MPRI - Module 2-12-1 Homework 1

1 ElGamal Encryption

The ElGamal public-key encryption scheme is as follows:

$KeyGen(\mathbb{G},p)$:	Enc (pk, m) :	Dec(sk, C):
$g \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{G}^*$	$r \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p^* ; \ C_1 \leftarrow g^r$	parse C as (C_1, C_2)
$x \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p^* \; ; \; X \leftarrow g^x$	$K \leftarrow \dot{X}^r$	parse sk as x
$sk \leftarrow x$	$C_2 \leftarrow m \cdot K$	$m' \leftarrow C_2/C_1^x$
$pk \leftarrow g, X$	Return (C_1, C_2)	Return m'
Return (pk, sk)		

- 1. Let $\hat{e} : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_{T}$ be a symmetric bilinear map from $\mathbb{G} \times \mathbb{G}$ to \mathbb{G}_{T} , where both \mathbb{G} and \mathbb{G}_{T} are multiplicative groups of prime order p. Show that ElGamal is not IND-CPA-secure.
- 2. Assume that there exists an algorithm SQ that outputs g^{a^2} when given a pair (g, g^a) . Show how to use SQ to break the IND-CPA security of ElGamal.
- 3. Assume that there exists an algorithm CUB that outputs g^{a^3} when given a pair (g, g^a) . Show how to use CUB to break the IND-CPA security of ElGamal.

2 Decision Linear Problem (DLIN)

- 1. **DLIN.** Let DLIN be the problem of distinguishing the distribution $\{g_1, g_2, g_3, g_1^a, g_2^b, g_3^{a+b}\}$ from the distribution $\{g_1, g_2, g_3, g_1^a, g_2^b, g_3^c\}$, where the values a, b, c are chosen uniformly at random in \mathbb{Z}_p and g_1, g_2, g_3 are three random generators for the group \mathbb{G} . Show that if there exists an algorithm \mathcal{A} that breaks the DLIN problem, then one can construct an algorithm \mathcal{B} that breaks the DDH problem.
- 2. Let $\hat{e} : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_{T}$ be a symmetric bilinear map from $\mathbb{G} \times \mathbb{G}$ to \mathbb{G}_{T} , where both \mathbb{G} and \mathbb{G}_{T} are multiplicative groups of prime order p. Is the DLIN problem easy to solve in \mathbb{G} ?
- 3. Linear Encryption. Similarly to the relation between the ElGamal and DDH problem, there exists a very natural public-key encryption scheme based on the DLIN problem. Please describe a decryption algorithm for this scheme.

$KeyGen(\mathbb{G},p)$:	Enc (pk, m) :	Dec(sk, C):
$g_3 \xleftarrow{R} \mathbb{G}^*$	$a \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p^* ; \ C_1 \leftarrow g_1^a$	
$x \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p^* \; ; \; g_1 \leftarrow g_3^x$	$b \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p^* ; \ C_2 \leftarrow g_2^b$	
$y \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p^*; g_2 \leftarrow g_3^y$	$K \leftarrow g_3^{a+b}$	
$sk \leftarrow (x,y)$	$C_3 \leftarrow m \cdot K$	Return m'
$pk \leftarrow (g_1, g_2, g_3)$	Return (C_1, C_2, C_3)	
Return (pk, sk)		

4. Show that the public-key encryption scheme above is IND-CPA-secure based on the hardness of the DLIN problem in G.

3 Decision *k*-Linear problem (*k*-LIN)

- 1. *k*-LIN. Let *k*-LIN be the problem of distinguishing the distribution $\{g_1, \ldots, g_k, g_0, g_1^{r_1}, \ldots, g_k^{r_k}, g_0^{r_1}, \ldots, g_k^{r_k}, g_0^{r_0}\}$, where the values r_0, r_1, \ldots, r_k are chosen uniformly at random in \mathbb{Z}_p and g_0, g_1, \ldots, g_k are random generators for the group \mathbb{G} . Show that if there exists an algorithm \mathcal{A} that breaks the *k*-LIN problem, then one can construct an algorithm \mathcal{B} that breaks the (k-1)-LIN problem.
- 2. Relation to BDDH. Show that that if there exists an algorithm \mathcal{A} that breaks the BDDH problem, then one can construct an algorithm \mathcal{B} that breaks the 2-LIN problem.

4 IBE security notions

1. Let IBE = (Setup, KeyDer, Enc, Dec) be an identity-based encryption (IBE) scheme. Now let $\overline{IBE} = (\overline{Setup}, \overline{KeyDer}, \overline{Enc}, \overline{Dec})$ be an IBE scheme, where $\overline{Setup} = Setup$, $\overline{KeyDer} = KeyDer$, $\overline{Dec} = Dec$, and \overline{Enc} is defined as follows:

$$\overline{\mathsf{Enc}}(mpk, id, m): \\ C_1 \stackrel{R}{\leftarrow} \mathsf{Enc}(mpk, id, m) \\ C_2 \leftarrow m \\ \text{Return } (C_1, C_2)$$

Show that if IBE is ANO-ID-CPA, then so is \overline{IBE} (please refer to the lecture notes for the definition of ANO-ID-CPA).

- 2. Show that $\overline{\mathsf{IBE}}$ is not IND-ID-CPA. Also explain why this demonstrates that the IND-ID-CPA security of an IBE scheme does not follow from its ANO-ID-CPA security.
- 3. Provide a counterexample which shows that the ANO-ID-CPA security of an IBE scheme does not follow from its IND-ID-CPA security and explain why.