesuch
efficient algorithm yields results in the same ballpark as tle state- as wavelets[[53], curvelets [11], and bandl€is] [54], ledrne
of-the-art. dictionaries enjoy the advantage of being better adapteteto
images, thereby enhancing the sparsity. However, diatjona
|. INTRODUCTION learning is a large-scale and highly non-convex problem. It
requires high computational complexity, and its matheocaati
behavior is not yet well understood. In the dictionariesrafo
mentioned, the actual sparse image representation islagdu
y=Uf+w, with relatively expensive non-linear estimations, suchl;asr
matching pursuits| [19],[[23],L[56]. More importantly, as liwi

) " ‘ i " be reviewed in Sectiof IIIFA, with a full degree of freedom
and contaminated by an additive noise Typical degradation selecting the approximation space (atoms of the dictigna

operator_s include masking, §ubs_ampllng in & uniform grid aMhon-linear sparse inverse problem estimation may be ulestab
convolution, the corresponding inverse problems often erdamand imprecise due to the coherence of the dictioriary [55].

interpoIaFionf zoomir_lg and deb_lurring. Estima_tirﬁgrequir_es Structured sparse image representation models further reg
some prior information on the image, or equivalently 'MaYGiarize the sparse estimation by assuming dependency on the

quels. Fmdmg .good image models is therefore at the hegéﬁection of the active atoms. One simultaneously seldotk®
of image estimation.

. . . . of approximation atoms, thereby reducing the number ofiptess
Mixture models are often used as image priors since thgﬁproximation spaces |[3][26] [27]. [39]. [40]. [69]. Tée

the sianal ted b it ¢ bability di t.agtructured approximations have been shown to improve the
€ signals are generated by a mixture of probability A8H1 ;0 na) estimation in a compressive sensing context for a ran

t|ons_d5/]. Gau];ssll?n r|n|>;tur(ej rrsodlels (_(?_M'\t/_l) havedbeen shown m operatoilJ. However, for more unstable inverse problems
provide poweriul tools for data classification and segmtema g, ,q zooming or deblurring, this regularization by ftssl

applications (see for example [13]. [32]. [62]. [68]), howe .not sufficient to reach state-of-the-art results. Recestyne

they have not yet been shown to generate state-of-thfa-ax.t 'Wood image zooming results have been obtained with stregtur
general class of image inverse problemg, though very gatalin Parsity based on directional block structures in wavedgte-
ét:/lpl\j \;verle oftgn rcfeport(_ad. Ghalh:arr(;a:n a_nd J_ordan hzvee;%pientations [55]. However, this directional regularizatis not

or ‘earning irom incompiete daia, 1.€., Images deg eneral enough to be extended to solve other inverse prablem

by a masking opgrator, and have shown good cla§S|f|cat| "I'he Gaussian mixture models (GMM) developed in this work
results, however, it does not lead to state-of-the-artrjiute- . N .
lead to piecewise linear esUmatoE;.Image patches are far

tion [33]. Portilla et al. have shown impressive image deing from Gaussian, neither are they necessarily mixture of Gaus

results by assuming Gaussian scale mixture models (deagiatlsians_ on the other hand. piecewise linear approximatieirsb
from GMM by assuming different scale factors in the mixture ' P bp g

of Gaussians) on wavelet representatidns [36]! [49]] [68B
) P [ 3 [ ¥ [ };I 1The name “piecewise linear estimation” comes from the faat for each

have recently extended its applications on image debty[ﬂﬁ]. Gaussian, the estimator is linear, and then a non-lineappears in the selection
Recently, Zhou et al. have developed an nonparametric Bayesf the best Gaussian model.

Image restoration often requires to solve an inverse pnoble
It amounts to estimate an imagdrom a measurement

obtained through a non-invertible linear degradation atmetJ,



optimal for GMM, remain effective for much larger classe§./ (uk,2Zk)}1<k<k parametrized by their meang and covari-

of functions and processes, including natural image patelse ancesXy. Each image patcf is independently drawn from one

here demonstrated. Comparing with fully non-linear estioms of these Gaussians with an unknown index [1,K], and with

based on the sparse models, piecewise linear estimatiansth equal probability, whose probability density function is

ically reduce the degree of freedom in the estimations, aad a 1 1

thus more stable. The piecewise linear estimations, atiedl p(fi) = mexp<—§(fi —uK)TZgl(fi —I-llq))- (2)

with a simple MAP-EM (maximum a posteriori expectation- (21)™/%[2]

maximization) algorithm, learns GMM from the degraded imag Estimating{fi } 1<i<| from {yi}1<i</ can then be casted into the

and yield results in the same ballpark as the state-ofthiaa following problems:

a number of imaging inverse problems, often better than much. Estimate the Gaussian parametéfi, Zx) }1<k<k, from

more sophisticated algorithms based on more complex models the degraded datfy; }1<i<.

and at a lower computational cost. « ldentify the Gaussian distributidq that generates the patch
The MAP-EM algorithm is described in Sectiéd 1l. After i, Vi<i<lI.

briefly reviewing sparse inverse problem estimation apghes, « Estimatef; from its corresponding Gaussian distribution

a mathematical equivalence between the proposed piecewise (L, ), V1<i<I.

linear estimation (PLE) from GMM and structured sparse e$hese problems are overall non-convex. The next section

timation is shown in Sectiof_1ll. This connection shows thagil| present a maximum a posteriori expectation-maximorat

PLE stabilizes the sparse estimation with a structurechéghr (MAP-EM) algorithm that calculates a local-minimum solu-

overcomplete dictionary composed of a union of PCA (Prinjon [2].

cipal Component Analysis) bases, and with collaborativierpr

information incorporated in the eigenvalues, that prgée in the B. MAP-EM Algorithm

estimation the atoms that are more likely to be importants Th  Fojlowing an initialization, addressed in Sectibn Tli-Get
interpretation suggests also an effective dictionary vat#d \AP-EM algorithm is an iterative procedure that alternates
initialization for the MAP-EM algorithm. In Sectiof IV we petween two steps. In the E-step, assuming that the estirofite
support the importance of different components of the psedo the Gaussian parametef&iy, ik)}1<k<K are known (following
PLE via some initial experiments. Applications of the prepd ihe previous M-step), for each patch one calculates thermani
PLE in image interpolation, zooming, and deblurring are-prg posteriori (MAP) estimate with all the Gaussian models,

sented in sectiorisV. VI, ad VI respectively, and are carea ang selects the best Gaussian mdgléb obtain the estimate of
with previous state-of-the-art methods. Conclusions aa&/d in 4 patchfi — % In the M-step, assuming that the Gaussian
12 !

Section V1. model selectionk; and the signal estimath, Vi, are known
(following the previous E-step), one estimates (updatés) t
Il. PIECEWISELINEAR ESTIMATION Gaussian model$( i, ) }1<k<k-

This section describes the Gaussian mixture models (GMM)1) E-step: Signal Estimation and Model Selectidn:the E-
and the MAP-EM algorithm, which lead to the proposed piecstep, the estimates of the Gaussian parameiglis >x) }1<k<k
wise linear estimation (PLE). are assumed to be known. To simplify the notation, we assume
without loss of generality that the Gaussians have zero mean
fix = 0, as one can always center the image patches with respect
. . . . to the means.
Natural images include rich and non-stationary content, For each image patch the signal estimation and model se-

whereas Whef‘ restricted to local W'ndO\.NS’ Image structur%%tion is calculated to maximize the log a-posteriori ioitity
appear to be simpler and are therefore easier to modelvi#otio I%g p(filyi ik. ):
1 1y i/

some previous works [1]I [10][ [51], an image is decomposed . . .
into overlappingyN x /N, typically 8x 8 following previous (fi,ki)) = arg rpeﬂog p(flyi,2x) = arg rpfv(log p(yilf, Zk) + log p(f|Zx))
works [1], [24], local patches ’ ’

A. Gaussian Mixture Models

argmin(||Uif - yi||2+ 0% "5, 2 + 0log | 5|) , 3)
yi = Uifi +w;, 1) Lk

where U; is the degradation operator, for example ranolovmvhere the second equality follows the Bayes rule and thel thir

. . . . ~ 2 .
masking, subsampling or convolution, restricted to thecfpatone 'S _denvgd with .the assumption that~ .4(0,0%1d), with
. ) o ) Id the identity matrix, and ~ .#(0,%).

l, i, fi andw; are respectively the degraded, original image The maximization is first calculated ovérand then ovek.

patches and the noise restricted to the patch, withiX I, | . . . AN
being the total number of patches. Treated as a signal, €ac Gcl)ven a Gaussian signal modet- .#(0, 2), it is well known

the patches is estimated, and their corresponding estnaaie hat the MAP estimate

finally combined and averaged, leading to the estimate of the fk = argmin(||Uif — yi||2+ 02T &, 1) (4)

image. Note that for non-diagonal operatgrsuch as blurring, fN

special care needs to be taken for boundary issue, and mhi@imizes the riskE[|[f< —fi||?] [53]. One can verify that the

performance of the patch-based methods is generally lihgige solution to [4) can be calculated with a linear filtering

the size of the non-diagonal operator becomes large rel#biv = Wi )

the patch size. This will be further detailed in Section] VII. ! kit
GMM describes local image patches with a mixture of Gausthere

sian distributions. Assume there exktGaussian distributions Wy = ZUT (Ui ZUT + 0?1d) 1 (6)



is a Wiener filter matrix. Sinc®; =, U is semi-positive definite, Iog\ik] — —oo, biasing the model selection. The computational
Uiz Ul +021d is positive definite and its inverse is well definedcomplexity of the M-step is negligible with respect to theteép.

The best Gaussian modél that generates the maximum As the MAP-EM algorithm described above iterates, the MAP
MAP probability among all the models is then selected withrobability of the observed signals
the estimated p({fiYr<i<i[{Yi}1<i<1, {fix, 5k} 1<k<k ) @lways increases. This can

_ - T ~ be observed by interpreting the E- and M-steps as a cooglinat

ki =arg ”Q'”(Huifi Y+ o (f) 2 fi+o |°g|zk‘) - () descent optimizatiori [38]. In the experiments, the conseocg
Ithe patch clustering and resulting PSNR is always obskrve
Note that we name the above algorithm MAP-EM as its two
. steps go in parallel with those of the classic EM algorithri] [2
fi :fik‘, (8) applied to the point clustering problem under the GMMI[16],
with an extra MAP estimate in our E-step, as the original gign

The whole E-step is basically calculated with a set of Iine%rre not observed but need to be estimated from the degraded
filters. For typical applications such as zooming and deligr

here the d dati i i lation-i iant dobservations. The algorithm is also interpretable as atarice
where the degradation operaldsare transiation-invariant and ¢ , greedy Iterated Conditional Modes (ICM) algorithnj. [5
do not depend on the patch indéxi.e., Ui = U, the Wiener

filt tricesWy; = Wy, (@) b ted for tHe The MAP-EM implements a piecewise linear estimation, as it
éel’ ma ”ffst 'bk’lt': kC | (iatr'] e 5pr(;,\r<]:ompu & Orcﬂﬂlz estimates a piecewise Gaussian model from the image patches

aussian distributions. t.aicuiating ®) nus requirey and for each image patch selects one best fit Gaussian model
floating-point operations (flops), whei¢ is the image patch

) . : .~ and estimates the signal with the linear estimation therein
size. For a translation-variant degradatidpn random masking
for example Wy ; needs to be calculated at each position where
U; changes. Sinc®; 2 UT + 621d is positive definite, the matrix I1l. PLE AND STRUCTURED SPARSEESTIMATION

inversion can be implemented witk®/3+2N? ~ N3/3 flops  The MAP-EM algorithm described above requires an initial-

through a Cholesky factorizationl[9]. All this makes thetEps jzation. A good initialization is highly important for itetive

computationally efficient. algorithms that try to solve non-convex problems, and remai
Note that in the cas®) is a masking or subsampling operatoran active research topi¢1[4][31]. This section describes a

which maps fromRN to RS extractingN/S entries off € RN,  dual structured sparse interpretation of GMM and MAP-EM,

whereSis the masking or subsampling ratid; can be written which suggests an effective dictionary motivated inisiation

as a matrix of sized x N by removing the zero rows, and = for the MAP-EM algorithm. Moreover, it shows that the resgt

Uifi +w; can be written iNRS. The matrix inversion in[{6) piecewise linear estimate stabilizes traditional sparserse

thus involves a matrix of siz% X % instead ofN x N, further problem estimation.

considerably reducing the computational complexity of Bke  The sparse inverse problem estimation approaches will &te fir

step fromN3/3 to N3, as theU; is translation-variant. reviewed. After describing the connection between MAP-EM
2) M-step: Model Estimation:n the M-step, the Gaussianand structured sparsity via estimation in PCA bases, aitiirgu

model selectiork; and the signal estimatl of all the patches and effective initialization will be presented.

are assumed to be known. L&t be the ensemble of the patch

indicesi that are assigned to theth Gaussian model, i.€4i =

{i: k =k}, and let|%y| be its cardinality. The parameters o

each Gaussian model are estimated with the maximum likediho Traditional sparse super-resolution estimation in drites

(ML) estimate using all the patches assigned to that GaussRfovides effective non-parametric approaches to inversé-p
cluster, lems, although the coherence of the dictionary and thegelar

degree of freedom may become sources of instability andserro
Hics Zk) - (9 Prhese algorithms are briefly reviewed in this section. “Supe
) _ _ _ resolution” is loosely used here as these approaches try to
With '_[he Ga_u55|ar! mode[[](2_) + one can easily verify that the .,y er information that is lost after the degradation.
resulting estimate is the empirical estimate A signal f € RN is estimated by taking ad\‘/a‘ntage of prior
.~ 1 = < 1 RV R information which specifies a dictionay € RN*I'l, having ||
=14 iezéi(f' and 2= % iez%ﬁk(f' ~RJfi =7 (A0 imns corresponding to atonfigh ! mer, Wheref has a sparse
. . ) ) approximation. This dictionary may be a basis or some rednind
The empirical covariance estimate may be improved throug{gme, with|I'| > N. Sparsity means thdtis well approximated

regularization when there is lack of data [67] (for typicalgh by its orthogonal projectiofy, over a subspacé, generated by
size 8x 8, the dimension of the covariance matkixis 64x 64, a small numbetA| < || of column vectors{gn}men of D:

while the |4y| is typically in the order of a few hundred). A
simple and standard eigenvalue-based regularizdtiors[@ked f=fa+exr=D(a 1p) +én, (12)
here

The signal estimate is obtained by plugging in the best moaoe]c
ki in the MAP estimate[{4)

(A. Sparse Inverse Problem Estimation

(Fix, Z«) = arg matog p({i Yieg,
i, 2

wherea e Rl is the transform coefficient vectaa- 15 selects

the coefficients inA and sets the others to zerB,(a- 1x)

wheree¢ is a small constant. The regularization also guarantees

that the estimaték of the covariance matrix is full-rank. which 2While in some context “super-resolution” is referred totas approaches that
bili h . .. . dis i ’ £ calculate a high-resolution image from observed multijple-tesolution ones,

stabilizes the covariance matrix inversion, and Is impurtar in this paper “super-resolution” means recovering a whagea from partial

the Gaussian model selectidn (7), sincBjifis not full rank, then measurement$ [53].

Sy S+ eld, (11)



multiplies the matrixD with the vectora- 15, and||&x||? < ||f||? UD, which makes accurate inverse problem estimation
is a small approximation error. difficult.

Sparse inversion algorithms try to estimate from the dezptad Several authors have applied this sparse super-resolution
signaly = Uf +w the support\ and the coefficienta in A that framework [1#) and[{15) for image inverse problems. Sparse
specify the projection of in the approximation spac¥,. It estimation in dictionaries of curvelet frames and DCT have
results from[(IR) that been applied successfully to interpolation of randomly [siaih
. images|[25],[[20],[[3I7]. However, for uniform grid intergaions,

y=UD(a-1r) +¢, with & =Ue+w. (13) Sec?ion@]]s-hoavs tr}at the resulting interp%lation gimmi
This means thay is well approximated by the same sparsare not as precise as simple linear bicubic interpolatigns.
set A\ of atoms and the same coefficiertsn the transformed contourlet zooming algorithni [59] can provide a slightlyt-be
dictionary UD, whose columns are the transformed vectotér PSNR than a bicubic interpolation, but the results are
{U@n}mer- considerably below the state-of-the-art. Learned dictits of

SinceU is not an invertible operator, the transformed dictiomage patches have generated good interpolation resulls [5
nary UD is redundant, with column vectors which are linearl§84]. In some recent works sparse super-resolution alynst
dependent. It results that has an infinite number of possiblewith learned dictionary have been studied for zooming and
decompositions ifUD. A sparse approximatioji = UD& of y  deblurring [48], [76]. As shown in sectiofsIVI ahd VI, altigh
can be calculated with a basis pursuit algorithm which miném they sometimes produce good visual quality, they often geae

a Lagrangian penalized by a spatgenorm [15], [71] artifacts and the resulting PSNRs are not as good as more
x : 2 standard methods.
&=argmin[UbDa—y||“+A[lalls, (14)  Another source of instability of these algorithms comesriro

Epeir full degree of freedom. The non-linear approximatpace
Va is estimated by selecting the approximation suppbrt
. with basically no constraint. A selection df\|] atoms from
f=Da. (15) a dictionary of size|l'| thus corresponds to a choice of an

As we explain next, this simple approach is not straightfozri-pprox'matlon space amor@‘) possible subspaces. In a local

ward and often not as effective as it seems. Rwestrictive patch-based sparse estimation with« 8 patch size, typical

Isometry Propertyof Candés and Tad [12] and Donoho [221(/25(3 ~ 10", further stressing the inaccuracy of estimatiag
is a strong sufficient condition which guarantees the comess frgm an UD'

of the penalized; estimation. This restrictive isometry property These issues are addressed with the proposed PLE framework

is valid for certain classes of operatdds but not for important . . . .
: . . ,and its mathematical connection with structured sparseefsod
structured operators such as subsampling on a uniform g”da%scribed next

convolution. For structured operators, the precision dability
of this sparse inverse estimation depends upon the “geginets  Structured Sparse Estimation in PCA bases

of the approximatiqn suppom\. of f, which .is. not well un- The PCA bases bridge the GMM/MAP-EM framework pre-
derstood mathematically, despite some sufficient exacvezy sented in Sectiohlll with the sparse estimation describedeb

cond|t||ons|pro(\j/ed f(;]r exarr]nple by T;OE‘-D ‘-72]', arlld mgpy_ Otheﬁ)r signals{f;} following a statistical distribution, a PCA basis
(mostly related to the coherence o t_e eq“"’?‘.e”t |ctrp)'.1a is defined as the matrix that diagonalizes the data covagianc
Nevertheless, some necessary qualitative conditions fioecise matrix = — E[ffT]

= ili s

and stable sparse super-resolution estinfaie (15) can heed S, — B.S.BT 16
as follows [53], [55]: k = BkScB, (16)

« Sparsity. D provides a sparse representation fior
« Recoverability. The atoms have non negligible norm
|[U@n||? > 0. If the degradation operatdt applied togn

or with faster greedy matching pursuit algorithmsI[56]. Th
resulting sparse estimation bfs

alues ofil'| = 256 andA\| = 8 lead to a huge degree of freedom

where By is the PCA basis an® = diagAk,...,Af) is a
diagonal matrix, whose diagonal elements> AX > ... > AK
are the sorted eigenvalues. It can be shown that the PCA

. . . T _ - k
leaves no “trace,” the corresponding coefficieit] can basis is ortbhqnormal, |.eB|F]Bk =1d, each of |ts.collurr|1r(;:_ﬁqn, .
not be recovered frong with (I4). We will see in the next 1<m< N, being an atom that represents one principal direction.

subsection that this recoverability property of transfedm The eigenvalu_es are qon-negativ’&ﬂ = .0' _and measure Ehe
relevant atoms having sufficient energy is critical for th&1€'9Y of the signalf; } in each of the principal directions [53].

GMM/MAP-EM introduced in the previous section as well. k'l;r%nTsfformmgfi from_ftheh calonllailpbam_s tohe PgA basl;s
« Stability. The transformed dictionaryD is incoherent & =By i, one can verity that the estimatd (#)-(6) can be

enough. Sparse inverse problem estimation may be unsta%%“valemly calculated as

if some columns{U@n}mer in UD are too similar. To fr:Bkaik, (17)

see this, let us imagine a toy example, where a constant- . . )

value atom and a highly oscillatory atom (with value¥/here, following .smplefllgebra and calculus, the MAP eatem

~1,1,—1,1,..), after ax2 subsampling, become identical®f the PCA coefficients is obtained by

The sparse estimatioh (14) can not distinguish between N |am[?

them, which results in an unstable inverse problem esti- é,k:argrr;in<|ui8ka—yi|2+ o’y )\—k> (18)

mate [I5). The coherence 0D depends o as well as on m=1_“m

the operatot). Regular operatond such as subsamplingon Comparing [(IB) with[(14), the MAP-EM estimation can thus

a uniform grid and convolution, usually lead to a coheree interpreted as a structured sparse estimation. Asrakest in



e implemented as described in Sectioh Il without the PCA

Fig. I Left: Tradional overcomplete dictionary. Eachon represents an transform. As described in Sectidnl Il, the complexity of the
atom in the dictionary. Non-linear estimation has the fudgee of freedom MAP-EM algorithm is dominated by the E-step. For an image

to select any combination of atoms (marked by the columnsed).rRight: . . . 2
The underlying structured sparse piecewise linear diatiprof the proposed patch size OW X \/N (typical value 8<8), it costs KN flops

approach. The dictionary is composed of a family of PCA basesse atoms are for translation-invariant degradation operators such m@fotm
pre-ordered by their associated eigenvalues. For eacheimpath, an optimal subsampling and convolution, aIKZN?’/3 flops for translation-

linear estimator is calculated in each PCA basis and the best liestmate

among the bases is selected (marked by the basis in red). variant operators such as random maSkmg' whrés the

number of PCA bases. The overall complexity is thereforatlyg
upper bounded by’(2LKN?) or ¢(LKN3/3), wherelL is the

Figure[1, the proposed dictionary has the advantage of éi tr number of iterations. As will be shown in Secti¢n]IV, the
tional learned overcomplete dictionaries being overcatephnd 2/gorithm converges fast for image inverse problems, sifyic
adapted to the image under test thanks to the Gaussian mdet = 3 10 5 iterations. On the other hand, the cognple_xny of
estimation in the M-step (which is equivalent to updating tHn€ 1 minimization with the same dictionary is'(KN”), with

PCAs), but the resulting piecewise linear estimator (PsEpore YPically a large factor in front as thg converges slowly in
structured than the traditional nonlinear sparse estamafLE Practice. The MAP-EM algorithm is thus typically one or two

is calculated with dinear estimation in each basis andnan- ©rders of magnitude faster than the sparse estimation.
linear best basis selection: To conclude, let as come back to the recoverability property

mentioned in the previous section. We see froni (18) that if an

eigenvector of the covariance matrix is killed by the oparak;,

tPﬁen its contribution to the recovery gf is virtually null, while

o : ft pays a price proportional to the corresponding eigerealu
gstlmat|on to only one basid(atoms out ofKN selected Then, it will not be used in the optimizatioh_(18), and thereb
in group), and has_a degree.qf freedom equ&;{,t(sh.arply .in the reconstruction of the signal following{17). This mea
reduced from that in the tradmopal sparse estimation Wwhig -+ the wrong model might be selected and an inaccurate
hf"‘S the full degre_e of _free_dom n gtom selection. . reconstruction obtained. This further stresses the inapo# of a

« Linear collaborative filtering. InS|_de eacr_l PCA_baS|s, correct design of dictionary elements, which from the diggion
the atoms are pre-ordered by their associated eigenval presented, it is equivalent to the correct design of the

(Wh'f:h Qecay very fast as we will later see, leading tO,Sp ovariance matrix, including the initialization, whichdsescribed
sity inside the block as well). In contrast to the non-line

ext.
sparsel; estimation [(I¥), the MAP estimaté_{18) imple-

ments the regularization with thg norm of the coefficients o

weighted by the eigenvalugs\X }1<m<n, and is calculated C. Initialization of MAP-EM

with alinear filtering (3) (8). The eigenvalues are computed The PCA formulation just described not only reveals the
from all the signals{fi} in the same Gaussian distribu-connection between PLE and structured sparse estimations,
tion class. The resulting estimation therefore implementsit is crucial for understanding how to initialize the Gaassi
collaborative filtering which incorporates the informatio models for MAP-EM as well.

from all the signals in the same cluster. The weighting 1) Sparsity: As explained in Sectiof TIIA, for the sparse
scheme privileges the coefficiengglm| corresponding to inverse problem estimations to have the super-resolutiditya

the principal directions with large eigenvalugs, where the first requirement on the dictionary is to be able to previd
the energy is likely to be high, and penalizes the otheisparse representations of the image. It has been shown that
For the ill-posed inverse problems, the collaborative prigapturing image directional regularity is highly importaior
information incorporated in the eigenvalu¢d®}i<m<n  sparse representations [1], [11], [54]. In dictionary teag, for
further stabilizes the estimate. example, most prominent atoms look like local edges good at
Note that this collaborative weighting is fundamentallyepresenting contours, as illustrated in Figdre 2-(a) r@tuee the
different than the standard one used in iterative weight@gltial PCAs in our framework, which followindg{16) will lehto

I approaches to sparse codirig [[20]. This collaboratiyge initial Gaussians, are designed to capture image iirext
filtering is also fundamentally different than the “collabregularity.

orative Wiener filtering” in [[1¥], both in signal modeling
(GMM in this work and the nonlocal self-similarity models
in [17]), and in patch clustering and signal estimation (in o |
this work the patch clustering and signal estimation ardeieathe™
jointly calculated by maximizing a MAP probability](3),

« Nonlinear block sparsity. The dictionary is composed of
a union ofK PCA bases. To represent an image patch, t
non-linear model selection[{3) in the E-step restricts th

they are calculated respectively by the block matching ang
the empirical Wiener filtering). The collaboration in [17]
follows from the spectral representation for the whole
cluster, while here is obtained via the eigenvalues of the @ b (©)

cluster’'s PCA. Fig. 2. (a) 'Some typical dictionary atoms learned from theage Lena
. (Figure[3-(a)) with K-SVD [[1]. (b)-(d) A numerical procedurto obtain the
Note that although PLE can be interpreted and connectg@al directional PCAs. (b) A synthetic edge image. PalfSx 8) that touch

with structured sparse modeling via PCA, the algorithm cdie edge are used to calculate an initial PCA basis. (c) Thediatoms in the
PCA basis with the largest eigenvalues. (d) Typical eigeies




The initial directional PCA bases are calculated followingrogresses.
a simple numerical procedure. Directions from 0 1D are
uniformly sampled t&K angles, and one PCA basis is calcul;
per angle. The calculation of the PCA at an an@euse
a synthetic blank-and-white edge image following the
direction, as illustrated in Figutd 2-(b). Local patchest ttouc
the contour are collected and are used to calculate the P&i
(following (I0) and [(I6)). The first atom, which is almost
is replaced by DC, and a Gram-Schmidt orthogonalizati
calculated on the other atoms to ensure the orthogonalitl @ (b) ©
basis. The p_atches contain edges that are tr_anslatlc_)nam‘/a Fig. 3. (a;. Lena image. ((b) to (d) are color images.) (bycRalustering
As the covariance of a stationary process is diagonalizethéy obtained with the initial directional PCAs (see Figlile 2-(@he patches are
Fourier basis, unsurprisingly, the resulting PCA basis firas densely overlapped and each pixel represents the nkpdelected for the & 8

. ' L ! . s patch around it, different colors encoding different dii@t values ofk;, from
few 'mportam atoms similar to the cosines atoms oscillptm 1 5k — 19. (c). Patch clustering obtained with the initial positBCAS (see
the direction@ from low-frequency to high-frequency, as showitrigure[3). Different colors encoding different positionlues ofk;, from 1 to

in Figure[2-(c). Comparing with the Fourier vectors, the@aB P = 12. (d) and (€). Patch clustering with respectively diel and position
enjoy the advantage of being free of the periodic boundatyeis PC25 Riecthectabiltti®he oscillatory atoms illustrated in Fig-

so that they can provide sparse representations for locajem _ure['_Z-(c) are spread in Space. Therefore, f_or diagonal qpera
patches. The eigenvalues of all the bases are initiated thith in space such as masking and subsampling, they satisfy well

same ones obtained from the synthetic contour image, thvat h € re.cove_rability. condition| g > 0 for super-.resolution
fast decay, Figur€]2-(d). These, following{16), compldie t escribed in Section IlIZA. However, as these oscillatciynes

covariance initialization. The Gaussian means are irigdl with have Dlrap_ support_; N _Fou.rler, for convolution Qperatmhs:
76105 recoverability condition is violated. For convolution optors

k|12 i i
It is worth noting that this directional PCA basis not onl)p' 1Vl Szo_rﬁqullresl_thf:ljt the atohms have sdprlfad_Fourler

provides sparse representations for contours and edges b&pectr'l:mﬂ. patially (_)lca 1€ afconrs have spre;\ (.)t;J rg?c-sp

captures well textures of the same directionality as wetleked, trum. Foflowing a similar numerical scheme as describe @po

in a space of dimensidN corresponding to patches of sigéN x patches touc_hlng the_ edge at fla(ed .posmon are extracted

VN, the first abouty/N atoms illustrated in Figuriel 2-(c) absorbfrom synthetlc edge Images with dn_‘fgrent amoun_ts of blur.

most of the energy in local patterns following the same dioec The resulting PCA basis, named position PCA basis hereafter

in real images, as indicated by the fast decay of the eigeesal contains localized atoms of different polarities and afedént
(very similar to Figuré2-(d)) scales, following the same directi¢h as illustrated in Figurgl4

A typical patch size isv/N x vN = 8 x 8, as selected in (which _Iook. like wavelgts along _the appropriate directioRyr
previous works|[1],[24]. The number of directions in a Ioca‘laaCh directiorf, a family of Io_c_ahzed PCA _bases_akv_p}lipip
patch is limited due to the pixelization. The DCT basis ial'® calculated at all the positions translating within tizgch.

included in competition with the directional bases to c&ptuThe eigenvalues are initialized with the same fast decayg ase

isotropic image patterns. Our experiments have shown thatllustrated in Figurd 2-(d) for all the position PCA basesich

image inverse problems, there is a significant average gjainpiixel in Figure[];-(g) r(_apresents the moctmll seIepted for. th.e
PSNR wherK grows from 0 to 3 (whet — 0, the dictionary is 8x 8 patch around it, different colors encoding different fiosi

initialized with only a DCT basis and all the patches aregussil values ofp;, from 1 to 12. The rainbow-like color transitions

to the same cluster), which shows that one Gaussian model °8rthe edges show that the position bases are accuratety fitte

equivalently a single linear estimator, is not enough taieaely to the image structures. Note that although the position PCA

describe the image. Whdfincreases, the gain reduces and ge&ases consisting of localized atoms may provide more sparse

stabilized at abouk — 36. Compromising between performanCéepresentation for localized edges, as opposed to thetidinat
and complexity,K — 18, which corresponds to a 1(angle PCA bases they do not satisfy the recoverability conditiodear

sampling step, is selected in all the future experiments. masking degradation operators, and are thus less appefoia

Figures[B-(a) and (b) illustrates the Lena image and t§8!Ving interpolation problems. L
corresponding patch clustering, i.e., the model selectipn A summary of th? comp_lete al_gorlthm IS given |n_F_|gl[|_1e 5
obtained for the above initialization, calculated with iT}he E- The MAP-EM algorithm, with an magm_g-motwated |n|t|ad_12
step described in Secti@d I. The patches are densely Flon, leads to success_ful applications in a number of image
and each pixel in Figurgl 3-(b) represents the maglelelected NVErse problems as will be shown below.

for the 8x 8 patch around it, different colors encoding different . E E E F E ﬁ E

values ofk;, from 1 to 19 (18 directions plus a DCT)- onq:ig. 4. The first 8 atoms in the position PCA basis with thedatgigenvalues.
can observe, for example on the edges of the hat, that patches

where the image patterns follow similar directions are teltexd 3) Wiener Filtering Interpretation:Figure[® illustrates some
together, as expected. Let us note that on the uniform regidgpical Wiener filters, which are the rows ¥¥ in (@), calcu-
such as the background, where there is no directional gnecer lated with the initial PCA bases described above for zooming
all the bases provide equally sparse representations. &s #md deblurring. The filters have intuitive interpretatiorier
log|Zk| = I'Imzlx\r‘f1 term in the model selectio](7) is initializedexample directional interpolator for zooming and directib

as identical for all the Gaussian models, the clusteringiisiom deconvolution for deblurring, confirming the effectivesed the

inf these regions. The clustering will improve as the MAP-ENhitialization.




The MAP-EM algorithm of the PLE image inverse problem estimae
1) Initialization. IV. INITIAL SUPPORTIVEEXPERIMENTS

. Ei%envectors. Th(cej initial eigenvectors of eact} Ga(ljust,jiamalculated foRefogehprogescihgovsthreddstsatizes éctiod fiitEntalintesalegotor a
and zooming, and sectiofis TII-C2 anhd VII-A for deblurring. it i
« Eigenvalues. The initial eigenvalues are obtained by tatiog the eigréuva Beesr??g%&%%ggglgp nS tgjapﬂr%'a éﬁ&%%%gsggmn%%a{g ’e%]elﬁ\llg gé
are used for all the Gaussians. shows t roug some DbasiCc expe”ments the eftectiveness and
The eigenvectors and eigenvalues are calculated once areti sFor eacHRREHfiARGEIM AR Rdlatzadion proposed above, the etioiuo
2) E-step.For each image patch, estimate the original signal and itssSagjdepétyredEntafiond @y the MAP-EM algorithm iterates, df we

3) M-step. For each Gaussian, estimate its mean and covariance mgt . .
4) If not converged, go to Step 2. (The algorithm typicallyneerges in 3 to”5 iterdt ;p.fovement brotht by the structure in PLE with pe

Note that while the PCA formulatiof8) reveals a connection between PLE J&%ﬁ%&%@@%ﬁ%&%@a%ﬁﬂs actually implemented without PCA.

: Fottowing—somerecent-works, g {52}, animageis decom-
Fg. & g O mm L posed into 12& 128 regions, each region treated with the MAP-
Do H EM algorithm separately. The idea is that image contents are
L often more coherent semi-locally than globally, and Gaussi
(@) (b) (©) (d) model estimation or dictionary learning can be slightly imed

Fig. 6. Some filters generated by the MAP estimator. (a) aparg for image . . . .
zooming, where the degradation operatbris a 2x 2 subsampling operator. IN S€mi-local regions. This also saves memory and enabées th

Gray-level from white to black: values from negative to pigsi (a) is computed processing to proceed as the image is being transmittedll&tar

with a Gaussian distribution whose PCA basis is a DCT baaijamplements  ,rqcessing on image regions is also possible when the whole
an isotropic interpolator. (b) is computed with a Gaussi@iribution whose . . . . -

PCA basis is a directional PCA basis (andle= 30°), and it implements a iImage is available. Regions are half-overlapped .tO el"_B'mlae
directional interpolator. (c) and (d) are shown in Fouriexd are for image boundary effect between the regions, and their estimates ar
deblurring, where th_e degradatllon ope_zraIbls a Gaussian convolut'pn operator. averaged at the end to obtain the final estimate.

Gray-level from white to black: Fourier modules from zeropuositive. (c) is

computed with a Gaussian distribution whose PCA basis is @ b&sis, and

it implements an isotropic deblurring filter. (d) is complteith a Gaussian A. Initialization

distribution whose PCA basis is a directional PCA basis latg= 30°, at a )

fixed position), and it implements a directional deblurriiiter. Different initializations are compared in the context of-di
D. Additional Comments on Related Works ferent inverse problems, interpolation, zooming and deinlg.

Before proceeding with experimental results and appboati The reported experiments are performed on some typicalémag
let us further comment on some related works, in addition tegions, Lena’s hat with sharp contours and Barbara’s cloth
those already addressed in Secfibn I. in texture, as illustrated in Figufé 7.

The MAP-EM algorithm using various probability distribu-Interpolation. In the addressed case of interpolation, the image
tions such as Gaussian, Laplacian, Gamma and Gibbs, has beetlegraded byJ, that is a random masking operator which
widely applied in medical image reconstruction and analysiandomly sets pixel values to zeros. The initializationctieed
(see for example[ [83])[47]). Following the Gaussian migturabove is compared with a random initialization, which adities
models, MAP-EM alternates between image patch estimationthe E-step all the missing pixel value with zeros and start
and clustering, and Gaussian models estimation. with a random patch clustering. Figuré 7-(a) and (b) compare

Clustering-based estimation based on self-similarity gemathe PSNRs obtained by the MAP-EM algorithm with those
models has been shown effective for image restoration [1@)o initializations. The algorithm with the random initizdtion
[17], [41], [45], [5Q], [63]. In these works, similar patche converges to a PSNR close to, about 0.4 dB lower than, that
are clustered typically using the block matching technjqueith the proposed initialization, and the convergence gake
i.e., including in the same cluster the patches among whiotuch longer time (about 6 iterations) than the latter (al®ut
the Euclidian distance or mean absolute difference is smaiérations).

Image segmentation algorithms such as k-means on locakimaglt is worth noting that on the contours of Lena’s hat, with
features has been considered as viell [14]. While such cingte the proposed initialization the resulting PSNR is stabderfithe

is intuitive, the clustering and signal estimation are added initialization, which already produces accurate estioratsince
as two separate problenis [14], [50]. The self-similaritgcha the initial directional PCA bases themselves are calcdlateer
based approaches have been equally addressed in the fremewygnthetic contour images, as described in SediionlilI-C.

of partial differential equationd_[28]/ [34]_[V3]. The gmal- Zooming. In the context of zooming, the degradatibhis a
ized PCA [75] models and segments data using an algebrsitbhsampling operator on a uniform grid, much structuread tha
subspace clustering technique based on polynomial fittirdy athat for interpolation of randomly sampled images. The MAP-
differentiation, and while it has been shown effective irmge EM algorithm with the random initialization completely I&i
segmentation, it does not reach state-of-the-art in imag®ra- to work: It gets stuck in the initialization and does not lead
tion. In the recent non-parametric Bayesian approach [84], to any changes on the degraded image. Instead of initiglizin
image patch clustering is implemented with probability misd the missing pixels with zeros, a bicubic initialization ested,
which improves the denoising and interpolation resulthcalgh which initializes the missing pixels with bicubic interjadibn.
still under performing, in quality and computational cofte Figure[7-(c) shows that, as the MAP-EM algorithm iterates, i
framework here introduced. significantly improves the PSNR over the bicubic initiatina,

Based on the Gaussian mixture models here developed, ltosvever, the PSNR after a slower convergence is still abdut 0
clustering in this framework is calculated jointly with tenal dB lower than that obtained with the proposed initializatio
estimation as one consistent problem by maximizing the MAPeblurring. In the deblurring setting, the degradatibhis a
probability [3). The effectiveness of this modeling will fiether convolution operator, which is very structured, and the gema
supported next with examples in a number of imaging inverge further contaminated with a white Gaussian noise. Four
problem applications. initializations are under consideration: the initialipat with



PSNR

directional PCAs K directions plus a DCT basis), which isthe algorithm iterates. (See figures 3-(d) and (e) for amothe
exactly the same as that for interpolation and zooming tasksample.) Some high-frequency atoms are promoted to better
the proposed initialization with theosition PCA bases for capture the oscillatory patterns, resulting in a signifiddBNR
deblurring as described in Sectibn IITHCP positions per each improvement of more than 3 dB. On contour images such as
of the K directions, all with the same eigenvalues as for theena’'s hat illustrated in Figurg] 7, on the contrary, althoug
directional PCAs initialization), and two random initiaditions the patch clustering is cleaned up as the algorithm iterétes
with the blurred image itself as the initial estimate andredam resulting local PSNR evolves little after the initializati which
patch clustering with, respectivel,+ 1 and(K 4+ 1)P clusters. already produces accurate estimation, since the diredtP@A
As illustrated in Figurél7-(d), the algorithm with the ditenal bases themselves are calculated over synthetic contogesna
PCAs initialization gets stuck in a local minimum since thas described in Sectidn III}C. The eigenvalues have alwass f
second iteration, and converges to a PSNR 1.5 dB lower thdecay as the iteration goes on, visually similar to the phot i
that with the initialization using the position PCAs. Indee Figure[2-(d). The resulting PSNRs typically converge in $to
since the recoverability condition for deblurring, as epéd iterations.
in Section[1II=C2, is violated with just directional PCA Iess
the resulting images remain still quite blurred. The randgq
initialization with (K 4 1)P clusters results in better results tha
with K+ 1 clusters, which is 0.7 dB worse than the propos
initialization with position PCAs.

These experiments confirm the importance of the initiatizrat 5 Pt
in the MAP-EM algorithm to solve inverse problems. T AR S
sparse modeling dual interpretation of GMM/MAP-EM helg@ - o s Ly j
to deduce effective initializations for different inverngeblems, BFTiBNmYW M
which are further confirmed by the Wiener filter interpretati a? (b) (c)
described in Sectioh I1II-G3. While for interpolation of dom Eigr-bg-r . E(g;) #ﬂcé”i g;tf;er;zzrfjjrxiﬂoggiy(fgvlﬁ\aebgi%i;lr;hﬂ(i)t(:é;p;zdcgg?ﬁ
masking operators, trivial initializations slowly congerto a images..(c) Bottom: 'Ighe first few atoms o(} an initial PCA. baisresponding
solution moderately worse than that obtained with the psedo to the texture on the right of the image. Top: The resultingchpalustering
initialization, for more structured degradation operateuch after _the 1st iteration. Different c0|0|_'s represent d'dfurcluste[s. (d) Bottom:

. . f . - The first few atoms of the PCA basis updated after the 1sttiberaTop: The

as uniform subsampllng and convolution, S|mple inititizas resulting patch clustering after the 2nd iteration. (e) Titerpolation estimate
either fail to work or lead to worse results than with the pregd  after the 2nd iteration (32.30 dB).
initialization. Note that with the proposed initializatiothe first
iteration leads already to good performance. The adaptatio
the PCAs to the image under consideration as the algoritifén Estimation Methods
iterates further improves the results.
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Fig. 7. PgV\PR comparison of the MAP-EM alg(;o?ithm with diffetenitial-
izations on different inverse problems. The horizontalsasorresponds to the
number of iterations. (a) and (b). Interpolation with 50%d &80% available
data at random position, on Lena’s hat and Barbara’s clotte iitializations
under consideration are the random initialization and thigalization with
directional PCA bases. (c) Zooming, on Lena’s hat. Thealutations under
consideration are bicubic initialization and the initzaliion with directional PCA ]
bases. (Random initialization completely fails to workl) Deblurring, on Lena’s i
hat. The initializations under consideration are thealiiation with directional _
PCAs K directions plus a DCT basis), the initialization with thesition PCA Fig(e)gB'OCk Egﬁbﬁiggn of di(ge?g)r?tk ce)thiPrr:l §352n7 ?T?eth od s(g) g#@;gﬁ:ﬂﬁﬁ?ﬁd a8 |
bases P positions per each of thi€ directions), and two random initializations e - . 3 -
with the blurred image itself as the initial estimate andradman patch clustering zooming. (a) The original image cropped from Lena. (b) The-iesolution

. . image, shown at the same scale by pixel duplication. Fromtdckh) are
\r?lwl(t)?’e rgesgielgtlvely,K+ 1 (rand. 1) andK + 1)P (rand. 2) clusters. See text for the super-resolution results obtained with differentneation methods. As the

modeling methods get closer and closer to the proposed agpravhich can
be interpreted as a weighted sparse coding, results getrcimsl closer to the
B. Evolution of Representations best one produced by the proposed approach, obtained anificsigtly lower
. . . . . computational cost. See text for more details. . . .
Figure[B illustrates, in an interpolation context on Bagsr Iﬂom the sparse coding point of view, the gain of introducing

cloth, which is rich in texture, the evolution of the patctstructure in sparse inverse problem estimation as describe
clustering as well as that of a typical PCA bases as tle Section[Il] is now shown through some experiments. An
MAP-EM algorithm iterates. The clustering gets cleaned sip avercomplete dictionarid composed of a family of PCA bases




{Bk}1<k<k, illustrated in Figurd1l-(b), is learned as describegatches of size 12 12 are used when images are heavily masked
in Section[dl, and is then fed to the following estimatiorwith only 20% pixels available. For color images, patches of
schemes. (i\Global 1; and OMP: the ensemble ob is used size v/N x v/N x 3 throughout the RGB color channels are
as an overcomplete dictionary, and the zooming estimasonused to exploit the redundancy among the channels [51]. To
calculated with the sparse estimalie]l(14) through, resmdygti simplify the initialization in color image processing, thHe
an |1 minimization or an orthogonal matching pursuit (OMP)step in the first iteration is calculated with “gray-leveltphes
(i) Block I; and OMP: the sparse estimate is calculated in eaabf size v/N x v/N on each channel, but with a unified model
PCA basisBg through, respectively ah minimization and an selection across the channels: The same model selection is
OMP, and the best estimate is selected with a model selectimrformed throughout the channels by minimizing the sum of
procedure similar td{7), thereby reducing the degree afdoen the model selection energyl (7) over all the channels; theasig
in the estimation with respect to the glotbabhnd OMP.[[80]. (iii) estimation is calculated in each channel separately. Thsted-
Block weighted|4: on top of the blocK;, weights are included then estimates the Gaussian models with the “color” patolies
for each coefficient amplitude in the regularizer, size v/N x /N x 3 based on the model selection and the signal
N estimate previously obtained in the E-step. Starting frém t
ak:arg min(lUina—yi||2+02 Z |a[rkn]|> . (19) second iteration, both the E- and M-steps are calculatedd wit
a m=1 Im “color” patches, treating the/N x /N x 3 patches as vectors
of size N. /N is set to 6 for color images, as in the previous
works [51], [84]. The MAP-EM algorithm runs for 5 iterations
e noise standard deviati@nis set to 3, which corresponds to

with the weightstX = (AK)Y2, where AKX are the eigenvalues
of the k-th PCA basis. The weighting scheme penalizes t

atoms that are less likely to be important, following therisif . . . ; .

: : . the typical noise level in these images. The small constant
the weightedl, deduced from the MAP estimate. (iBlock . o . :
weighted Iy: the proposed PLE. Comparing with {19) thethe covariance regula_rlza_uon is set to 3Q in all the expenits.

2: . ' The PLE interpolation is compared with a humber of recent

difference is that the weighteld (18) takes the place of the ethods, including “MCA’ (morphological component analy-

weightedl,, thereby transforming the problem into a stable angfs) 5], “ASR” (adaptive sparse reconstructions) [37ECM”
computationally efficient piecewise linear estimation. S ;

The comparison on a typical region of Lena in the 2 (expectation conditional maximization) [29] , “KR” (kerhe

. : . e regression) [[70], “FOE" (fields of experts) [66], “BP" (beta
image zooming context is shown in Figlre 9. The gldpaind ?)cess) [5)34] “L-SVD” [5(‘L] and “NL”p[45]' MCL and EéM
OMP produce some clear artifacts along the contours, whigﬁ o e o

degrade the PSNRs. The bldglor OMP considerablyimprovescompme t_he sparse inverse prqblem estimate in a dictionary
. . ; that combines a curvelet frame [11], a wavelet frame [53] and
the results (especially fdr). Comparing with the block; or

A ) . : : a local DCT basis. ASR calculates the sparse estimate with a
OMP, a very significant improvement is achieved by adding trllgcal DCT. BP infers a nonparametric Bayesian model from the
collaborative weights on top of the blo¢k The proposed PLE : P y

with the block weightedh,, computed with linear filtering, further 'mage ungier test (r_10_|se level is automatically estlmatUd)mg_
. e : a natural image training set, FOE and K-SVD learn respdgtive
improves the estimation accuracy over the block weighted

. . a Markov random field model and an overcomplete dictionary
with a much lower computational cost.

In the following sections, PLE will be applied to a number owat gives sparse representation for the images. Follodfig

inverse problems, including image interpolation, zoomargl self-similarity image prior, NL iterates between a projeot
P ' g 9 P ' st%p based on the observation, and a non-local transform and

d?:lﬂrem;?'aggecc%??;g]egs are performed on some StandE’hrresholding step. The results of MCA, ECM, KR, FOE, and
gray-lev IMages. NL are generated by the original authors’ softwares, with th
V. INTERPOLATION OFRANDOM SAMPLED |MAGES parameters manually optimized over all the images, andethos
' . _ 7 of ASR are calculated with our own implementation. The PSNRs
In the addressed case of interpolation, the original infaige of BP and K-SVD are cited from the corresponding papers. NL,
masked with a random mask,= Uf, whereU is a diagonal Bp, and BK-SVD currently generate the best interpolaticults
matrix whose diagonal entries are randomly either 1 or ) the literature.
keeping or killing the corresponding pixels. Note that to&  Table[-left gives the interpolation results on gray-leiret
be considered as a particular case of compressed sensinga(¥s. Except at relatively high available data ratio (80% an
when collectively considering all the image patches, asimat500) where NL gives the results comparable to PLE, PLE
completion (and as here demonstrated, in contrast withettent  considerably outperforms the other methods in all the cases
literature on the subject, a single subspace is not sufficé® \jth an average PSNR improvement of about 0.5 dB over the
also [84]). . second best algorithm NL and about 2 dB over the algorithms
The experiments are performed on the gray-level images,Lefi#at follow (BP, FOE and MCA). With 20% available data on
Barbara, House, and Boat, and the color images Castle, Muglarbara, which is rich in textures, it gains as much as about 3
room, Train and Horses. Uniform random masks that retain,80%8 over MCA, 4 dB over ECM, 5.5 dB over NL, and 6 dB over
50%, 30% and 20% of the pixels are used. The masked imag@she other methods. Let us remark that when the missing dat
are then mpamteq with the algorlthms under. consideration ratio is high, MCA generates quite good results, as it benefit
For gray-level images, the image patch size/isl x v/N = from the curvelet atoms that have large support relativeline
8 x 8 when the available data is 80%, 50%, and 30%. Larggycal patches used by the other methods.
3 _ Figure[I0 compares the results of different algorithms. All
Gray-level: !_ena, Barbara, Peppers, Mandril, House, Cqman, Boats, and th thods lead t d int lati It th th
Straws; Color images: Castle, Mushroom, Kangaroo, Trairses, Kodak05, e. methods _ea 0 good In grpo ation results on the smoo
Kodak20, Girl, and Flower. regions. MCA is good at capturing contour structures. H@awev
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when the curvelet atoms are not correctly selected, MCA pravailable data ratio is high (at 80%), for the other maskatgs,
duces noticeable elongated curvelet-like artifacts tegtade the it is mostly between 0.5 and 1 dB. Both methods use only the
visual quality and offset its gain in PSRN (see for exampke tlimage under test to learn the dictionaries.

face of Barbara). MCA restores better textures than BP, ASR,Figure[11 illustrates the PLE interpolation result on Gastl
FOE, KR, and NL. PLE leads to accurate restoration on both théth 20% available data. Calculated with a much reduced com-
directional structures and the textures, producing théwissal putational complexity, the resulting 30.07 dB PSNR surpass
quality with the highest PSNRs. An additional PLE interpiola  the highest PSNR, 29.65 dB, reported in the literature, pced
examples is shown in Figufé 8. by K-SVD [51], that uses a dictionary learned from a natural

Data ratio MCA | ASR | ECM | KR | FOE* | NL BP [Image trainiDgisefidolloyedmy[28E2]dB given by BP (BP has
S0 || 3563 | 3616 | 3443 3677 | Jeio6 | 378z 9| aroa ooty Impredgc Ang Sheial conerence in the,code
0 . . . . . . . vinnah i Al S Al O9S i

Lena =505 11 32.33 | 32.48 | 3L.I1 | 33.55| 33.22 | 34.13 | 33.31 | Bl she@s@su%sé@%ﬂ% Pwrz3igrthe zoomed region, PLE
20% || 30.30 | 30.37 | 28.93 | 31.21 | 31.06 | 31.62 | 31.00 | @ecrately restorgsotbe|[detaiy ob.ane castle from the heavi
80% || 41.50 | 39.63 | 39.10 | 37.81 | 38.27 | 43.50 | 40.76 | Am&ked image. LEBWS [fernaek #eedsipterpolation with random
50% || 34.29 | 30.42 | 3254 | 27.98 | 29.47 | 3640 | 33.17 | 3L onecotasdmngRlis peasrefaAbre favorable than ra

Barbara |ty 1—9.98 [ 75.72 | 28.46 | 24.00 | 2536 | 29.65 | 2752 3573 | [ MESHRS0R Ay i LG ete o8 Mg
v {7 | nee | snas a3 | 5508 | oao | orse] Roeh{mlages, thaffkﬁ%‘*ﬁfﬁ%ﬁﬁfﬁ?@ﬁfﬂ redundancy amoeg th
80% || 4291 | 43.79 | 40.61 | 42.57 | 44.70 | 45.27 | 43.03 | GAI9F prrannets A JugiopTcanig spomyith @ multiscale esten

House | 20% || 37.02 | 36.06 | 35.16 | 36.82 | 37.99 | 39.30 | 38.02 | gB.81g K-SYD) algpAthm|[82pEhéwesthat for restoring House
30% || 33411 31.86 | 3146 | 33.62 | 33.86 | 35.92| 33.14 | BAMS bisos, availahleala 2(tBR [ dSresult of this application
20% || 3067 2991 | 28.97 [ 3L19| 3128 | 3287 J0I2] 3305 1", ~ o 1, 200 [L2AST[ A3 5 -\ & ol T e
80% || 38.61 | 30.52 | 37.45] 37.01 | 38.33 | 40.52] 39.60 | 4UAY L "rer ey o prg e ygpsy 'cads 0 99,

Boat | B0% || 32.77 | 3284 3184 | 32.70 | 33.22 | 3457 | 33.78 l%g‘ﬁ tjrespectively t¥ag,gne7og Se@Es, in contrast to thes34.0
30% || 29.57 | 29.55 | 28.46 | 29.28 | 29.80 | 3051 | 30.00 | @B Gbitained By the FPLBAM¥hout any parameter tuning
20% || 27.73 | 27.34 | 26.39 | 27.05| 27.86 | 28.32 | 27.81 A — 26 l29 99 B —
80% || 40.90 | 41.28 | 39.16 | 39.99 | 40.86 | 43.16 | 41.14 i

Average | B0% || 3493 | 33.87 | 3349 | 3356 | 3433 | 37.02| 3547 ¢ A

9€ ™30% [ 31.32 [ 29.90 | 29.87 | 30.11 | 30.56 | 32.55 | 30.99

20% || 29.04 | 28.07 | 27.68 | 28.19 | 28.53 | 29.55 | 28.43

TABLE |
PSNRCOMPARISON ON GRA¥LEVEL (LEFT) AND COLOR (RIGHT) IMAGE
INTERPOLATION. FOR EACH IMAGE, UNIFORM RANDOM MASKS WITH FOUR
AVAILABLE DATA RATIOS ARE TESTED. THE ALGORITHMS UNDER
CONSIDERATION AREMCA [25], ASR [37] , ECM [29] , KR [70],
FOE [66], BP[84], NL [45],AND THE PROPOSEPLE FRAMEWORK. THE
BOTTOM BOX SHOWS THE AVERAGEPSNRS GIVEN BY EACH METHOD OVER
ALL THE IMAGES AT EACH AVAILABLE DATA RATIO . THE HIGHESTPSNRIN

(a) Original

. . ) _ (b) Masked ~ ~ (c) PLE
EACH ROW IS IN BOLDFACE THE ALGORITHMS WITH * USE A TRAINING Fig. 11. Color image interpolation. (a) Original image queg from Castle.
b). 1 I qilab S-data

caiiage I2 A

ase of interpolatiothwi
[ids. As explained in Sec-
Dperatdf may result in
inakyD. Calculating an
palation zoomingdsettore
tion of random sampled

he gray-level images,Lena
and Straws, and the colo
okad20. The color images
interpolation. These high-
d by a factor 2without
ow-resolution iges are
ty of televisiongesathat
=l . : - Uit 8 oVes their visual paios.
(e) FOE (21.92 dB) () NL (23.31 dB) gg) BPT(2s.leWdRsolution iimalglels @G5 eh zoomed by the algorithms

Fig. 10. Gray-level image interpolation. (a) Original ineagropped from . . L .
Barbara. (b) Masked image with 20% available data (6.81 &Bdm (c) to under consideration. When the anti-aliasing blurring afmr

(9): Image inpainted by different algorithms. Note the a¥iesuperior visual IS included before subsampling, zooming can be casted as a
quality ol:_)tained with the proposed approach. The PSNRsacelated on the deconvolution problem and will be addressed in Sedtion VII.
Cm’fﬁ%‘iérﬁq?legsht compares the PSNRs of the PLE color image The PLE interpolation zooming is compared with linear
interpolation results with those of BP (the only one in thiaterpolators [[8], [[42], [[74], [[60] as well as recent super-
literature that reports the comprehensive comparison in aesolution algorithms “NEDI” (new edge directed interpola
knowledge). Again, PLE generates higher PSNRs in all thescastion) [46], “DFDF” (directional filtering and data fusion81l],
While the gain is especially large, at about 6 dB, when tH&R" (kernel regression)[70], “ECM” (expectation conditial

SUe
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Bicubic | NEDI | DFDF KR ECM | Contourlet | ASR | FOE
o p " p » ; Lena 33.93 | 33.77 | 3301 | 3394 | 2431 3392 | 33.19| 340
(
maX|m|zat|(_)n) [2‘9];' Co“ntour’l,et .[59]' ASR (adapt!ve 8‘”5 [ Peppers 32.83 | 33.00 | 33.18 | 33.15| 23.60| 33.10 | 32.33| 319
reconstructions) [[37], “FOE” (fields of experts) [66], “SR*wmandri 2292 | 23.16 | 22.83 | 22.93 | 2034| 2253 | 22.66 | 22.9
(sparse representation) [76], “NLT_[45], “SAI" (soft-destdon| Cameraman|| 25.37 | 25.42 | 25.67 | 2551 | 1950 | 2535 | 25.33 | 255
adaptive Interpolation)[[82] and “SME” (sparse mixing Q-SE:;?;S 53‘53‘ gg-éi gg-% gg-%g i%g ggég gg-gg gg-i
timators) [55]. KR, ECM, ASR, FOE and NL are genesie _ ‘ ‘ ‘ ' ‘ ' ' '
. - . . . _ Ave.gain | 0O [ 004 ] 013 ] 011 [ -630] -0.02 [ -0.30] -0.0
interpolation algorithms that have been described in 8efd. =T NEDI | DFOE KR FoE T S TS
: H : . . ICUDIC

NEDI, DFDF and SAI are adaptlve_ dlrectl(_)nal_mterpt_)latlon Tera 541 3247 3246 T 3255 | 3255 [ 2647 1 32
methods that take advantage of the image directional ragula Peppers || 30.95 | 31.06 | 31.24 | 31.26 | 31.05 | 26.43 | 3L
Contourlet is a sparse inverse problem estimator as destrib Kodak05 || 25.82 | 25.93 | 26.03 | 26.09 | 26.01 | 20.76 | 26.
in Section[TI[=A, computed in a contourlet frame. SR is also Kodak20 || 3065 | 31.06 | 31.08 | 30.97 | 30.84 | 25.92 ] 31
a sparse inverse estimator that learns the dictionaries fo [Ave. gain | OTABI|_E?I'17 | 025 [ 027 [ 016 | -5.07 [ 0.

tralnlr_lg |r_nag_e set. SME is a reC_enF Zooming algorlthm thalgSNRCOMPARISON ON GRA¥LEVEL (TOP) AND COLOR (BOTTOM) IMAGE
exploits directional structured sparsity in wavelet rereations. |NTERPOLATION ZOOMING. THE ALGORITHMS UNDER CONSIDERATION ARE
Among the previously published algorithms, SAl and SME BICUBICINTERPOLATION, NEDI [46], DFDF [81], KR [70], ECM [29],
currenty provide the best PSNR for spatial mage nerfmin. _ Cuto9=t €/ ASK [3) FOETER), SRIZE] L) oAl
zooming [55], [82]. The results of ASR are generated with OUlsHows THE AVERAGE GAIN OF EACH METHOD RELATIVE TO THE BICUBIC
own implementation, and those of all the other algorithnes ariINTERPOLATION. THE HIGHESTPSNRIN EACH ROW IS IN BOLDFACE THE
produced by the original authors’ softwares, with the partams NITH? USE A TRAI
manually optimized. As the anti-aliasing operator is notuded — — —
in the interpolation zooming model, to obtain correct resul
with SR, the anti-aliasing filter used in the original autior
SR software is deactivated in both dictionary training Kwit
the authors’ original training dataset of 92 images) andesup
resolution estimation. PLE is configured in the same way as f :
interpolation as described in Sectioh V, with patch size8for R"h
gray-level images, and 66 x 3 for color images. ¢

Table[Tl gives the PSNRs generated by all algorithms on tt
gray-level and the color images. Bicubic interpolationyides
nearly the best results among all tested linear interprdatof=
including cubic splines[[74], MOMS_[8] and otheris [60], due.=
to the aliasing produced by the down-sampling. PLE gives
moderately higher PSNRs than SME and SAI for all the images, L
with one exception where the SAl produces slightly highesy 1o (agoll_gr? image zoomin(gt.))(lé)RCrop from tr(mg) Eé?\yrgg%mtimage
PSNR. Their gain in PSNR is significantly larger than with alkodak20. (b) Low-resolution image. From (c) to (e), imagesraed by bicubic
the other algorithms. interpolation (28.48 dB), SAIl (30.32 dB) [82], and proposedE framework

. . . . 30.64 dB). PSNRs obtained by the other methods under cenagion: NEDI
Figure[12 compares an interpolated image obtained by 26.68 dB) [46], DFDF (29.41 dB)[81], KR (29.49 dB) [70], FOE@8.73

baseline bicubic interpolation and the algorithms thategate dB) [66], SR (23.85 dB)([76], and SME (29.90 dB) [55]. Attenti should be
the highest PSNRs, SAI and PLE. The local PSNRs on i i 5B} ioated b the amows.

cropped images produced by all the methods under condiolerat } ) ] - N
are reported as well. Bicubic interpolation produces sofne b _AS explained in Sectiop T-02, the recoverability conoii
and jaggy artifacts in the zoomed images. These artifaets 8f SParse super-resolution estimates for deblurring requa
reduced to some extent by the NEDI, DFDF, KR, FOE and Nflictionary comprising atoms with spread Fourier spectrurd a
algorithms, but the image quality is still lower than with L thus localized in space, such as the position PCA basisraites]
SAl and SME algorithms, as also reflected in the PSNRs. $k Figure[4. To reduce the computational complexity, model
yields an image that looks sharp. However, due to the coberef€lection with a hierarchy of directional PCA bases andtjuosi

of the transformed dictionary, as explained in SeciionAlil- PCA bases is proposed, in the same spirit[of [79]. Figuie 13-
when the approximating atoms are not correctly selected,(® illustrates the hierarchical PLE with a cascade of the tw
produces artifact patterns along the contours, which diegits Iayers_ of model §e|e9t|0ns. The first layer selects the ﬂq!ep
PSNR. The PLE algorithm restores slightly better than SAl and given the direction, the second layer further specifies t
SME on regular geometrical structures, as can be observedP@§tion-

the upper and lower propellers, as well as on the fine lines onl" the first layer, the model selection procedure is idehtma
the side of the plane indicated by the arrows. that in image interpolation and zooming, i.e., it is caltethwith

the Gaussian models corresponding to the directional PGada
{Bk}1<k<k, Figure[2-(c). In this layer, a directional PCBy of
VIl. DEBLURRING orientation6 is selected for each patch. Given the directional
basisBy selected in the first layer, the second layer recalculates
An imagef is blurred and contaminated by additive nois¢he model selection[7), this time with a family of position
y = Uf +w, whereU is a convolution operator ana is the PCA bases{By }1<p<p corresponding to the same direction
noise. Image deblurring aims at estimatihdgrom the blurred 6 as the directional basiBy selected in the first layer, with
and noisy observation. atoms in each basiBy  localized at one position, and tife
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bases translating in space and covering the whole patch. With different amounts of blur and noise. The PLE deblur-
image patch estimatiofil(8) is obtained in the second layes Tring is compared with a number of deconvolution algorithms:
hierarchical calculation reduces the computational cexipy “ForWaRD” (Fourier-wavelet regularized deconvolutiof®1],
from O(KP) to 0(K+P). “TVB” (total variation based)[[[7], “TwIST" (two-step itetave

shrinkage/thresholding)[6], “SP” (sparse priar)[44]A®CT”
/\ (shap%ad_argtive DCT)_[30], “BM3D” (3D transform-domain

= [/ A\ = CDV% tﬁt ve (filtering)[[18], and “DSD” (direction spargdecon-
/]\ /]\ /]\ /]\ vplytiony [4€]. ForwaRD, SA-DCT and BM3D first calculate
PEE FLEE BN RS the dedahypblution with a regularized Wiener filter in Fourie

@ and n denoise the Wiener estimate with, respectively, a

Fig. 13. (a). Hierarchical PLE for deblurring. Each patchtfie first layer thresholding estimator in wavelet and SA-DCT represeonati
symbolizes a directional PCA basis. Each patch in the setayed symbolizes gnd with the non-local 3D collaborative filtering |17]_ TVBG
a position PCA basis. (b) To circumvent boundary issuesjudéhy a patch TWIST d uti lari h . h h the i
whose support i€ can be casted as inverting an operator compounded by v _eC_OnVO lj'tlons regularize the eStlmate_W't the |E_nag
ma]s_kingd’;mgla convolugon decinned on a larger su&?brﬁeetteﬁ(t for deta(jJs.t total variation prior. SP assumes a sparse prior on the image
ddor ed urSr_lng, rc:un ary ;ss_ues on e patc esd.nec:jmlo Sdient. DSD is a recently developed sparse inverse proble
3 reSST t |n?e t (ha convo u_tlotnh o;l))?rato(; IS non- |ag| estimator, described in Sectibn II-A. In the previous pshd
hecon_volu lon ot eac hg'x?:(x)dm € m;mre] 'magy m(;/o vesd works, BM3D and SA-DCT are among the deblurring methods
the P?IXTJIS n aknelgl Zr Or? ar01:1 bW %Se S'ﬁed eo?er: Sthat produce the highest PSNRs, followed by SP. The restilts o
on the blurring kernel. As the patch based methods deal Wit} o methods under comparison are generated by the author

tr}e. Ipcal .pa_tche1s_,hfor fa given patch, tg? mforrt?ayon oetsi riginal softwares, with the parameters manually optimiZEhe
of it is missing. Therefore, it is impossible to obtain aater proposed algorithm runs for 5 iterations.

deconvolution estimation on the boundaries of the patches.

circumvent this boundary problem, a larger patch is comsile Table[Ill gives the ISNRs (improvement in PSNR relative to
and the deconvolution is casted as a deconvolution plus e input image) of the different algorithms for restoringgaiges
interpolation problem. Let us retake the notatidinsy; and blurred with Gaussian kernels of standard deviatign= 1 and

w; to denote respectively the patches of siZBl x v/N in the 2 (truncated to a &5 support), and & 5 uniform box kernel,
original imagef, the degraded imagg, and the noisev. Let all then contaminated by a white Gaussian noise of standard
Q be their support. Lefi, yi and w; be the corresponding deviationo, = 5. BM3D produces the highest ISNRSs, followed
larger patches of siz¢y/N+ 2r) x (v/N+2r), whose support closely in the case of Gaussian blurring kernels by SA-DC3 an
Q is centered at the same position @sand with an extended PLE, whose ISNRs are comparable and are moderately higher
boundaryQ\Q of width r (the width of the blurring kernel, seethan with SP on average. As the more aggressive uniform box
below), as illustrated in Figure 113-(b). L&t be an extension kernel is tested, the local patch-based PLE is outperforyed

of the convolution operatdd on Q such thatUfj(x) = Ufi(x) if most methods under comparison, which calculates the déidur
x€ Q, and 0 ifx€ Q\Q. Let M be a masking operator definedon the whole image instead of patch by patch. Since the
on Q which keeps all the pixels in the central p@rtand kills the convolution operator is non-diagonal, it leads to a bordfece
rest, i.e., Mfi(x) =fi(x) if xe Q, and 0 ifx€ Q\Q. If the width in the deblurred image or image patches. Such border effagt m

r of the boundan\Q is larger than the radius of the blurringdominate in local patches as the kernel size increasesadiegr
kernel, one can show that the blurring operation can be temri the performance of patch-based deblurring method. The same
locally as an extended convolution on the larger suppoladaid is observed with other patch-based deblurring algorithiss a
by a maskingMy; = MUf; + Mw;. Estimatingf; from y; can well [48]. Let us remark that BM3D, SA-DCT and ForWaRD
thus be calculated by estimatifigfrom My;, following exactly include an empirical Wiener filtering post-processing trest

the same algorithm, now treating the compoundiéd as the reported in the table, boosts the ISNR on average from 0.3 to 2
degradation operator to be inverted. The boundary pixethén dB, leading to state-of-the-art results for the case of BM3D

estimatefi(x), x € Q\Q, can be interpreted as an extrapolation g\ (13 shows a deblurring example. All the algorithms
from_ Yis there_fore l?SS reliable. The deblurrmg estm&tes under consideration reduce the amount of blur and attenuate
obtained by discarding these boundary pixels fipifwhich are 6 noise. BM3D generates the highest ISNR, followed by SA-
outside ofQ2 anyway). _ . DCT, PLE and SP, all producing similar visual quality, which
Local patch based deconvolution algorithms become less a¢a moderately better than the other methods. DSD accyratel
curate if the blurring kernel support is large relative te fatch (egiores sharp image structures when the atoms are cgrrectl
size. In the deconvolution experiments reported befoandQ  ggjected, however, some artifacts due to the incorrect atom
are respectively set t0>88 and 12< 12. In the initialization the gejection offset its gain in ISNR. As a core component in BM3D
number of directions is set #6 = 18, the same as in the imageyng SA-DCT, the empirical Wiener filtering efficiently remesy
interpolation and zooming experiments, de- 16 positions is some artifacts and significantly improves the visual qyaditd
set for each direction. The blurring kernels are restrid®@ e |ISNR. More examples of PLE deblurring will be shown in
5x 5 support. the next section.

B. Deblurring Experiments

The. deblumng experiments are performed on the gray-swhen calculating the ISNRs, the image borders of width 6lpiaee removed
level images Lena, Barbara, Boat, House, and Cameramiaryrder to eliminate the boundary effects.
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Kernel size and input PSNR ForWaRD | TVB | TwIST | SA-DCT BM3D SP | DSD* | PLE
O,—1] 3062 || 2.202.16 | 3.03 | 2.87 | 3.56/2.58| 4.09a45 | 3ahd 260 AL , , N

Lena [Gv—2 | 2884 [ 2502511 315 313 | 3467300 307350 1S54 pdetgs1 possible solution for the casp (i

Box5 | 2819 | 2.79/2.69 | 3.25 | 3.22 | 3.86/3.22 | Wit Pits telarring.oA linear interpolatidnis first applied

op=1 30.04 2.602.18 | 3.12 | 3.23 | 4.14/3.07 | tpopesoalB/sanvereane 2sesampling operat& Due to the

House | opb=2 | 28.02 | 316/279 | 324 | 3.82 | 421/13.64| 4[{g4ikh| the? lIn@H’ intérPblation does not perfectly oestUf,
Box5 | 2726 || 3861329 420 | 460 | 5.22/4.29| bAGA 58] 457 |, @m,mb Ather accurate. ie. the il

ra\vraYs &
Op=1] 2829 2.01/1.68 | 2.45 | 2.44 | 2.93/2.21] 3.232.46 | 2.7Q. 2.72 ] ;
Boat oo T o5 oT o Tr o5 2e0 [ 57ip a3 [ inagad T abPhinclesage the blurred imag#ff, as Uf has
Box5 25.45 3047262 | 3.18 | 3.21 | 3.91/3.24| hmuuteeb Niglzdrequendiessm| the case (iii). The PLE debhgr
Oh=1 ] 29.65 2.2712.01 [ 2.87 | 2.84 [ 3.54/2.62] kramew0rk.igthenzpplietlio deconvolugrom ly. Inverting the
Average | o, =2 | 27.69 2701247 | 3.02 | 3.8 | 3.79/3.09| 389325 ”'sg@ ,,ng,%r fﬁg,; inverting the compounded operator

Box5 27.69 3.23/2.87 | 354 3.68 | 4.33/3.58| 4542.45 . . . .
SU—AS ulc h |ccu iy CI|JUI tion in the first step is accurate

TABLE Il . .
ISNR (IMPROVEMENT IN PSNRWITH RESPECT TO INPUT IMAGH enough in the case (iii), deconvolving results in accurate
COMPARISON ON IMAGE DEBLURRING IMAGES ARE BLURRED BY A zooming estimates.
GAUSSIAN KERNEL OF STANDARD DEVIATIONG, = 1 AND 2, AND A 5x 5 In the experiments below, the anti-aliasing filteris set as

UNIFORM BOX KERNEL, AND ARE THEN CONTAMINATED BY WHITE . : L :
GAUSSIAN NOISE OF STANDARD DEVIATIONG, = 5. FRoM LEFT To RiGHT. & Gaussian convolution of standard deviatmn= 1.0 andS is

FORWARD (WITH/WITHOUT EMPIRICAL WIENER POSTPROCESSING[61], ansx s= 2 x 2 subsampling operator. It has been shown that a

TVB [[7], TWIST [6], SA-DCT (WITH/WITHOUT EMPIRICAL WIENER _fi ; ; ; _
POSTPROCESSING [30]. BM3D (WITH/WITHOUT EMPIRICAL WIENER pre-filtering with a Gaussian kernel ot = 0.8s guarantees that

POSFPROCESSING [18], SP [44], DSD[[48] AND THE PROPOSELPLE the following sx s subsampling generates a quasi aliasing-free
FRAMEWORK. THE BOTTOM BOX SHOWS THE AVERAGESNRS GIVEN BY image [58]. For a % 2 subsampling, the anti-aliasing filterit

EACH METHOD OVER ALL THE IMAGES WITH DIFFERENT AMOUNTS OF BLUR. with O = 1.0 leads to an amount of aliasing and visual quallty
THE HIGHESTISNRIN EACH ROW IS IN BOLDFACE, WHILE THE HIGHEST

WITHOUT POSFPROCESSING IS IN ITALIC THE ALGORITHMS WITH* usEa ~ COmparable to that in typical camera pictures in reality.
TRAINING DATASET.

\ _a
47l

deblurring. (a) Crop from Leha(b) Image

(a) Original ébz) Blurred and noisy (c) BM3D  Pre- -filtered Wltr(naG|a|:|§|an kernel of standard deviatign= 1.0: Uf. (c) Image
Fig. 14. ~ Gray-level image deblurring. (a) Crop from Lend). Ifpage blurred subsampled frontf by a factor of 2« 2: y = SUf. (d) Image interpolated from

by a Gaussian kernel of standard deviatign=1 and contaminated by white Y With a cubic spline interpolationly (31.03 dB). (e) Image deblurred frofy
Gaussian noise of standard deviatian="5 (PSNR=27.10). (c) and (d). Imagesby the proposed PLE framework (34.27 dB). (f) Image zoomethfy with [76]
deblurred by BM3D with empirical Wiener post-processin@NR 3.40 dB (29.66 dB). The PSNRs are calculated on the cropped imagebgtthe original

dB) [18], and the proposed PLE framework (ISNR 2.94 dB). fapqdmémlmﬂﬁgﬁxg\{@@io‘gh experiment on the image Lena. Fig-
C. Zooming deblurring . -
ures[15-(a) to (c) show, respectively, a crop of the original
When an anti-aliasing filtering is taken into account, imagenage f, the pre-filtered versiorlJf, and the low-resolution
zooming-out can be formulated gs= SUf, wheref is the image after subsampling = SUf. As the amount of aliasing
high-resolution imagel) andS are respectively an anti-aliasingis limited iny thanks to the anti-aliasing filtering, a cubic spline
convolution and a subsampling operator, 3ni the resulting interpolation is more accurate than lower ordered inteahs
low-resolution image. Image zooming aims at estimafifigm such as bicubic[[74], and is therefore applied to upsanyple
y, which amounts to inverting the combination of the twehe resulting imagdy illustrated in Figure[_15-(d). A visual
operatorsS and U. inspection confirms thaty is very close toUf, the PSNR
Image zooming can be calculated differently under differebetween them being as high as 50.02 dB. The PLE deblurring
amounts of blur introduced byJ. Let us distinguish betweenis then applied to calculate the final zooming estimhtby
three cases: (i) If the anti-aliasing filterig removes enough deconvolvingU from ly. (As no noise is added after the anti-
high-frequencies fronf so thaty = SUf is free of aliasing, aliasing filter, the noise standard deviation is set to a lsvaéle
then the subsampling operatBrcan be perfectly inverted with 0 = 1.) As illustrated in Figuré-15-(e), the resulting imafgis
a linear interpolation denoted ds i.e., IS =1d [53]. In this much sharper, without noticeable artifacts, and improye3.h2
case, zooming can can be calculated as a deconvolutiorgpnobtiB with respect tay. Figure[I5-(f) shows the result obtained
on ly = Uf, where one seeks to invert the convolution operataiith “SR” (sparse representation) [76]. SR implements aspa
U. In reality, however, camera and television images containverse problem estimator that tries to invert the compeuand
always a certain amount of aliasing, since it improves tilseali operatorSU, with a dictionary learned from a natural image
perception, i.e., the anti-aliasing filteriig does not eliminate dataset. The experiments were performed with the authors’
all the high-frequencies frorh. (ii) When U removes a small original software and training image set. The dictionariese
amount of high-frequencies, which is often the case in tygaliretrained with theUS described above. It can be observed
zooming can be casted as an interpolation problem [46], [SBhat the resulting image looks sharper and the restorason i
[59], [70], [81], [82], where one seeks to invert onfy, as accurate when the atoms selection is correct. However, a@ue t
addressed in Sectién VI. (iii) Wheld removes an intermediatethe coherence of the dictionaries as explained in SeEfieA] Il
amount of blur fron¥, the optimal zooming solution is invertingsome noticeable artifacts along the edges are produced when
SU together as a compounded operator, as investigated in [/le atoms are incorrectly selected, which also offset ita ga
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PSNR. Guoshen Yureceived the B.Sc. degree in electronic engineering from

Figure[16 shows another set of experiments on the image Gﬁlll.da'jl_ lIJniVefSIiDty,_S_lhaft‘Wthfi. China, zigoéo?ﬁ, me‘s enginged?%reg
- - - gom elecom ParisTech, France, in , the M.Sc. degremjitie
Again PLE efficiently reduces the blur from the interpolate athematics from ENS de Cachan, France, in 2006, and the. Ph.D

image and leads to a sharp zoomed image without noticea@d@ree in applied mathematics from Ecole Polytechniquand, in
artifacts. SR produces similarly good visual quality as PLE009. . .
however, some slight but noticeable artifacts (near the @nd _He was a Postdoctoral Research Associate at the Electmmal a

. : Computer Engineering Department, University of Minnesotavin
the nose for example) due to the incorrect atom SeleCt'(mabﬁCities in 2009-2010. In the spring 2008 semester, he wastangigrad-

its gain in .PSNR- . . uate student in the Mechanical Engineering Departmentshtasisetts
Comparing the PSNR for the color image images Lena, Giristitute of Technology (MIT), Cambridge. Since Decemb8i@ he

and Flower. PLE deblurring from the cubic spline interpioiat has beenHa} quantltatlk\]/e. rteseatrcherlaa BlueCrest Cdap[tahgwmeb ent,

; ; ; eneva. His research interests include image and signaessing,

improves from 1 to 2 dB PSNR over the mterpolr_;lted mag%d its applications in finance.

(33.78, 31.82, and 39.06 dB re§pect!vely for PLE; and_31-60’Dr. Yu received the ParisTech Doctoral Thesis Award in 2010,

30.62, and 37.02 dB for the cubic spline). Although SR is abéd the Gaspard Monge International Doctoral Grant fromlé&co

to restore sharp images, its gain in PSNR (30.64, 30.43, dnfelytechnique from 2006 to 2008.

35.96 dB respectively) is offset by the noticeable artfact

on April 3, 1966.
and Ph.n fhe
,dbhastitute of

of Technical $taffe
0, Galifornia. Hedurrently
nputer Engineeriigthe

arship for Special E
Ollendorff Fedluy for

mage Uel&Btanding Work in 199% t

AT 8 d
Excellen@® R-Bjision and |

(&) HR (b) LR (c) Cubic spline
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