Diameter in weighted random graphs

Marc Lelarge

INRIA & ENS

Joint work with Hamed Amini (INRIA & ENS) and Moez Draief (Imperial College London).

Oberwolfach, October 2010.

WEIGHTED DIAMETER

Graph G = (V, E):

- Distance dist $(a, b) = \min_{\pi \in \Pi(a, b)} |\pi|$, the number of edges in E in the shortest path connecting a and b.
- Diameter of G defined by:

 $diam(G) = \max\{dist(a, b), a, b \in V, dist(a, b) < \infty\}.$

- Weight associated to each edge $e \in E$: w_e .
- Weighted distance dist $_w(a, b) = \min_{\pi \in \Pi(a, b)} \sum_{e \in \pi} w_e$.
- Weighted diameter of G defined by:

$$\mathsf{diam}_w(G) = \max\{\mathsf{dist}_w(a,b), \ a,b \in V, \ \mathsf{dist}_w(a,b) < \infty\}$$
 .

CONFIGURATION MODEL

For $n \in \mathbb{N}$, let $(d_i)_1^n$ be a sequence of non-negative integers such that $\sum_{i=1}^n d_i$ is even. We define $G^*(n, (d_i)_1^n)$ a random multigraph with given degree sequence $(d_i)_1^n$: to each node i we associate d_i labeled half-edges. All half-edges need to be paired to construct the graph, this is done by randomly matching them. When a half-edge of i is paired with a half-edge of j, we interpret this as an edge between i and j.

The graph $G^*(n, (d_i)_1^n)$ obtained following this procedure may not be simple. Conditional on the multigraph $G^*(n, (d_i)_1^n)$ being a simple graph, we obtain a uniformly distributed random graph with the given degree sequence, which we denote by $G(n, (d_i)_1^n)$,

ASSUMPTIONS ON THE DEGREE SEQUENCE

- (i) There exists a distribution $p = \{p_k\}_{k=0}^{\infty}$ such that $|\{i, d_i = k\}|/n \to p_k$ for every $k \ge 0$ as $n \to \infty$;
- (ii) $\lambda := \sum_{k \ge 0} k p_k \in (0,\infty);$ (iii) $\sum_{i=1}^n d_i^2 = O(n),$
- (iv) for some $\tau > 0$, $\Delta_n := \max_{i \in V} d_i = O(n^{1/2-\tau})$.

ASSUMPTIONS ON THE DEGREE SEQUENCE

- (i) There exists a distribution $p = \{p_k\}_{k=0}^{\infty}$ such that $|\{i, d_i = k\}|/n \to p_k$ for every $k \ge 0$ as $n \to \infty$;
- (ii) $\lambda:=\sum_{k\geq 0}kp_k\in (0,\infty);$
- (iii) $\sum_{i=1}^{n} d_i^2 = O(n)$,
- (iv) for some $\tau > 0$, $\Delta_n := \max_{i \in V} d_i = O(n^{1/2-\tau})$.

Let \hat{D}_n be the degree of a random vertex of $G^*(n, (d_i)_1^n)$ and D a random variable with distribution p_k , then (i) is equivalent to $\hat{D}_n \stackrel{d}{\to} D$.

ASSUMPTIONS ON THE DEGREE SEQUENCE

- (i) There exists a distribution $p = \{p_k\}_{k=0}^{\infty}$ such that $|\{i, d_i = k\}|/n \to p_k$ for every $k \ge 0$ as $n \to \infty$;
- (ii) $\lambda:=\sum_{k\geq 0}kp_k\in (0,\infty);$
- (iii) $\sum_{i=1}^{n} d_i^2 = O(n)$,
- (iv) for some $\tau > 0$, $\Delta_n := \max_{i \in V} d_i = O(n^{1/2-\tau})$.

Let \hat{D}_n be the degree of a random vertex of $G^*(n, (d_i)_1^n)$ and D a random variable with distribution p_k , then (i) is equivalent to $\hat{D}_n \xrightarrow{d} D$.

(iii) ensures that $\liminf \mathbb{P}(G^*(n, (d_i)_1^n) \text{ is simple}) > 0.$

EXPLORATION PROCESS

EXPLORATION PROCESS

EXPLORATION PROCESS

BRANCHING PROCESS APPROXIMATION

The first individual has offspring distribution $\{p_k\}$.

The other individuals have offspring distribution $\{q_k\}$.

Let $\{q_k\}_{k=0}^{\infty}$ the size-biased probability mass function corresponding to $\{p_k\}$, by

$$q_k = rac{(k+1)p_{k+1}}{\lambda}$$
, and, $u = \sum_{k=0}^{\infty} kq_k \in (0,\infty).$

The mean of the size of generation k is $\lambda \nu^{k-1}$.

The condition $\nu > 1$ is equivalent to the existence of a giant component.

TYPICAL GRAPH DISTANCE

Theorem 1. For *a* and *b* chosen uniformly at random in the giant component of $G(n, (d_i)_1^n)$, we have

$$\frac{\operatorname{dist}(a,b)}{\log n} \xrightarrow{p} \frac{1}{\log \nu}.$$

Van der Hofstad, Hooghiemstra, Van Mieghem 2005

A SIMPLE HEURISTIC

Let $Z_k^{(1)}$ be the number of free half-edges in the ball $B(a,k) = \{i, \operatorname{dist}(1,i) \le k\}$. $Z_0^{(1)}$ is the degree of node 1.

By the branching process approximation, $Z_k^{(1)}$ is close to $\lambda \nu^{k-1}$.

A SIMPLE HEURISTIC

Let $Z_k^{(1)}$ be the number of free half-edges in the ball $B(a, k) = \{i, \text{dist}(1, i) \le k\}$. $Z_0^{(1)}$ is the degree of node 1.

By the branching process approximation, $Z_k^{(1)}$ is close to $\lambda \nu^{k-1}$.

A free half-edge of $Z_k^{(1)}$ is attached to a free half-edge of $Z_k^{(2)}$ with positive probability if $Z_k^{(1)} Z_k^{(2)}$ is of order the total number of free half-edges left after k exploration steps.

A SIMPLE HEURISTIC

Let $Z_k^{(1)}$ be the number of free half-edges in the ball $B(a, k) = \{i, \text{dist}(1, i) \le k\}$. $Z_0^{(1)}$ is the degree of node 1.

By the branching process approximation, $Z_k^{(1)}$ is close to $\lambda \nu^{k-1}$.

A free half-edge of $Z_k^{(1)}$ is attached to a free half-edge of $Z_k^{(2)}$ with positive probability if $Z_k^{(1)} Z_k^{(2)}$ is of order the total number of free half-edges left after k exploration steps. Take $k \approx \frac{1}{2} \frac{\log n}{\log \nu}$, then $Z_k^{(1)} \approx Z_k^{(2)} \approx \sqrt{n}$ and the number of free half-edges is $\approx n - 2\sqrt{n} \approx n$.

The typical distance between 1 and 2 is $\approx 2k = \frac{\log n}{\log \nu}$.

DIAMETER

Generating function of $\{q_k\}_{k=0}^{\infty}$: $G_q(z) = \sum_{k=0}^{\infty} q_k z^k$.

The extinction probability of the branching process with offspring distribution $\{q_k\}$ is the smallest solution in [0, 1] of the fixed point equation $\beta = G_q(\beta)$. We define

$$\beta_* = G'_q(\beta) = \sum_{k=1}^{\infty} k q_k \beta^{k-1}.$$

 d_{\min} is the minimum degree of the graph.

Theorem 2. We have

$$\frac{\operatorname{diam}(G(n, (d_i)_1^n))}{\log n} \xrightarrow{p} \frac{1}{\log \nu} - \frac{\mathbf{1}(d_{\min} = 2)}{\log q_1} - 2\frac{\mathbf{1}(d_{\min} = 1)}{\log \beta_*}$$
$$= \frac{1}{\log \nu} + \frac{2 - \mathbf{1}(d_{\min} \ge 2) - \mathbf{1}(d_{\min} \ge 3)}{|\log \beta_*|}$$

Bollobás, de la Vega 1982 (random regular graphs)

Fernholz, Ramachandran 2007

LOWER DEVIATIONS FOR SUPERCRITICAL GWP

A dichotomy:

 $\begin{array}{ll} \text{Schröder case} \Leftrightarrow & q_0 + q_1 > 0 & \Rightarrow \lim_{n \to \infty} \beta_*^{-n} \mathbb{P}(Z_n = k) = \nu_k, \quad k \geq 1 \\ \text{Böttcher case} \Leftrightarrow & q_0 + q_1 = 0 & \Rightarrow \mu = \min\{j, q_j > 0\} \geq 2 \end{array}$

LOWER DEVIATIONS FOR SUPERCRITICAL GWP

A dichotomy:

 $\begin{array}{ll} \text{Schröder case} \Leftrightarrow & q_0 + q_1 > 0 & \Rightarrow \lim_{n \to \infty} \beta_*^{-n} \mathbb{P}(Z_n = k) = \nu_k, & k \geq 1 \\\\ \text{Böttcher case} \Leftrightarrow & q_0 + q_1 = 0 & \Rightarrow \mu = \min\{j, q_j > 0\} \geq 2 \\\\ & \Rightarrow \mathbb{P}(Z_n < \mu^n) = 0 \end{array}$

LOWER DEVIATIONS FOR SUPERCRITICAL GWP

A dichotomy:

Schröder case $\Leftrightarrow q_0 + q_1 > 0 \Rightarrow \lim_{n \to \infty} \beta_*^{-n} \mathbb{P}(Z_n = k) = \nu_k, \quad k \ge 1$ Böttcher case $\Leftrightarrow q_0 + q_1 = 0 \Rightarrow \mu = \min\{j, q_j > 0\} \ge 2$ $\Rightarrow \mathbb{P}(Z_n < \mu^n) = 0$ $\mathbb{P}(Z_n = \mu^n) = \prod_{j=0}^{n-1} q_{\mu}^{(\mu^j)} = \exp\left[\frac{\mu^n - 1}{\mu - 1}\log q_{\mu}\right].$

More in: Fleischmann Wachtel 2005

TYPICAL WEIGHTED DISTANCE

Theorem 3. For *a* and *b* chosen uniformly at random in $G(n, (d_i)_1^n)$ with $d_{\min} \ge 2$ and with *i.i.d.* exponential 1 weights on its edges, we have

$$\frac{\operatorname{dist}_w(a,b)}{\log n} \xrightarrow{p} \frac{1}{\nu - 1}$$

Bhamidi, Van der Hofstad, Hooghiemstra 2009

Bhamidi, Van der Hofstad, Hooghiemstra 2010 for Erdős-Rényi random graphs.

TYPICAL WEIGHTED DISTANCE

Theorem 4. For *a* and *b* chosen uniformly at random in $G(n, (d_i)_1^n)$ with $d_{\min} \ge 2$ and with *i.i.d.* exponential 1 weights on its edges, we have

$$\frac{\operatorname{dist}_w(a,b)}{\log n} \xrightarrow{p} \frac{1}{\nu - 1}.$$

Bhamidi, Van der Hofstad, Hooghiemstra 2009 Bhamidi, Van der Hofstad, Hooghiemstra 2010 for Erdős-Rényi random graphs. Recall:

$$\frac{\operatorname{dist}(a,b)}{\log n} \xrightarrow{p} \frac{1}{\log \nu} \ge \frac{1}{\nu - 1}.$$

HEURISTIC: SPLIT TIMES

$$\widehat{S}_k(a) = d_a + \widehat{d}_1 + \dots + \widehat{d}_k - k$$

$$T_k(a) = \sum_{i=0}^{k-1} \frac{E_i}{\widehat{S}_i(a)}$$

We have $\mathbb{E}[\widehat{S}_i(a)] \approx (\nu-1)i$ and

$$\lim_{k \to \infty} \frac{T_k}{\log k} = \frac{1}{\nu - 1}$$

WEIGHTED DIAMETER

Theorem 5. Consider a random graph $G(n, (d_i)_1^n)$ with *i.i.d.* exponential 1 weights on *its edges, then*

$$\frac{\operatorname{diam}_w(G(n, (d_i)_1^n))}{\log n} \xrightarrow{p} \frac{1}{\nu - 1} + \frac{2}{d_{\min}} \mathbf{1}_{(d_{\min} \ge 3)} + \frac{\mathbf{1}_{(d_{\min} = 2)}}{1 - q_1} + \frac{2}{1 - \beta_*} \mathbf{1}_{(d_{\min} = 1)}.$$

Ding, Han Kim, Lubetzky, Peres 2010 (random regular graphs) Amini, Draief, L. 2010

WEIGHTED DIAMETER

Theorem 6. Consider a random graph $G(n, (d_i)_1^n)$ with *i.i.d.* exponential 1 weights on *its edges, then*

$$\frac{\operatorname{diam}_w(G(n, (d_i)_1^n))}{\log n} \xrightarrow{p} \frac{1}{\nu - 1} + \frac{2}{d_{\min}} \mathbf{1}_{(d_{\min} \ge 3)} + \frac{\mathbf{1}_{(d_{\min} = 2)}}{1 - q_1} + \frac{2}{1 - \beta_*} \mathbf{1}_{(d_{\min} = 1)}.$$

Ding, Han Kim, Lubetzky, Peres 2010 (random regular graphs) Amini, Draief, L. 2010

Recall:

$$\frac{\operatorname{dist}_w(a,b)}{\log n} \xrightarrow{p} \frac{1}{\nu-1}$$

$$\frac{\operatorname{diam}(G(n,(d_i)_1^n))}{\log n} \xrightarrow{p} \frac{1}{\log \nu} - \frac{\mathbf{1}(d_{\min}=2)}{\log q_1} - 2\frac{\mathbf{1}(d_{\min}=1)}{\log \beta_*}.$$

LARGE DEVIATIONS FOR SPLIT TIMES

$$\widehat{S}_k(a) = d_a + \widehat{d}_1 + \dots + \widehat{d}_k - k$$
 $T_k(a) = \sum_{i=0}^{k-1} \frac{E_i}{\widehat{S}_i(a)}$

Laplace transform:

$$\mathbb{E}\left[e^{\theta T_k(a)}\right] = \prod_{i=0}^{k-1} \left(1 + \frac{\theta}{\widehat{S}_i(a) - \theta}\right)$$

Case $d_{\min} \geq 3$,

$$\mathbb{P}(T_{\alpha_n}(a) \ge x \log n) \le \mathbb{E}\left[e^{d_{\min}T_{\alpha_n}(a)}\right] \exp(-xd_{\min}\log n)$$
$$\approx \alpha_n^{\frac{d_{\min}}{d_{\min}-2}} n^{-xd_{\min}}$$
$$\mathbb{P}(T_{\beta_n}(a) - T_{\alpha_n}(a) \ge y \log n) \le \mathbb{E}\left[e^{\theta T_{\beta_n}(a) - T_{\alpha_n}(a)}\right] \exp(-\theta y \log n)$$
$$\approx n^{\theta\left(\frac{1}{2(\nu - 1 - \epsilon)} - y\right)}$$

A SIMPLE APPLICATION: ASYNC. BROADCAST IN RRG

Each node has a Poisson clock.

One chunk - PUSH

Corollary 1. Let $G \sim \mathcal{G}(n, r)$ be a random r-regular graph with n vertices. Then w.h.p.

$$ABT(G) = 2\left(\frac{r-1}{r-2}\right)\log n + o(\log n).$$

Fountoulakis Panagtotou 2010

THANK YOU!