
Journal of Mathematical Sciences, Vol. 196, No. 1, January, 2014

EXACT TAIL ASYMPTOTICS OF A QUEUE WITH
LRD INPUT TRAFFIC

M. Lelarge1 and A. Villani2

In this work we compute the exact tail asymptotics of the stationary workload W , associated to a discrete-
time single server queue, with constant release rate, infinite buffer capacity, and with M/G/∞ input traffic
exhibiting long-range dependence. We choose a regularly varying distribution with parameter α > 1 for the
general distribution G. We show that the exact asymptotics of the workload is a specific regularly varying
function under some assumptions on the parameters.

1. Introduction

The rapid increase in the number and complexity of available communications services, such as the Web
traffic [10] and the WAN traffic [15] for example, have made traditional traffic models based on exponential
assumptions about inter-arrival times and resource holding requirements obsolete. The statistical profile of network
traffic exhibits empirical correlations that decay to zero as a power rather than exponentially as those seen in
traditional telephony.

For this reason, there has been broad interest in the literature in the study of service systems exhibiting some
forms of long-range dependence of the input process in which the correlation functions are not summable.

Some models propose fractional Brownian motion and its discrete-time analog, namely fractional Gaussian
noise, as input traffic processes with long-range dependence property. For instance, in [9, 11, 13] the logarithm
asymptotics of the workload for a single server queue is derived. All these studies arrive at the same result: the
stationary workload associated to a single service queue is asymptotically Weibullian.

In this paper we take instead the busy server process of the M/G/∞ queue as the input traffic process for a
discrete-time single service system with constant release rate.

The fundamental observation about M/G/∞ input traffic was made in [3]: if the distribution function F
of the service times in the M/G/∞ queue has infinite variance, then the busy server process has nonsummable
correlations, and thus provides an input process with long-range dependence for the queue of our interest.

In order to estimate the performances of the service system of interest, we will estimate the asymptotic tail,
P(W > x), as x → ∞, where W is the stationary workload under the Loynes’s stability conditions [1, 7, 18]. This
study was made by many authors. In [8,14] an upper and a lower bound for the logarithmic tail asymptotics was
derived. A more precise result under reasonable general conditions was obtained for the Weibull, Lognormal and
Pareto case. In the special case F Pareto with tail parameter α > 1 we have

logP(W > x) ∼ −(α− 1) log x, (1)

where a(x) ∼ b(x) means a(x)/b(x) → 1, x → ∞. The main result of this work is an improvement of the previous
result. Under the same assumptions on the parameters of the model but assuming only that F is a distribution
function with regularly varying tails with parameter α > 1, rather than simply Pareto, we get

P(W > x) ∼ L(x)x−(α−1), (2)

where L(x) is a specific slowly varying function.
The result (2) is in accordance with the exact asymptotics tail for a single server queue generated by the

M/G/∞ fluid input process [16], that is, the analogous queue in continuous time and under the same assumptions
on the general distribution G.

The techniques used to obtain the result (2) are different from the large deviation arguments of [8, 14, 16].
Our main tool is the analysis performed by Baccelli and Foss [2] of Veraverbeke’s theorem [5, 17] on the

asymptotic tail of the supremum of a random walk with i.i.d. subexponential increments with negative mean.
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This analysis consists in identifying typical events responsible for the fact that the random walk has crossed the
level x, up to higher-order probabilities as x → ∞.

In order to use this analysis, we first derive an upper bound W � U +V , where U and V are independent and
V is the stationary workload of a single server queue with independent service times. This upper bound allows us
to use Theorem 8 of [2], which shows that the probability P(W > x) is mainly due to one very big service time
associated to a customer in the M/G/∞ queue, whereas the others remain close to their mean.

2. Model and main result

We consider a discrete time single server queue with infinite buffer capacity and constant release rate of a
cells/slot with FIFO service discipline. The input process is represented by the sequence {σk, k = 1, 2, . . .}, where
σk+1 is the number of new cells arriving at the start of time slot [k, k+1), k = 1, 2, . . .. Let Wk denote the number
of cells remaining in the buffer by the end of slot [k − 1, k) with k � 1, and suppose Y is the number of cells in
the buffer at time slot [0, 1), so that Lindley’s recursion is

{
W0 = Y,
Wk+1 = [Wk + σk+1 − a]+, k = 0, 1, . . . .

(3)

Let W
[Y ]
n be the solution of (3). If {σk, k = 1, 2, . . .} is a stationary and ergodic process, under the Loynes’s

stability assumption [1, 7, 18] E[σ1] < a, the system is stable in the sense that W
[Y ]
n

Law−→ W∞, as n → ∞ for some
finite random variable W∞ and any initial condition Y .

2.1. Stochastic Assumptions

The sequence {σk, k = 1, 2, . . .} is generated by the M/G/∞ input process of Cox [3] in the following way.
Suppose that during time slot [k − 1, k), k = 1, 2, . . ., bk new customers arrive in the system. For i = 1, . . . , bk,
Xk,i is the service time of the ith customer. Customer i is presented to its own server and begins service by the
start of slot [k, k+1), k � 1. Moreover b0 is the number of customers in the system at time 0 and for i = 1, . . . , b0,
X0,i is the residual service time of the ith customer present in the queue at time 0. Let σk denote the number
of busy servers, or equivalently, the number of customers still present in the system at the beginning of time slot
[k, k + 1). The busy server process {σk, k = 0, 1, 2, . . .} is what we refer to as the M/G/∞ input process.

We have that

σk =

b0∑
i=1

1{X0,i>k} +
k∑

j=1

bj∑
i=1

1{Xj,i>k−j}, k � 0. (4)

Now the random variables

b0, {bk, k = 1, 2, . . .}, {X0,i, i = 1, 2, . . . , b0}, {Xk,i, k = 1, 2, . . . , i = 1, 2, . . . , bk},

are assumed to satisfy the following assumptions:

(A1) all the sequences of random variables are mutually independent;

(A2) {bk, k = 1, 2, . . .} are i.i.d. Poisson random variables with parameter λ > 0 and b0 is a Poisson random
variable independent of everything else with parameter γ > 0 ;

(A3) {Xk,i, k = 1, 2, . . . , i = 1, 2, . . . , bk} are i.i.d. random variables valued in N with the same distribution
function of, say X , with E[X ] < ∞.

Moreover, {X0,i, i = 1, 2, . . . , b0} are assumed to be i.i.d random variables with the same distribution of the
random variable X0.

Moreover, we will assume that

(A4) b0 has a Poisson distribution with mean γ = λE[X ];

(A5) X0,i has a distribution P(X0 � k) =
1

E[X ]

k∑
n=1

P(X � n), for k = 1, 2, . . ..
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Proposition 1 ( [3], [12]). Under the assumptions (A1), (A2), (A3), (A4), and (A5) the process {σk, k =
0, 1, 2, . . .} is stationary, ergodic, and reversible such that

γ = E[σk] = λE[X ], ∀k � 0. (5)

Its covariance function is given by

Γ(h) = cov(σk, σk+h) = λE[X ]P(X0 > h), ∀k, h = 0, 1, . . . . (6)

Moreover,

∞∑
h=0

Γ(h) = λE[X ]E[X0] =
λ

2
E[X(X + 1)]. (7)

In the rest of the paper, we will make the following assumption on F , the tail distribution of X :

(A6) F (x) = P(X > x) ∼ x−αL(x), with α > 1 and L a slowly varying function.

We define by F s the integrated tail distribution as follows:

F s(x) = min

⎧⎨
⎩1,

∞∫
x

F (u)du

⎫⎬
⎭ . (8)

Thanks to the assumption on F , by Karamata’s Theorem [4] the tail of F s is such that

F s(x) ∼ x−(α−1)L
′
(x), with L

′
a slowly varying function. (9)

In this case we have the following important characteristics of the input process:
Proposition 2 [3, 12]. Under the hypotheses (A1), (A2), (A3), (A4), (A5), and (A6) the stationary process

{σk, k = 0, 1, 2, . . .} is long-range dependent, that is

∞∑
h=0

Γ(h) = ∞,

if and only if 1 < α < 2. Moreover, the process {σk, k = 0, 1, 2, . . .} is asymptotically (second order) self-similar
with Hurst parameter H = 3−α

2 .

Now, thanks to (5), E[σ1] = γ, and then under the Loynes’s stability condition γ < a we have

W∞
Law
= sup

k�1

[ ∞∑
k=1

(σk − a)

]+
, (10)

where the formula on the right is the solution of (3) when W0 = 0, obtained thanks to the reversibility property
of the process {σk, k = 0, 1, 2, . . .} .

2.2. Exact asymptotics for the stationary workload

Theorem 1 (Main Result). Under the assumption (A1), (A2), (A3), (A4), (A5), (A6) and

� γ < a, (11)

� 1 + γ > a, (12)

we have

P(W∞ > x) ∼ λ

a− γ
(1 + γ − a)α−1F s(x), as x → ∞. (13)

We observe that the assumption γ < a is the Loynes’s stability condition. Moreover, since γ is the mean
number of customer in the M/G/∞ queue, the assumption 1 + γ > a says that the service system becomes
unstable when one customer stays indefinitely in the queue.
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3. Proof of the main result

We briefly outline the argument of the proof. The main idea is to apply the main result of [2] to our framework.
We first derive an upper bound W � U + V, where U and V are independent and V is the stationary workload
of a GI/GI/1/∞ queue. This upper bound allows us to use Theorem 8 of [2], which shows that the probability
P(W > x) is mainly due to one very large Xj,i whereas the others remain close to their mean. Denote

W = sup
k�1

[ ∞∑
k=1

(σk − a)

]+
. (14)

3.1. An upper bound and the single big event theorem

We first derive an upper bound for the random variable W . We have

n∑
k=1

b0∑
i=1

1{X0,i>k} =

b0∑
i=1

n∑
k=1

1{X0,i>k} =

b0∑
i=1

[X0,i ∧ n], ∀n � 1,

and

n∑
k=1

k∑
j=1

bj∑
i=1

1{Xj,i>k−j} =

n∑
j=1

bj∑
i=1

n∑
k=1

1{Xj,i>k−j} =

n∑
j=1

bj∑
i=1

[Xj,i ∧ (n− j)], ∀n � 1.

Hence

W = sup
n�1

[
b0∑
i=1

(X0,i ∧ n) +
n∑

j=1

bj∑
i=1

(Xj,i ∧ (n− j))− na

]+
= sup

n�1
(Wn) � (15)

�
b0∑
i=1

X0,i + sup
n�1

[
n∑

j=1

(
Yj − a

)]+
= U + V = Z, (16)

where

U =

b0∑
i=1

X0,i, Yj =

bj∑
i=1

Xj,i, V = sup
n�1

[ n∑
j=1

(Yj − a)
]+

. (17)

Note that V is finite and corresponds to the stationary waiting time of a D/GI/1 system with service times Yj

with E[Y1] = γ < a.

Let Nx be a function such that Nx ↑ ∞ and NxF (x) = o(F s(x)) whose existence is ensured by the heavy-tail
property [4, 6, 18]. Using Theorem 8 of [2], we derive an asymptoptic equivalence of P(W > x) as x → ∞, given
by the formula (20).

Proposition 3. For any x, let {Kn,x, n � Nx} be a sequence of events such that

a) for any n � Nx, the events Kn,x and Yn are independent;

b) limx→∞ infn�Nx P(Kn,x) = 1,

and define for any sequence ηn tending to 0, as n → ∞,

An,x = Kn,x ∩ {Yn > x+ n(a− γ + ηn)} . (18)

Let Lx be an event such that

c) the event Lx and the random variable U are independent;

d) limx→∞ P(Lx) = 1,
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and define

Bx = {U > x} ∩ Lx. (19)

Then, as x → ∞,

P(W > x) =
∑

n�Nx

P(W > x,An,x) + P(W > x,Bx) + o
(
F s(x)

)
. (20)

Proof. We note that P(U > x) ∼ λF s(x) [4, 6, 18] as x → ∞, and thanks to Veraverbeke’s Theorem

P(V > x) ∼ λ

a− γ
F s(x) as x → ∞ . Moreover U and V are independent, and then

P(Z > x) = P(U + V > x) ∼ λ

(
1 +

1

a− γ

)
F s(x), x → ∞. (21)

Let Kn,x, Lx, An,x be events similar to the assumptions of this proposition. Denote Ax = ∪n�NxAn,x and Cx =

= Ax ∪Bx. Moreover we define K̃n,x = Kn,x ∩ {U � x}, and Ãn,x the corresponding events as in (18); and then

Ãx and C̃x. Evidently K̃n,x and Ãn,x satisfy again the assumptions a), b) of this proposition. Now the following
bound holds:

P(Z > x) � P(Z > x,Cx) � P(V > x, Ãx) + P(Bx). (22)

Now V , K̃n,x, and Ãn,x satisfy the assumptions of the Corollary 2 of [2]. Therefore,

P(V > x, Ãx) + o(F s(x)) = P(V > x,Ax) + o(F s(x)) = P(V > x) ∼ λ

a− γ
F s(x). (23)

By the previous equality and since P(Bx) = P(U > x)P(Lx) ∼ λF s(x) as x → ∞, we have from (22)

P(Z > x) = P(Z > x,Cx) + o(F s(x)). (24)

Now we have

P(W > x,Cx) � P(W > x) � P(W > x,Cx) + P(Z > x,Cc
x) = P(W > x,Cx) + o

(
F s(x)

)
,

where the last equality follows from (24). Then P(W > x) = P(W > x,Cx) + o(F s(x)). Now we can construct
disjoint events K

′
n,x for any n � Nx that satisfy the assumptions a), b), using similar arguments of Corollary 2

of [2]. Then

P(W > x,C
′
x) =

∑
n�Nx

P(W > x,A
′
n,x) + P(W > x,Bx) + o

(
F s(x)

)
.

Moreover, it is not difficult to prove that

∑
n�Nx

P(W > x,A
′
n,x)−

∑
n�Nx

P(W > x,An,x) = o
(
F s(x)

)

and then the equivalence (20) follows. See [18] for details.

3.2. Asymptotic equivalence for P(W > x,Bx)

Proposition 4. Under the previous assumptions, we have

lim
x→∞

P(W > x,Bx)

F s(x)
= λ(1 + γ − a)α−1. (25)

We will prove this proposition in two steps. First we derive a lower bound and then an upper bound.
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3.2.1. Lower bound

We take

Lx =

{ m∑
j=1

bj∑
i=1

(Xj,i ∧ (m− j))

m
> γ − εm, ∀m > x

}
. (26)

By definition, Lx satisfies the assumption c) of Proposition 3, and d) thanks to Lemma 1 for some sequence εn
such that εn ↓ 0 and nεn → ∞ as n → ∞. We observe that for all n we have

W �
b0∑
i=1

(X0,i ∧ n) +

n∑
j=1

bj∑
i=1

(Xj,i ∧ (n− j))− na.

Taking n = U =
∑b0

i=1 X0,i, we have

W � U +

U∑
j=1

bj∑
i=1

(Xj,i ∧ (U − j))− Ua = U(1− a) +

U∑
j=1

bj∑
i=1

(Xj,i ∧ (U − j)).

On the event Bx = {U > x,Lx} we have

W � U(1− a) + U(γ − εU ) = U(1 + γ − a− εU ).

We recall that εn ↓ 0 as n → ∞ and that the condition 1 + γ − a > 0 is assumed. Let δ > 0 be such that
1 + γ − a− δ > 0. For n � n0 with n0 large enough, εn < δ; therefore, for x large enough, if U > x � n0 we have
εU < εx < δ. Moreover, since γ < a, we have also 1 + γ − a < 1. Hence

P(W > x,Bx) � P

(
U(1 + γ − a− εx) > x,U > x,Lx

)
=

= P
(
U(1 + γ − a− εx) > x

)
P(Lx) =

� P
(
U >

x

1 + γ − a− δ

)
P(Lx).

Now since P(U > x) ∼ λF s(x) as x → ∞ [4, 6, 18], F s(x) ∼ x−(α−1)L(x) with L a slowly varying function, and
finally sending δ to 0, we conclude that

lim inf
x→∞

P(W > x,Bx)

F s(x)
� λ(1 + γ − a)α−1. (27)

3.2.2. Upper bound

Let αx = x
1
2−ε for some 0 < ε < 1

2 . Next take

Rx =

{ n∑
j=1

( bj∑
i=1

(Xj,i ∧ (n− j))− γ
)
� nεn, ∀n � αx

}
,

Qx =

{ n∑
j=1

( bj∑
i=1

(Xj,i ∧ (n− j))− a
)
� αx, ∀n < αx

}
.

Define

Lx = Rx ∩Qx. (28)

Observe that Lx satisfies the assumptions of Proposition 3. In fact, for all n

n∑
j=1

( bj∑
i=1

(Xj,i ∧ (n− j))− a
)
�

n∑
j=1

(Yj − a) � V < ∞ a.s.



Exact Tail Asymptotics of a Queue with LRD Input Traffic 63

Therefore P(Qx) → 1, as x → ∞. Moreover P(Rx) → 1 as x → ∞ thanks to Lemma 1. Now we use Lemma 2,

with N = b0, Zi = Xi,0, we have SN = U . Moreover, we set M0
�
= MN and M1

0
�
= M1

N , so that

P(W > x,Bx) = P(W > x,U > x,Lx) = P(W > x,M0 > x,M1
0 � αx, Lx) + o(F s(x)).

We have that

W = sup
n�1

Wn � max

{
sup
n�αx

Wn, sup
n>αx

Wn

}
.

Let δ > 0 such that γ − a+ δ < 0. Since εn ↓ 0, there exists an n0 such that for all n � n0, εn < δ. Hence, if
x is large enough, for n > αx � n0, εn < δ. Now on the event {M0 > x,M1

0 � αx}, for all n we have

b0∑
i=1

(X0,i ∧ n) � M0 ∧ n+ b0(αx ∧ n).

Again, on the event {M0 > x,M1
0 � αx, Lx}, we have

W � max

{
sup
n�αx

[M0 ∧ n+ b0(αx ∧ n) + αx]
+, sup

n>αx

[M0 ∧ n+ b0(αx ∧ n) + n(γ − a+ δ)]
+

}
�

� max

{
[αx + b0αx + αx],M0(1 + γ − a+ δ) + b0αx

}
�

� M0(1 + γ − a+ δ) + (b0 + 2)αx,

since for x large enough x > αx and by assumption 1 + γ − a > 0. Therefore,

P(W > x,Bx) � P

(
M0 >

x

1 + γ − a+ δ
− (2 + b0)αx

1 + γ − a+ δ

)
.

Let cδ = (1 + γ − a+ δ)−1. Then by definition of M0

P(W > x,Bx) �
∞∑

n=1

nP(b0 = n)P
(
X0 > cδx− cδ(n+ 2)αx

)
.

For any continuous, positive real function h we can write

P(W > x,Bx) �
h(x)∑
n=1

nP(b0 = n)P
(
X0 > cδx− cδ(n+ 2)αx

)
+

∑
n>h(x)

nP(b0 = n).

Now let h(x) =
√
x

cδ
− 2, for x large; then cδ(2 + n)αx � cδ(2 + h(x))αx = x1−ε, for n � h(x). Moreover

∑
n>h(x)

nP(b0 = n) = γP(b0 � h(x)) � Ae−h(x),

where A is some positive constant. Therefore,

P(W > x,Bx) � P
(
X0 > cδx− x1−ε

) ∞∑
n=1

nP(b0 = n) +Ae−h(x) =

= P
(
X0 > cδx− x1−ε

)
λE[X ] +Ae−h(x).

Now divide both members by F s(x). We have Ae−h(x) = o(F s(x)). In fact, since F s(x) ∼ L(x)x−(α−1) as x → ∞
for some L slowly varying function, we have

log

(
Ae−h(x)

F s(x)

)
= log(A)− h(x)− log(L(x)) + (α− 1) log(x) → −∞,
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recalling the representation theorem for the slowly varying function L [4]. Now we observe that P(X0 > x) ∼
∼ (E[X ])−1F s(x). Moreover, since x1−ε = o(x), F s(cδx−x1−ε) ∼ F s(cδx) ∼ c

−(α−1)
δ F s(x), as x → ∞. Therefore,

sending δ to zero, cδ → (1 + γ − a)−1 and then we obtain

lim sup
x→∞

P(W > x,Bx)

F s(x)
� λ(1 + γ − a)α−1. (29)

Therefore by (27) and (29), the proposition 4 is proved.

3.3. Asymptotic equivalence for
∑

n�Nx
P(W > x,An,x)

Proposition 5. Under the previous assumptions

lim
x→∞

∑
n�Nx

P(W > x,An,x)

F s(x)
=

λ(1 + γ − a)

a− γ
(1 + γ − a)α−1. (30)

We will prove this proposition in two steps. First we derive a lower bound and then an upper bound.

3.3.1. Lower bound

We take ∀n � Nx

Kn,x =

{n−1∑
j=1

bj∑
i=1

(Xj,i ∧ (k − j)) +
k∑

j=n+1

bj∑
i=1

(Xj,i ∧ (k − j))

k
− γ � −ηk, ∀k � n

}
, (31)

with some sequence ηn such that ηn ↓ 0 and nηn → ∞ as n → ∞. Hence Kn,x satisfies the hypothesis a) of
Proposition 3 and b) thanks to lemma 1.
We have for all k � n,

W � Yn ∧ (k − n) +

n−1∑
j=1

bj∑
i=1

(Xj,i ∧ (k − j)) +

k∑
j=n+1

bj∑
i=1

(Xj,i ∧ (k − j))− ka.

On the event Kn,x, taking k = n+ Yn, we have

W � Yn + (n+ Yn)(γ − a− ηn) = Yn(1 + γ − a− ηn) + n(γ − a− ηn).

Since 1 + γ − a < 1, we have

∑
n�Nx

P
(
W > x,An,x

)
�
∑

n�Nx

P
(
Yn(1 + γ − a− ηn) � x+ n(a− γ + ηn)

)
P(Kn,x).

Let δ > 0 such that 1 + γ − a − δ > 0. Since ηn ↓ 0 as n → ∞, there exists n0 such that for all n � n0, ηn < δ.
Recalling that Nx → ∞ as x → ∞, if x is large enough, and for all n � Nx � n0 we have

∑
n�Nx

P
(
W > x,An,x

)
�
∑

n�Nx

P
(
Yn(1 + γ − a− δ) � x+ n(a− γ + δ)

)
P(Kn,x).

Therefore

lim inf
x→∞

∑
n�Nx

P(W > x,An,x)

F s(x)
� λ

(1 + γ − a− δ)

a− γ + δ
(1 + γ − a− δ)α−1, (32)

where the formula on the right follows thanks to assumption b) of Proposition 3,the subexponentiality of Y1, and
since NxF (x) = o(F s(x)) [2, 18].

Finally, sending δ to zero, we obtain

lim inf
x→∞

∑
n�Nx

P(W > x,An,x)

F s(x)
� λ

(1 + γ − a)

a− γ
(1 + γ − a)α−1. (33)
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3.3.2. Upper bound

We choose a function αx such that αx ↑ ∞, αx = o(x) as x → ∞. Therefore, F s(x− αx) ∼ F s(x) as x → ∞.

Define Uk =
[∑k

j=1

∑bj
i=1(Xj,i ∧ (k − j))− ka

]+
. For any n fixed

W � U +max

{
sup

1�k�n−1
Uk, sup

k�n

[ n−1∑
j=1

bj∑
i=1

(Xj,i ∧ (k − j))+

+

bn∑
i=1

(Xn,i ∧ (k − n)) +

k∑
j=n+1

bj∑
i=1

(Xj,i ∧ (k − j))− ka

]+}
.

Now we note that ∀n ∈ N, sup1�k�n−1 Uk � V < ∞, a.s.; then

lim
x→∞P

(
sup

1�k�n−1
Uk < αx

)
= 1.

For all n � Nx define

K
′
n,x =

{
n−1∑
j=1

bj∑
i=1

(Xj,i ∧ (k − j)) +
k∑

j=n+1

bj∑
i=1

(Xj,i ∧ (k − j))− kγ < kηk, ∀k � n

}
,

where ηn is a some sequence such that ηn ↓ 0, nηn → ∞ as n → ∞. Now define ∀n � Nx

Kn,x = K
′
n,x ∩

{
U � αx

}
∩
{

sup
1�k�n−1

Uk � αx

}
, (34)

which is independent of Yn and satisfies also the assumption b) of Proposition 3.
Thanks to the Lemma 3 with Yn = Sn we have

∑
n�Nx

P
(
W > x,Kn,x, Yn > x+ n(a− γ + ηn)

)
=

=
∑

n�Nx

P
(
W > x,Kn,x,Mn > x+ n(a− γ + ηn),M

1
n � αx

)
+ o(F s(x)).

We observe that on the event {Mn > x+ n(a− γ + ηn),M
1
n � αx} we have

bn∑
i=1

(Xn,i ∧ (k − n)) � Mn ∧ (k − n) + bn(αx ∧ (k − n));

moreover, on the event {Mn > x+ n(a− γ + ηn),M
1
n � αx,Kn,x} we have

W � αx +max

(
αx, sup

k�n

[
Mn ∧ (k − n) + bn(αx ∧ (k − n)) + k(γ − a+ ηk)

]+)
.

Now let δ > 0 such that γ − a+ δ < 0. We have ηk < δ, for all k � n � Nx, for x large enough. Hence

W � αx +max (αx, Mn(1 + γ − a+ δ) + n(γ − a+ δ) + bnαx) ,

since −1 < γ − a+ δ < 0. Therefore

∑
n�Nx

P
(
W > x,Kn,x, Yn > x+ n(a− γ + ηn)

)
�

�
∑

n�Nx

P
(
Mn(1 + γ − a+ δ) + n(γ − a+ δ) + bnαx > x

)
=

=
∑

n�Nx

∞∑
k=0

P(bn = k)P
(

k
max
i=1

Xn,i(1 + γ − a+ δ) > x− kαx + n(a− γ − δ)
)
.
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With cδ = (1 + γ − a+ δ)−1 and dδ = a−γ−δ
1+γ−a+δ , we have

�
∑

n�Nx

∞∑
k=1

P(b1 = k)P
(

k
max
i=1

Xi > cδx− cδkαx + ndδ

)
�

�
∑

n�Nx

∞∑
k=1

kP(b1 = k)P
(
X > cδx− cδkαx + ndδ

)
=

=
1

dδ

∞∑
k=1

P(b1 = k)kF s (cδx− cδkαx) .

With similar arguments used for the upper bound of P(W > x,Bx) we have that

lim sup
x→∞

∑
n>Nx

P(W > x,An,x)

F s(x)
� λ

1 + γ − a+ δ

a− γ − δ
(1 + γ − a+ δ)α−1.

Finally sending δ to zero, we conclude that

lim sup
x→∞

∑
n�Nx

P(W > x,An,x)

F s(x)
� λ

(1 + γ − a)

a− γ
(1 + γ − a)α−1, (35)

which ends the proof of Proposition 5.

4. Appendix

Lemma 1. Under the hypotheses (A1),(A2), and (A3), we have

1

n

n∑
j=1

bj∑
i=1

(Xj,i ∧ (n− j)) → γ a.s. as n → ∞.

Proof. By the strong law of large numbers (SLLN)

lim sup
n→∞

1

n

n∑
j=1

( bj∑
i=1

(Xj,i ∧ (n− j))− γ

)
� 1

n

n∑
j=1

( bj∑
i=1

Xj,i − γ

)
� 0, a.s.

Now ∀M < n,

1

n

n∑
j=1

( bj∑
i=1

(Xj,i ∧ (n− j))− γ

)
�

� 1

n

n−M∑
j=1

( bj∑
i=1

(Xj,i ∧ (n− j))− λE[X ]

)
− MλE[X ]

n
�

� 1

n

n−M∑
j=1

( bj∑
i=1

(Xj,i ∧M)− λE[X ∧M ]

)
+ (n−M)

(
λE[X ∧M ]− λE[X ]

n−M

)
− MλE[X ]

n
.

Therefore, again by the SLLN, for any M

lim inf
n→∞

1

n

n∑
j=1

( bj∑
i=1

(Xj,i ∧ (n− j))− γ

)
� λE[X ∧M ]− λE[X ], a.s.

Since as M → ∞, it holds that E[X ∧M ] ↑ E[X ],

lim inf
n→∞

1

n

n∑
j=1

( bj∑
i=1

(Xj,i ∧ (n− j))− γ

)
� 0, a.s.,

and the lemma is proved.
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Lemma 2. Let N be a Poisson random variable, and {Zi}i∈N be a sequence of i.i.d sub-exponential random
variables with distribution function G. Let

SN =

N∑
i=1

Zi and, MN =
N

max
i=1

Zi.

Moreover let i0 = arg
N

max
i=1

Zi and M1
N =

N
max

i=1,i�=i0
Zi. Then for any given event E and for any function αx ↑ ∞ as

x → ∞ such that αx = o(x), we have

P[E, SN > x] = P[E, MN > x] + o(G(x)) = (36)

= P[E, MN > x,M1
N � αx] + o(G(x)). (37)

Proof. Let pn = P(N = n). Since αx � x for x large,

P[MN > x,M1
N � αx]

G(x)
=

∞∑
n=1

pn
n∑

k=1

P[Yk > x, Yi � αx ∀i �= k]

G(x)
=

∞∑
n=1

npnG(αx)
n−1.

By the dominated convergence theorem,

lim
x→∞

P[MN > x,M1
N � αx]

G(x)
=

∞∑
n=1

npn = E[N ]. (38)

Therefore, since
limx→∞ P(MN > x)

G(x)
= E[N ]

it follows from (38) that

P(MN > x,M1
N > αx) = o(G(x)). (39)

Since MN � SN , we have clearly P[E, SN > x] � P[E, MN > x,M1
N � αx]. Moreover, we have

P[E, SN > x] � P[E, MN > x,M1
N � αx] + P[MN > x,M1

N > αx] + P[SN > x, MN � x].

By the subexponentiality [4, 6, 18], we have P[SN > x] ∼ P[MN > x] ∼ E[N ]G(x), x → ∞. Hence

P[SN > x, MN � x] = P[SN > x]− P[MN > x] = o(G(x)). (40)

Finally by (39) and (40),
P(E, SN > x) = P(E, MN > x,M1

N � αx) + o(G(x)).

Lemma 3. Under the conditions (A1), (A2), and (A3) define

Sn =

bn∑
i=1

Xn,i, Mn =
bn

max
i=1

Xn,i, in = arg max
i=1,··· ,bn

Xn,i, M1
n =

bn
max

i�=in,i=1
Xn,i.

Then, ∀c > 0, ηn ↓ 0, as n → ∞, for all events En and for any function αx ↑ ∞ as x → ∞ with αx = o(x), we
have ∑

n�Nx

P(En, Sn > x+ n(c+ ηn)) =
∑

n�Nx

P(En,Mn > x+ n(c+ ηn),M
1
n � αx) + o(F s(x)).

Proof. We omit in the following proof the sequence ηn, but the same arguments are true, including ηn. For
x large enough

∑
n�1

P(Mn > x+ nc,M1
n � αx) =

∑
n�1

∞∑
k=1

P(bn = k)
k∑

i=1

P(Xn,i > x+ nc,Xn,j � αx ∀j �= i) =

=
∑
n�1

P(X > x+ nc)

( ∞∑
k=1

P(b1 = k)k[P(X � αx)]
k−1

)
.
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Therefore by the dominated convergence theorem, we have

lim
x→∞

∑
n�1

P(Mn > x+ nc,M1
n � αx)

F s(x)
=

1

c

∞∑
k=1

P(b1 = k)k =
λ

c
. (41)

On the other hand,

∑
n�1

P(Mn > x+ nc) =
∑
n�1

P(Mn > x+ nc,M1
n � αx) +

∑
n�1

P(Mn > x+ nc,M1
n > αx).

By the definition of Mn, we have also

lim
x→∞

∑
n�1

P(Mn > x+ nc)

F s(x)
=

λ

c
. (42)

Therefore, by (41) and (42),

∑
n�1

P(Mn > x+ nc,M1
n > αx) = o(F s(x)), x → ∞. (43)

Moreover, since Sn � Mn,

∑
n�1

P(En, Sn > x+ nc) �
∑
n�1

P(En,Mn > x+ nc,M1
n � αx).

Again

∑
n�1

P(En, Sn > x+ nc) �
∑
n�1

P(En,Mn > x+ nc,M1
n � αx) +

∑
n�1

P(Mn > x+ nc,M1
n > αx) +

+
∑
n�1

P(Sn > x+ nc,Mn � x+ nc).

Now by the subexponentiality [2, 18], we have

∑
n�1

P(Sn > x+ nc) ∼
∑
n�1

P(Mn > x+ nc) ∼ λc−1F s(x), x → ∞.

Hence

∑
n�1

P (Sn > x+ nc,Mn � x+ nc) = o(F s(x)). (44)

Therefore, by (43) and (44),

∑
n�1

P(En, Sn > x+ nc) =
∑
n�1

P(En,Mn > x+ nc,M1
n � αx) + o(F s(x)).

We conclude, observing that

Nx∑
n=1

P(En, Sn > x+ nc) � NxP(S1 > x) = o(F s(x)),

Nx∑
n=1

P(En,Mn > x+ nc,M1
n � αx) � NxP(M1 > x) = o(F s(x)).
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1. F. Baccelli and P. Brémaud, Elements of Queueing Theory, Applications of Mathematics, Vol. 26, Springer–
Verlag, Berlin, (2003).

2. F. Baccelli and S. Foss, “Moments and tails in monotone-separable stochastic networks,” Ann. Appl. Probab.,
14, No. 2, 612–650 (2004).

3. D. Cox, “Long-range dependence: A review,” in: Statistics: An Appraisal, H.A. David and H.T. David
(eds.), The Iowa State (1984), pp. 55–74.
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