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WEIGHTED DIAMETER

Graph G = (V, E):

, the number of edges in E in the shortest

Distance dist(a, b) = min cyyqp) |7

path connecting a and b.

Diameter of (G defined by:

diam(G) = max{dist(a, b), a,b € V, dist(a,b) < co}.

Weight associated to each edge e € F: w,.

Weighted distance dist,, (@, b) = min cri(q,p) D een We-

Weighted diameter of G defined by:

diam,, (G) = max{disty(a,b), a,b € V, dist,(a,b) < oo} .



CONFIGURATION MODEL

Forn € N, let (d;)] be a sequence of non-negative integers such that > ., d; is even.

We define G*(n, (d;)}) a random multigraph with given degree sequence (d;)}: to
each node ¢ we associate d; labeled half-edges. All half-edges need to be paired to
construct the graph, this is done by randomly matching them. When a half-edge of 7 is

paired with a half-edge of 7, we interpret this as an edge between 7 and J.

The graph G*(n, (d;)}) obtained following this procedure may not be simple. Conditional
on the multigraph G*(n, (d;)"") being a simple graph, we obtain a uniformly distributed

random graph with the given degree sequence, which we denote by G/(n, (d;)7),



ASSUMPTIONS ON THE DEGREE SEQUENCE

(i) There exists a distribution p = {pg, } 2>, such that |{z, d; = k}|/n — py, for every

k> 0asn — oo;
(i) A= >0k € (0,00);
(i) 35 di = O(n),

(iv) forsome 7 > 0, A, := max;cy d; = O(nl/Q_T).
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ASSUMPTIONS ON THE DEGREE SEQUENCE

(i) There exists a distribution p = {pg, } 2>, such that |{z, d; = k}|/n — py, for every
k> 0asn — oo;

(i) A= p>0kpr € (0,00);
(i) 35 di = O(n),
(iv) forsome 7 > 0, A, := max;cy d; = O(nl/Q_T).

Let D,, be the degree of a random vertex of G* (1, (d;)") and D a random variable with

L o : d
distribution pz., then (i) is equivalent to D,, — D.

(iii) ensures that lim inf P(G™(n, (d;)7) is simple) > 0.
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BRANCHING PROCESS APPROXIMATION

The first individual has offspring distribution {p }.
The other individuals have offspring distribution {qy }.

Let {qx } 12 the size-biased probability mass function corresponding to {py }, by

k+1 -
qk:( P : and,V:quk € (0, 00).

A
k=0

The mean of the size of generation k is Av 1.

The condition ¥ > 1 is equivalent to the existence of a giant component.



TYPICAL GRAPH DISTANCE

Theorem 1. For a and b chosen uniformly at random in the giant component of

G(n, (d;)}), we have

dist(a,b) p 1
logn  logv’

Van der Hofstad, Hooghiemstra, Van Mieghem 2005



A SIMPLE HEURISTIC

Let Z,il) be the number of free half-edges in the ball B(a, k) = {7, dist(1,7) < k}.
Z(gl) is the degree of node 1.

O~

(1)

: L 1) . _
By the branching process approximation, Zk is close to AvF 1.
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A SIMPLE HEURISTIC

Let Z,gl) be the number of free half-edges in the ball B(a, k) = {7, dist(1,7) < k}.
Z(gl) is the degree of node 1.

O~

(1)

By the branching process approximation, Zk k=1

is close to A\

A free half-edge of Z ,il) is attached to a free half-edge of Z 122) with positive probability if

Z(l)Z(Q) is of order the total number of free half-edges left after k£ exploration steps.

Take k ~ %iogn then Z( ) Z(Q) ~~ /n and the number of free half-edges is

The typical distance between 1 and 2 is = 2k = }gi;’“




DIAMETER

Generating function of {qx }2° 5 G4(2) = > 20y qr2".

The extinction probability of the branching process with offspring distribution {qk} IS the
smallest solution in [0, 1] of the fixed point equation 3 = G,(/3). We define

B = Gy(B) = > karf* .
k=1

dmin iS the minimum degree of the graph.

Theorem 2. We have

diam(G(n, (dz)?)) P, 1 B ]-(dmin = 2) B 21(dmin — 1)
logn log v log qq log (B,
12— 1(duin > 2) — 1(din > 3)
—IOgV+ | log x|

Bollobas, de la Vega 1982 (random regular graphs)

Fernholz, Ramachandran 2007



LOWER DEVIATIONS FOR SUPERCRITICAL GWP

A dichotomy:

Schrodercase < qo+q1 >0 = lim B, "P(Z,=k)=v, k>1

n—oo

Bottchercase & ¢o+¢1 =0 = p=min{j,q; >0} > 2
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LOWER DEVIATIONS FOR SUPERCRITICAL GWP

A dichotomy:

Schrodercase < qo+q1 >0 = lim B, "P(Z,=k)=v, k>1

n—oo

Bottchercase & ¢o+¢1 =0 = p=min{j,q; >0} > 2
= P(Z, < u")=0

log qM] .

n—1 n
_ oy (W) _ pr—1
P(Zn—u)_rj(:)qu'u _exp[,u_l
j:

More in: Fleischmann Wachtel 2005



TYPICAL WEIGHTED DISTANCE

Theorem 3. For a and b chosen uniformly at random in G(n, (d;)}) with dpi, > 2 and

with i.i.d. exponential 1 weights on its edges, we have

dist,,(a,b) p 1
logn v—1

Bhamidi, Van der Hofstad, Hooghiemstra 2009
Bhamidi, Van der Hofstad, Hooghiemstra 2010 for Erdos-Rényi random graphs.



TYPICAL WEIGHTED DISTANCE

Theorem 4. For a and b chosen uniformly at random in G (n, (d;)}) with dpi, > 2 and

with i.i.d. exponential 1 weights on its edges, we have

dist,,(a,b) p 1
logn v—1

Bhamidi, Van der Hofstad, Hooghiemstra 2009
Bhamidi, Van der Hofstad, Hooghiemstra 2010 for Erdos-Rényi random graphs.

Recall:

dist(a,b) p 1 S 1
logn  logr " v—1



HEURISTIC: SPLIT TIMES

Sela) = do+di+...+dp—k

k—1
b
Tk(a) — =
1=0 Z(a
We have E[S;(a)] ~ (v — 1)i and
T 1

li :
Foo logk v—1



WEIGHTED DIAMETER

Theorem 5. Consider a random graph G(n, (d;)7) with i.i.d. exponential 1 weights on
its edges, then

diam,, (G (n, (di)7)) » 1 2 1(d,m=2)

N 1.7
logn v—1 + dmin (dmin>3) +

+ g . —1).
1_q1 1_5* (dmln 1)

Ding, Han Kim, Lubetzky, Peres 2010 (random regular graphs)
Amini, Draief, L. 2010



WEIGHTED DIAMETER

Theorem 6. Consider a random graph G(n, (d;)7) with i.i.d. exponential 1 weights on
its edges, then
diam,, (G (n, (di)7)) » 1 2 1(d,m=2)

1.7
logn v—1 + dmin (dmin>3) +

+ g . —1).
1_q1 1_5* (dmln 1)

Ding, Han Kim, Lubetzky, Peres 2010 (random regular graphs)
Amini, Draief, L. 2010

Recall:
dist,,(a,b) p 1
logn v —1
diam(G(n, (dz)qf)) p. 1 B 1(dmin = 2) B 21(dmin = 1)
logn " logv log ¢4 log B,




LARGE DEVIATIONS FOR SPLIT TIMES

R R R S
Sk(a) =d,+dy+..+dp — k Tk(a) = _——
i—o Dila)

Laplace transform:

P(T,, (a) > xlogn) < E [edminTan (a)} exp(—axdmin logn)

d
d

% anmln

P(Ts,(a) — Ta,(a) 2 ylogn) < E [GGTBMa)—Tan(@] exp(—fylogn)

e =)

min
2 —xdpy;
n min

Q



A SIMPLE APPLICATION: ASYNC. BROADCAST IN RRG

Each node has a Poisson clock.

One chunk - PUSH
Corollary 1. Let G ~ Q(n, r) be a random 7-regular graph with n, vertices. Then w.h.p.

ABT(G) = 2 (: : ;) logn + o(logn).

dcast time /log n

Fountoulakis Panagtotou 2010
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