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given n sample values {xi , yi = f(xi)}in

• High-dimensional x = (x(1), ..., x(d)) 2 Rd:

• Classification: estimate a class label f(x)

Sons

  High Dimensional Learning

Image Classification d = 106

Anchor Joshua Tree Beaver Lotus Water Lily d = 104/s
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given n sample values {xi , yi = f(xi)}in

• High-dimensional x = (x(1), ..., x(d)) 2 Rd:

• Regression: approximate a functional f(x)

  High Dimensional Learning

Physics:
Interaction energy f(x) of a system: x =

n

positions, values

o

Astronomy Quantum Chemistry

Many Body Problem
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     Curse of Dimensionality

local interpolation if f is regular and there are close examples:

• f(x) can be approximated from examples {xi , f(xi)}i by

?
x

• Need ✏�d
points to cover [0, 1]d at a Euclidean distance ✏

) kx� xik is always large
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Bi-Lipschitz Euclidean metric embedding:

C1 k�x� �x0k  �(x, x0)  C2 k�x� �x0k

”Similarity” metric: �(x, x0)

Data:

How to define � ?

      Euclidean Embedding 

x 2 Rd

kx� x

0k: non-informative

Intelligence

�x 2 H
Representation

k�x� �x0k

�
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f̃(x) = hw,�(x)i =
X

n

wn �n(x)

• Regression

˜

f(x) of f(x) linear in �(x):

interpolates: 8i , f(xi) =
˜

f(xi) = hw,�(xi)i

) w =
X

i

↵i �(xi)regular: min kwk2 =
X

n

w2
n

• Representation of x: �(x) = {�n(x)}n

       Linear Regression

) f̃(x) =
X

i

↵i h�(x) , �(xi)i

kernel similarity of x and xi
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”Similarity” metric: �(x, x0)

          Linear Classifiers

x 2 Rd

kx� x

0k: non-informative

?

Representation

k�x� �x0k

� w

sign(hw,�xi+ b)
Linear Classifier

Data:
�x 2 H

How to define � ?
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h�(x),�(x0)i = C e

� kx�x

0k2

2�2

• If the data is in a low-dimensional manifold,

embedding of manifold metrics with a heat kernel:

(Bourgain)

• Embedding of Banach metrics over finite set of points {xi}i

Need to embed the full space.

but problem of generalisation for all x.

• Can we learn �(x) from data ?

   Known Euclidean Embeddings
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W1

x

linear operator

non-linear scalar: ⇢(u) = |u|
or

⇢(u) = argtan(u)

• The revival of an old (1950) idea: Y. LeCun

: Wavelets !

Optimize the Wk: over 10
9 parameters .

Linear Classificat.

    Deep Neural Neworks

W2

⇢ non-linear

linear

⇢

�(x)
...

Exceptional results for images, speech, bio-data classification.

Products by FaceBook, IBM, Google, Microsoft, Yahoo...

neuron

Why does it work so well ?
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        Overview

• Embedding geometry: invariance and stability to deformations 

• Image classification

• Learning physics: quantum chemistry energy regression
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x(u) x

0(u)

Invariant to translations

• Low-dimensional ”geometric shapes”

            Image Metrics

(classic mechanics)
Deformation metric:

�(x, x0) ⇠ min
⌧

kD⌧x� x

0k+ kr⌧k1 kxk

di↵eomorphism

amplitude

Deformation: D⌧x(u) = x(u� ⌧(u))
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• High dimensional textures:

ergodic stationary processes

            Image Metrics

�(x, x0)  min
⌧

kD⌧x� x

0k+ kr⌧k1 kxk
Bounded by a deformation metric:

x

x

0

(statistical physics)

�(x0
, x) = 0 if x and x

0

are realisations of same process

But not equivalent:

x

x

0

• What metric on stationary processes ?
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• Embedding: find an equivalent Euclidean metric

k�x� �x0k ⇠ �(x, x0)

with �(x, x0)  min
⌧

kD⌧x� x

0k+ kr⌧k1 kxk

• Equivalent conditions on �:

k�x� �x0k  C kx� x

0k- Stable in L2: D⌧ = Id )

- Lipschitz stable to di↵eomorphisms

x

0 = D⌧x ) k�x� �D⌧xk  C kr⌧k1 kxk

    Euclidean Metric Embedding

) Invariance to translation

Friday, October 3, 14



|bx(�)||bx⌧ (�)|

• Fourier transform x̂(!) =

R
x(t) e

�i!t
dt

�(x) = {|x̂(!)|}! = �(xc) .

) k�(x)� �(x⌧ )k � kr⌧k1 kxk

The modulus is invariant to translations:

xc(t) = x(t� c) )

   Fourier Deformation Instability

| |x̂⌧ (�)|� |x̂(�)| | is big at high frequencies
• Instabilites to small deformations x� (t) = x(t� �(t)) :

!
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rotated and dilated:

real parts imaginary parts

 �(t) = 2�j  (2�jr✓t) with � = (2j , ✓)

• Complex wavelet:  (t) = g(t) exp i⇠t , t = (t1, t2)

 Scale separation with Wavelets

|�̂�(⇥)|2

�1

�2

Wx =

✓
x ? �2J (t)
x ?  �(t)

◆

�2J
• Wavelet transform:

Preserves norm:

�Wx�2 = �x�2 .
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20

21

|x ?  21,✓|

      Fast Wavelet Transform

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34
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Q = 1
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Q = 1
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Q = 2
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

|W1|

2J

Scale
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20

22

23

2J

|x ?  22,✓|

|x ?  23,✓|

        Wavelet Transform

|W1|
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|W1|

x ? �J
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x(t)

|W1|x =

✓
x ? �2J

|x ?  �1 |

◆

�1

First wavelet transform

Modulus improves invariance:

W1x =

✓

x ?  �1

◆

�1

x ? �2J

    Wavelet Translation Invariance

x ?  �1(t) = x ?  

a
�1

(t) + i x ?  

b
�1

(t)|x ?  �1(t)| =
q

|x ?  a
�1

(t)|2 + |x ?  b
�1

(t)|2

|x ?  �1 | ? �2J (t)

2J

local translation invariance

x ? �2J (t)

full translation invariance

2J = 1

Second wavelet transform modulus

|W2| |x ?  �1 |=
✓

|x ?  �1 | ? �2J (t)
||x ?  �1 | ?  �2(t)|

◆

�2
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|x ⇥ ��000
1

(t)||x ⇥ ��00
1
(t)||x ⇥ ��0

1
(t)||x ⇥ ��1(t)|

x

x ? �2J

         Scattering Transform

|W1|
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x

x ? �2J

|x ?  �1 | ? �2J

||x ?  �1 | ?  �2(t)|

|W1|

|W2|

         Scattering Transform
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x

x ? �2J

|||x ?  �1 | ?  �2 | ?  �3 |

||x ?  �1 | ?  �2 | ? �2J

|W3|

|x ?  �1 | ? �2J

|W2|

|W1|

         Scattering Neural Network
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path variable
SJx(�1, ...,�m) = ||x ?  �1 | ? ...| ?  �m | ? �2J

x 2 L1 ) lim
J!1

SJx(�1, ...,�m) = k||x ?  �1 | ? ....| ?  �mk1

Scattering at 2J :

         Wavelet Scattering
x

x ? �2J

||x ?  �1 | ?  �2 | ? �2J

|W3|

|x ?  �1 | ? �2J

|W2|

|W1|

Theorem: The energy of last layer coe�cients converge to 0

lim
m!1

X

�1,...,�m

kSJx(�1, ...,�m)k2 = 0
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= . . . |W3| |W2| |W1|xSJx =

0

BBBB@

x ? �2J

|x ?  �1 | ? �2J
||x ?  �1 | ?  �2 | ? �2J

|||x ?  �2 | ?  �2 | ?  �3 | ? �2J
...

1

CCCCA

�1,�2,�3,...

preserves norms kSJxk = kxk

kWkxk = kxk ) k|Wkx|� |Wkx
0|k  kx� x

0kLemma : k[Wk, D⌧ ]k = kWkD⌧ �D⌧Wkk  C kr⌧k1

translations invariance and deformation stability:

if D⌧x(u) = x(u� ⌧(u)) then

lim
J!1

kSJD⌧x� SJxk  C kr⌧k1 kxk

      Scattering  Properties

contractive kSJx� SJyk  kx� yk (L2
stability)

Theorem: For appropriate wavelets, a scattering is
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Training size Conv. Net. Scattering
300 7.2% 4.4%
5000 1.5% 1.0%
20000 0.8% 0.6%
60000 0.5% 0.4%

LeCun et. al.

Classification Errors

Joan Bruna

 Digit Classification: MNIST

Linear Classifier
SJx y = f(x)

x
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J. Bruna

     Classification of Textures

CUREt database
61 classes

Texte
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SX =

0

BBBB@

E(X)
E(|X ?  �1 |)

E(||X ?  �1 | ?  �2 |)
E(|||X ?  �2 | ?  �2 | ?  �3 |)

...

1

CCCCA

�1,�2,�3,...

The scattering transform of a stationary process X(t)

SJX =

0

BBBB@

X ? �2J
|X ?  �1 | ? �2J

||X ?  �1 | ?  �2 | ? �2J
|||X ?  �2 | ?  �2 | ?  �3 | ? �2J

...

1

CCCCA

�1,�2,�3,...

is a low-variance estimator of the scattering moments of X(t)

in mean-square, if X is ”ergodic” .lim
J!1

SJX = SX

Scattering  Moments of Processes
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Training Fourier Histogr. Scattering
per class Spectr. Features

46 1% 1% 0.2 %

J. Bruna

2J = image size

• Can characterise non-Gaussian properties of processes

     Classification of Textures

CUREt database
61 classes

Texte

Linear Classifier
SJx y = f(x)

x

Classification Errors
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UIUC database:
25 classes

Scattering classification errors

Training Scat. Translation

20 20 %

  Rotation and Scaling Invariance
Laurent Sifre
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• Euclidean group of isometries G = {(v, ✓) 2 R2 ⇥ [0, 2⇡)}
(v, ✓) . x(u) = x(r�1

✓ (u� v))
action on an image:

(v, ✓)�1 = (�r�✓v,�✓)

: non-commutative

(v0, ✓0) (v, ✓) = (v0 + r✓0v , ✓ + ✓0)

• Action on wavelet coe�cients:

 Extension to Rigid Mouvements
Laurent Sifre

x(u) |x ?  2j ,✓(u)| = xj(u , ✓)|W1|

R
x(u)du

(v0, ✓0).x(u) xj(r
�1
✓0 (u� v

0) , ✓ + ✓

0)|W1|

R
x(u)du
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group convolutions of xj(u, ✓)

xj ~  �2(u, ✓) =

Z

R2

Z 2⇡

0
xj(v

0
, ✓

0) �2

⇣
(v0, ✓0)�1 (u, ✓)

⌘
dv

0
d✓

0

• To build invariants: second wavelet transform on L2
(G):

with wavelets  �2(u, ✓)

 Extension to Rigid Mouvements
Laurent Sifre

xj(u , ✓)

• Scattering on Isometries:

Wavelets on Translations

x(u)

R
x(u)du

|W1| |W2| |xj ~  �2(v, ✓)|

R
xj(u, ✓) dud✓

Wavelets on Isometries

|W3|
Z

|xj ~  �2(v, ✓)|dud✓

Wavelets on Isometries
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UIUC database:
25 classes

Scattering classification errors

Training Scat. Translation Scat. Rigid Mouvt.

20 20 % 0.6%

  Rotation and Scaling Invariance
Laurent Sifre

Friday, October 3, 14



Classification Accuracy

SJx

2J = 25

Data Basis Deep-Net Scat.-2
CalTech-101 85% 80%
CIFAR-10 90% 80%

Rigid Mvt.

Scattering almost linearises these classification problems.

  Complex Image Classification

BateauNénuphareMetronome CastoreArbre de Joshua Ancre

CalTech 101 data-basis:

Linear Classif. y
x

Edouard Oyallon
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• Compute x̃ such that:

8m , 8�1, ...,�m , SJ x̃(�1, ...,�m) = SJx(�1, ...,�m)

8�1 , kx̃ ?  �1k1 = kx ?  �1k1
8�1,�2 , k|x̃ ?  �1 | ?  �2k1 = k|x ?  �1 | ?  �2k1

• At the second order for J = 1:

min kx̃k
R
x(u) du =

R
x̃(u) dusuch that:

Non convex optimization.

  Inverse Scattering Transform
Joan Bruna
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Original images of N2 pixels:

   Sparse Shape Reconstruction
Joan Bruna

Reconstruction from {kxk1 , kx ?  �1k1 , k|x ?  �1 | ?  �2k1} : O(log

2
2 N) coe↵.

Reconstruction from {kxk1 , kx ?  �1k1}�1 : O(log2 N) coe↵.

• Numerical recovery from 1st and 2nd order coe�cients:
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Original Textures

 Ergodic Texture Reconstructions

Gaussian process model with same second order moments

Joan Bruna

Reconstruction from {kxk1 , kx ?  �1k1 , k|x ?  �1 | ?  �2k1}�1,�2
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2J = 16

2J = 32

2J = 64

2J = 128 = N

Scattering
Reconstruction

N2
pixels

1.4N2
coe↵.

0.5N2
coe↵.

N2/8 coe↵.

N2/32 coe↵.

Multiscale Scattering Reconstructions
Original
Images
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Original

Water

Paper

Cocktail Party

Scattering

• x 2 Rd
realization of a stationary process

Gaussian model

Representation of Audio Textures
Joan Bruna
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• Energy of d interacting bodies:

Can we learn the interaction energy f(x) of a system

with x =

n

positions, values

o

?

Astronomy

Quantum Chemistry

 Learning Physics: N-Body Problem

Matthew Hirn
N. Poilvert
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• Energy of d interacting bodies (Coulomb):

for point charges x(u) =

dX

k=1

qk �(u� pk) then

potential V (r) = |r|��
: f(x) =

dX

k=1

dX

k0=1

qk qk0

|pk � pk0 |�

diagonalized in Fourier :

f(x) = (2⇡)�2

Z
|x̂(!)|2 V̂ (!) d!

    Second Order Interactions
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(Rocklin, Greengard)

Potential V (u) = |u|�� )

    Many Body Interactions

Matthew Hirn

each particle interacts with O(log d) groupsFast multipoles:

f(x) =
X

�

v� kx ?  �k2 (1 + ✏)

For any ✏ > 0 there exists wavelets with

Theorem:

N. Poilvert

• Energy of d interacting bodies (Coulomb):
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with
Organic molecules

Hydrogne, Carbon
Nitrogen, Oxygen
Sulfur, Chlorine

          Quantum Chemistry

Protonic charges of a molecule: x(u) =

Pd
k=1 qk �(u� pk)

Atomic energy f(x) = molecule energy - isolated atoms energy

Density Functional Theory: computes the electronic density ⇢(u)
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• Orbitals have ”sparse” multiscale wavelet decompositions.

Atomic energy f is computed from each electronic orbital �k(u)

• ⇢ is computed with a variational problem

• f(x) is invariant by rigid movements and

deformation stable

⇢(u) =
KX

k=1

|�k(u)|2

in O(K3)

  Quantum Chemistry

Kinetic energy electron-electron

Coulomb repulsion

electron-nuclei

attraction

Exchange

correlat. energy

f(⇢(x)) = T (⇢) +

Z
⇢(u)V (u) +

1

2

Z
⇢(u)⇢(v)

|u� v| dudv + E

xc

(⇢)
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   Quantum Chemistry

fM (x) =
MX

k=1

wk �nk(x)

M -term sparse regression with a greedy Partial Least Square:

computed on training set:

Matthew Hirn

   Quantum Chemistry
N. Poilvert

• Data bases {xi , f(xi)}i of 2D molecules with up to 20 atoms

• Regression on scattering coe�cients:

�x = {�n(x)}n :

order 2 scattering coe�cients and squared

Fourier modulus coe�cients and squared

or
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4000 molecules

   Quantum Chemistry

log2 E|f(x)� fM (x)|2: testing

Matthew Hirn

   Quantum Chemistry
N. Poilvert

• Data bases {xi , f(xi)}i of 2D molecules with up to 20 atoms

Coulomb

Kernel

Scattering

Fourier modulus

400 molecules

fM (x) =
MX

k=1

wk �nk(x)

M

Friday, October 3, 14



   Quantum Chemistry

Mean-square error E(|f(X)� fM (X)|2)1/2 in kcal/mol

WHY ?
Fourier Coulomb Scattering

400 atoms 30 15 8
4000 atoms 24 8 3.7

Matthew Hirn

   Quantum Chemistry
N. Poilvert

• Data bases {xi , f(xi)}i of 2D molecules with up to 20 atoms

fM (x) =
MX

k=1

wk �nk(x)

First terms of scattering expansions:

�n1(x) =

R
x(u) du: total charge

�n2(x) = kx ?  �1k1: where �1 is the main geometric scale
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www.di.ens.fr/data/scattering

• One can learn physics through data and compute fast

• Multitude of open mathematical problems at interface of:

geometry, harmonic analysis, probability, statistics, PDE.

• A major challenge of data analysis is to find

Euclidean embeddings of metrics.

        Conclusion
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