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WEIGHTED DIAMETER

Graph G = (V,E):

- Distance dist(a, b) = minπ∈Π(a,b) |π|, the number of edges in E in the shortest

path connecting a and b.

- Diameter of G defined by:

diam(G) = max{dist(a, b), a, b ∈ V, dist(a, b) < ∞}.

- Weight associated to each edge e ∈ E: we.

- Weighted distance distw(a, b) = minπ∈Π(a,b)

∑
e∈π we.

- Weighted diameter of G defined by:

diamw(G) = max{distw(a, b), a, b ∈ V, distw(a, b) < ∞} .



CONFIGURATION MODEL

For n ∈ N, let (di)
n
1 be a sequence of non-negative integers such that

∑n
i=1 di is even.

We define G∗(n, (di)
n
1 ) a random multigraph with given degree sequence (di)

n
1 : to

each node i we associate di labeled half-edges. All half-edges need to be paired to

construct the graph, this is done by randomly matching them. When a half-edge of i is

paired with a half-edge of j, we interpret this as an edge between i and j.

The graph G∗(n, (di)
n
1 ) obtained following this procedure may not be simple. Conditional

on the multigraph G∗(n, (di)
n
1 ) being a simple graph, we obtain a uniformly distributed

random graph with the given degree sequence, which we denote by G(n, (di)
n
1 ),



ASSUMPTIONS ON THE DEGREE SEQUENCE

(i) There exists a distribution p = {pk}∞k=0 such that |{i, di = k}|/n → pk for every

k ≥ 0 as n → ∞;

(ii) λ :=
∑

k≥0 kpk ∈ (0,∞);

(iii)
∑n

i=1 d2
i = O(n),

(iv) for some τ > 0, ∆n := maxi∈V di = O(n1/2−τ ).

Let D̂n be the degree of a random vertex of G∗(n, (di)
n
1 ) and D a random variable with

distribution pk, then (i) is equivalent to D̂n
d→ D.

(iii) ensures that lim inf P(G∗(n, (di)
n
1 ) is simple) > 0.
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EXPLORATION PROCESS
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BRANCHING PROCESS APPROXIMATION

The first individual has offspring distribution {pk}.

The other individuals have offspring distribution {qk}.

Let {qk}∞k=0 the size-biased probability mass function corresponding to {pk}, by

qk =
(k + 1)pk+1

λ
, and, ν =

∞∑

k=0

kqk ∈ (0,∞).

The mean of the size of generation k is λνk−1.

The condition ν > 1 is equivalent to the existence of a giant component.



TYPICAL GRAPH DISTANCE

Theorem 1. For a and b chosen uniformly at random in the giant component of

G(n, (di)
n
1 ), we have

dist(a, b)

log n

p→ 1

log ν
.

Van der Hofstad, Hooghiemstra, Van Mieghem 2005



A SIMPLE HEURISTIC

Let Z
(1)
k be the number of free half-edges in the ball B(a, k) = {i, dist(1, i) ≤ k}.

Z
(1)
0 is the degree of node 1.

By the branching process approximation, Z
(1)
k is close to λνk−1.

A free half-edge of Z
(1)
k is attached to a free half-edge of Z

(2)
k with positive probability if

Z
(1)
k Z

(2)
k is of order the total number of free half-edges left after k exploration steps.

Take k ≈ 1 log n
2 log ν , then Z

(1)
k ≈ Z

(2)
k ≈ √

n and the number of free half-edges is

≈ n − 2
√

n ≈ n.

The typical distance between 1 and 2 is ≈ 2k = log n
log ν .
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DIAMETER

Generating function of {qk}∞k=0: Gq(z) =
∑∞

k=0 qkz
k.

The extinction probability of the branching process with offspring distribution {qk} is the

smallest solution in [0, 1] of the fixed point equation β = Gq(β). We define

β∗ = G′
q(β) =

∞∑

k=1

kqkβ
k−1.

dmin is the minimum degree of the graph.

Theorem 2. We have

diam(G(n, (di)
n
1 ))

log n

p→ 1

log ν
− 1(dmin = 2)

log q1
− 2

1(dmin = 1)

log β∗

=
1

log ν
+

2 − 1(dmin ≥ 2) − 1(dmin ≥ 3)

| log β∗|

Bollobás, de la Vega 1982 (random regular graphs)

Fernholz, Ramachandran 2007



LOWER DEVIATIONS FOR SUPERCRITICAL GWP

A dichotomy:

Schröder case ⇔ q0 + q1 > 0 ⇒ lim
n→∞

β−n
∗ P(Zn = k) = νk, k ≥ 1

Böttcher case ⇔ q0 + q1 = 0 ⇒ µ = min{j, qj > 0} ≥ 2

⇒ P(Zn < µn) = 0

P(Zn = µn) =
n−1∏

j=0

q(µj)
µ = exp

[
µn − 1

µ − 1
log qµ

]
.

More in: Fleischmann Wachtel 2005



LOWER DEVIATIONS FOR SUPERCRITICAL GWP

A dichotomy:
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TYPICAL WEIGHTED DISTANCE

Theorem 3. For a and b chosen uniformly at random in G(n, (di)
n
1 ) with dmin ≥ 2 and

with i.i.d. exponential 1 weights on its edges, we have

distw(a, b)

log n

p→ 1

ν − 1
.

Bhamidi, Van der Hofstad, Hooghiemstra 2009

Bhamidi, Van der Hofstad, Hooghiemstra 2010 for Erdős-Rényi random graphs.

Recall:

dist(a, b)

log n

p→ 1

log ν
.



TYPICAL WEIGHTED DISTANCE
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distw(a, b)

log n

p→ 1
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≥ 1

ν − 1
.



HEURISTIC: SPLIT TIMES

Ŝk(a) = da + d̂1 + ... + d̂k − k

Tk(a) =
k−1∑

i=0

Ei

Ŝi(a)

We have E[Ŝi(a)] ≈ (ν − 1)i and

lim
k→∞

Tk

log k
=

1

ν − 1
.



WEIGHTED DIAMETER

Theorem 5. Consider a random graph G(n, (di)
n
1 ) with i.i.d. exponential 1 weights on

its edges, then

diamw(G(n, (di)
n
1 ))

log n

p→ 1

ν − 1
+

2

dmin
1(dmin≥3) +

1(dmin=2)

1 − q1
+

2

1 − β∗

1(dmin=1).

Ding, Han Kim, Lubetzky, Peres 2010 (random regular graphs)

Amini, Draief, L. 2010

Recall:

distw(a, b)

log n

p→ 1

ν − 1

diam(G(n, (di)
n
1 ))

log n

p→ 1

log ν
− 1(dmin = 2)

log q1
− 2

1(dmin = 1)

log β∗



WEIGHTED DIAMETER

Theorem 6. Consider a random graph G(n, (di)
n
1 ) with i.i.d. exponential 1 weights on

its edges, then
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n
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log n

p→ 1

ν − 1
+

2

dmin
1(dmin≥3) +

1(dmin=2)

1 − q1
+

2

1 − β∗

1(dmin=1).

Ding, Han Kim, Lubetzky, Peres 2010 (random regular graphs)

Amini, Draief, L. 2010

Recall:

distw(a, b)

log n

p→ 1

ν − 1

diam(G(n, (di)
n
1 ))

log n

p→ 1

log ν
− 1(dmin = 2)

log q1
− 2

1(dmin = 1)

log β∗

.



LARGE DEVIATIONS FOR SPLIT TIMES

Ŝk(a) = da + d̂1 + ... + d̂k − k Tk(a) =
k−1∑

i=0

Ei

Ŝi(a)

Laplace transform:

E

[
eθTk(a)

]
=

k−1∏

i=0

(
1 +

θ

Ŝi(a) − θ

)

Case dmin ≥ 3,

P(Tαn(a) ≥ x log n) ≤ E

[
edminTαn (a)

]
exp(−xdmin log n)

≈ α
dmin

dmin−2
n n−xdmin

P(Tβn
(a) − Tαn(a) ≥ y log n) ≤ E

[
eθTβn (a)−Tαn(a)

]
exp(−θy log n)

≈ n
θ
(

1
2(ν−1−ǫ)

−y
)



A SIMPLE APPLICATION: ASYNC. BROADCAST IN RRG

Each node has a Poisson clock.

One chunk - PUSH

Corollary 1. Let G ∼ G(n, r) be a random r-regular graph with n vertices. Then w.h.p.

ABT(G) = 2

(
r − 1

r − 2

)
log n + o(log n).
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THANK YOU!


