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Abstract—Malicious softwares or malwares for short have
become a major security threat. While originating in criminal
behavior, their impact are also influenced by the decisions of
legitimate end users. Getting agents in the Internet, and in
networks in general, to invest in and deploy security features
and protocols is a challenge, in particular because of economic
reasons arising from the presence of network externalities.

In this paper, we focus on the question of incentive alignment
for agents of a large network towards a better security. We
start with an economic model for a single agent, that determines
the optimal amount to invest in protection. The model takes
into account the vulnerability of the agent to a security breach
and the potential loss if a security breach occurs. We derive
conditions on the quality of the protection to ensure that the
optimal amount spent on security is an increasing function of
the agent’s vulnerability and potential loss. We also show that
for a large class of risks, only a small fraction of the expected
loss should be invested.

Building on these results, we study a network of interconnected
agents subject to epidemic risks. We derive conditions to ensure
that the incentives of all agents are aligned towards a better
security. When agents are strategic, we show that security
investments are always socially inefficient due to the network
externalities. Moreover alignment of incentives typically implies
a coordination problem, leading to an equilibrium with a very
high price of anarchy.1

I. INTRODUCTION

Negligent users who do not protect their computer by regu-
larly updating their antivirus software and operating system
are clearly putting their own computers at risk. But such
users, by connecting to the network a computer which may
become a host from which viruses can spread, also put (a
potentially large number of) computers on the network at risk
[2], [3]. This describes a common situation in the Internet and
in enterprise networks, in which users and computers on the
network face epidemic risks. Epidemic risks are risks which
depend on the behavior of other entities in the network, such
as whether or not those entities invest in security solutions
to minimize their likelihood of being infected. [4] is a recent
OECD survey of the misaligned incentives as perceived by
multiple stake-holders. Our goal in this paper is to study
conditions for alignment of incentives for agents of a large
network subject to epidemic risks and its implications for the
equilibria.

1extended abstract of this work presented at INFOCOM 2012. This version
corrects some inaccuracies of [1]. The author wishes to thank the anonymous
reviewers for valuable comments.

Our work allows a better understanding of economic net-
work effects: there is a total effect if one agent’s adoption of
a protection benefits other adopters and there is a marginal
effect if it increases others’ incentives to adopt it (we refer to
Section 3 of [5] for a comprehensive survey about network
effects). In information security economics, the presence of
the total effect has been the focus of various recent works
starting with Varian’s work [6]. When an agent protects itself,
it benefits not only to those who are protected but to the whole
network. Indeed there is also an incentive to free-ride the total
effect. Those who invest in self-protection incur some cost and
in return receive some individual benefit through the reduced
individual expected loss. But part of the benefit is public: the
reduced indirect risk in the economy from which everybody
else benefits. As a result, the agents invest too little in self-
protection relative to the socially efficient level. The efficiency
loss (referred to as the price of anarchy) has been quantified
in various game-theoretic models [7], [8], [9], [10], [11], [12].

In this paper, we focus on the marginal effect and its
relation to the coordination problem (see Section 3.4 in [5]). To
understand the mechanism of incentives regarding security in a
large network, we need to analyze how an increase in the total
population adopting security will impact one agent’s incentive
to adopt it. To do so, we use a monotone comparative statics
approach and start with an economic model for a single agent
that determines the optimal amount to invest in protection. We
follow the approach proposed by Gordon and Loeb in [13].
They found that the optimal expenditures for protection of an
agent do not always increase with increases in the vulnerability
of the agent. Crucial to their analysis is the security breach
probability function which relates the security investment and
the vulnerability of the agent with the probability of a security
breach after protection. This function can be seen as a proxy
for the quality of the security protection. Our first main result
(Theorem 1) gives sufficient conditions on this function to
ensure that the optimal expenditures for protection always
increase with increases in the vulnerability of the agent (this
sensitivity analysis is called monotone comparative statics in
economics). From an economic perspective, these conditions
will ensure that all agents with sufficiently large vulnerability
value the protection enough to invest in it. We also extend
a result of [13] and show (Theorem 2) that if the security
breach probability function is log-convex in the investment,



then a risk-neutral2 agent never invests more than 37% of the
expected loss.

Building on these results, we study a network of intercon-
nected agents subject to epidemic risks. We model the effect of
the network through a parameter γ describing the information
available to the agent and capturing the security state of
the network. We show that our general framework extends
previous work [8], [14] and allows to consider a security
breach probability function depending on the parameter γ and
possibly other private informations on the vulnerability of the
asset. Our third main result (Theorem 3) gives sufficient con-
ditions on this function to ensure that the optimal protection
investment always increases with an increase in the security
state of the network.

This property will be crucial in our last analysis: we use
our model of interconnected agent in a game theoretic setting
where agents anticipate the effect of their actions on the
security level of the network. We diverge form most of the
literature on security games (some exceptions are [15], [8],
[16]) and relax the complete information assumption, i.e. each
player’s security breach probability is not common knowledge
but instead a private information. In our model only global
statistics are publicly available and agents do not disclose any
information concerning their own security strategy.

We show how the monotonicities (or the lack of monotonic-
ities) impact the equilibrium of the security game. In partic-
ular, alignment of incentives typically implies a coordination
problem, leading to an equilibrium with a very high price of
anarchy. Moreover, we distinguish two parts in the network
externalities that we call public and private. Both types of
externalities are positive since any additional agent investing in
security will increase the security level of the whole network.
However, the effect of this additional agent will be different
for an agent who did not invest in security from an agent
who already did invest in security. The public externalities
correspond to the network effect on insecure agents while the
private externalities correspond to the network effect on secure
agents (also called total effect in the economics literature [5]).

As a result of this separation of externalities, some sur-
prising phenomena can occur: also both externalities are
positive, there are situations where the incentive to invest
in protection decreases as the fraction of the population
investing in protection increases. This is an example where
the total effect holds but the marginal effect fails (which is
essentially a case where Segal’s increasing externalities [17]
or Topkis’supermodularity [18] fails). We also show that in the
security game, security investments are always inefficient due
to the network externalities. This raises the question whether
economic tools like insurance [19], [20], [21] could be used
to lower the social inefficiency of the game3?

The rest of the paper is organized as follows. In Section II,

2i.e an agent indifferent to investments that have the same expected value:
such an agent will have no preference between i) a bet of either 100$ or
nothing, both with a probability of 50% and ii) receiving 50$ with certainty

3Note that in this case the risk-neutral assumption made in this paper should
be replaced by a risk-adverse assumption.

the optimal security investment for a single agent is analyzed.
In Section III, we extend it to an interconnected agent and
show it connects with the epidemic risk model. Finally in
Section IV, we consider the case where agents are strategic.
We introduce the notion of fulfilled expectations equilibrium
and show our main game theoretic results.

II. OPTIMAL SECURITY INVESTMENT FOR A SINGLE
AGENT

In this section, we present a simple one-period model of
an agent contemplating the provision of additional security
to protect a given information set introduced by Gordon and
Loeb in [13]. In one-period economic models, all decisions
and outcomes occur in a simultaneous instant. Thus dynamic
aspects are not considered.

A. Economic model of Gordon and Loeb

The model is characterized by two parameters ` and v (also
Gordon and Loeb used a bit more involved notation). The
parameter ` represents the monetary loss caused by a security
breach. The parameter ` ∈ R+ is a positive real number. The
parameter v represents the probability that without additional
security, a threat results in the information set being breached
and the loss ` occurs. The parameter v is called the vulnerabil-
ity of the asset. Being a probability, it belongs to the interval
[0, 1].

An agent can invest a certain amount x to reduce the
probability of loss to p(x, v). We make the assumptions
p(0, v) = v and since p(x, v) is a probability we assume that
for all x > 0 and v ∈ [0, 1] we have 0 ≤ p(x, v) ≤ v. The
function p(x, v) is called the security breach probability.

The expected loss for an amount x spent on security is given
by `p(x, v). Hence if the agent is risk neutral, the optimal
security investment should be the value x∗ minimizing

min {`p(x, v) + x : x ≥ 0} . (1)

We define the set of optimal security investment by
ϕ(v, `) = argmin {`p(x, v) + x : x ≥ 0}. Clearly in general
the function ϕ is set-valued and we will deal with this fact
in the sequel. For now on, assume that the function ϕ is real-
valued, i.e. sets reduce to singleton. As noticed in [13], it
turns out that the function ϕ(v, `) does not need to be non-
decreasing in (v, `) for general functions p(x, v). An example
given in [13] is pGL(x, v) = vαx+1, where the parameter
α > 0 is a measure of the productivity of information security.
This class of security breach probability functions has the
property that the cost of protecting highly vulnerable informa-
tion sets becomes extremely expensive as the vulnerability of
the information set becomes very close to one. This is not the
only class of security breach functions with this property. Their
simplicity allows to gain further insights into the relationship
between vulnerability and optimal security investment.

Indeed, an interior minimum x∗ > 0 is characterized by the
first-order condition:

`
∂p
∂x

(x∗, v) = −1. (2)



In the particular case where pGL(x, v) = vαx+1, we obtain
∂pGL
∂x (x, v) = (α log v)vαx+1. So that solving Equation (2),

we get ϕGL(v, `) =
− log(−`α log v)

α log v − 1
α .

Fig. 1. Function ϕGL(v, `) as a function of the vulnerability v and with
parameters: ` = 10 and α = 0.5, 1, 1.5 (red, green, brown)

Figure 1 shows the optimal security investment for various
values of α and ` as a function of the vulnerability v. In
particular, we see that the optimal investment is zero for low
values of the vulnerability and also for high values of the
vulnerability. In other words, in this case, the marginal benefit
from investment in security for low vulnerability information
sets does not justify the investment since the security of the
information set is already good. However if the information set
is extremely vulnerable, the cost of security is too high to be
’profitable’, in the sense that there is no benefit in protecting
it.

B. Sufficient conditions for monotone investment

In this section, we derive sufficient conditions on the
probability loss in order to avoid the non-monotonicity in the
vulnerability of the information set. In such a case, the infor-
mation security decision is simple since there is an augmenting
return of investment with vulnerability: the security manager
needs to adjust the security investment to the vulnerability.
Also the security provider should set the price of its solution
so as to remain in a region where such monotonicity is valid.

First we need to define the monotonicity of a set-valued
function. We say that the set-valued function f : Rn → 2R

is non-decreasing if for any xL, xH ∈ Rn with xL ≤ xH

(for the product order), we have for any yL ∈ f(xL) and any
yH ∈ f(xH): yL ≤ yH .

We start with a particular case (its proof will follow from
our more general result and is given at the end of this section):

Proposition 1. Assume that the function p(x, v) is twice
continuously differentiable on R+ × [0, 1]. If

∂p
∂x

(x, v) ≤ 0, and,
∂2p
∂x∂v

(x, v) ≤ 0 (3)

then the function (v, `) 7→ ϕ(v, `) is non-decreasing in (v, `).

Remark 1. The first condition requires that the function
p(x, v) is non-increasing in x, i.e. the probability of a security
break is lowered when more investment in security is done.
In the particular case of pGL described above, we have

∂2pGL
∂x∂v (x, v) = αvαx (1 + α(αx + 1) log v). In particular
∂2pGL
∂x∂v (x, 1) = α > 0 and we see that the function pGL

does not satisfy the conditions of the proposition which is in
agreement with the fact that the associated function ϕGL is
not monotone in v.

It turns out that we often need to deal with cases where
the choice sets are discrete. In reality, discrete investments in
new security technologies are often more natural, resulting in
discontinuities. For example the amount x could live in a space
X ⊂ R+ having empty interiors. In these cases, Proposition
1 is useless. In order to extend it, we introduce the notion
of general submodular functions (see Topkis [22]). We first
define the two operators ∧ and ∨ in Rn:

x ∧ y = sup{t ∈ Rn, t ≤ x; t ≤ y}and,

x ∨ y = inf{t ∈ Rn, t ≥ x; t ≥ y}.

A set S ⊂ Rn is a lattice if for any x and y in S, the elements
x ∧ y and x ∨ y are also in S. A real valued function f on
a lattice S is submodular if for all x and y in S, f(x ∧ y) +
f(x ∨ y) ≤ f(x) + f(y). f is strictly submodular on S if
the inequality is strict for all pairs x, y in S which cannot be
compared with respect to ≥, i.e such that neither x ≥ y nor
y ≥ x holds.

We are now ready to state our main first result which is an
adaptation of Theorem 6.1 in [22]:

Theorem 1. Let S = [0, 1]×R+. If the function f : X×S →
R is strictly submodular in the variables x and v in X× [0, 1]
for any fixed ` and in the variables x and ` in X × R+ for
any fixed v, then ϕ(v, `) = argmin{f(x, v, `) : x ∈ X} is
non-decreasing.

Remark 2. Note that this Theorem does not require to take
f(x, v, `) = `p(x, v) + x. In particular it can also be applied
to the case of risk-adverse agents in which case f depends on
the (concave) expected utility function of the agent.

Proof: If x ≤ x′ and x 6= x′, then x < x′ is written. By
the definition of strict submodularity, we see that we have for
x′ > x and (v′, `′) > (v, `):

f(x′, v′, `′) + f(x, v, `′) < f(x′, v, `′) + f(x, v′, `′)
f(x′, v, `′) + f(x, v, `) < f(x′, v, `) + f(x, v, `′),

so that we get

f(x′, v′, `′) + f(x, v, `) < f(x′, v, `) + f(x, v′, `′).

This shows that f has strictly increasing differences in
(x, v, `), i.e. f(x, v, `) − f(x, v′, `′) is strictly increasing in
x for all (v′, `′) > (v, `).

Consider (v′, `′) > (v, `) and we now show that y ≥ x for
y ∈ ϕ(v′, `′) and x ∈ ϕ(v, `). Suppose that x > y, so that
x ∨ y > y. Since y ∈ ϕ(v′, `′) and x ∈ ϕ(v, `), we have

f(x ∨ y, v′, `′) ≥ f(y, v′, `′) and,
f(x ∧ y, v, `) ≥ f(x, v, `).



Using the fact that f has strictly increasing differences, and
x ∨ y > y, we get:

f(x ∨ y, v′, `′)− f(y, v′, `′) < f(x ∨ y, v, `)− f(y, v, `).

By the definition of submodularity, we have:

f(x ∨ y, v, `)− f(y, v, `) ≤ f(x, v, `)− f(x ∧ y, v, `)

Hence we finally get:

0 ≤ f(x ∨ y, v′, `′)− f(y, v′, `′)
< f(x, v, `)− f(x ∧ y, v, `) ≤ 0,

which provides the desired contradiction.

Remark 3. It follows from the proof, that the sufficient condi-
tions on f to insure that ϕ is non-decreasing, are equivalent
to: f(x, v, `) − f(x, v′, `′) is strictly increasing in x for all
(v′, `′) > (v, `).

Proof: of Proposition 1:
It follows from the definition of submodularity, that if f
is twice-continuously differentiable, then ∂2f

∂x∂v (x, v, `) ≤ 0
implies that f is strictly submodular in the variables x and v in
X×[0, 1] for any fixed `. Taking, f(x, v, `) = `p(x, v)+x, we
get ∂2f

∂x∂v (x, v, `) = ` ∂2p
∂x∂v (x, v), we get one of the condition of

Proposition 1. The other condition comes from the symmetric
condition on f : ∂2f

∂x∂` (x, v, `) ≤ 0.

C. A simple model and the 1/e rule

Consider now a scenario, where there are K possible
protections, where K can be infinite. Each protection j is
characterized by a cost denoted xj > 0 and a function sj(v)
from [0, 1] to [0, 1] with the following interpretation: if the
system has a probability of loss v without the protection j,
applying the protection j will lower this probability by a factor
of sj(v) (at a cost xj )

If an agent applies two different protections say i and j,
then we will assume that the resulting probability of loss is
si(v)sj(v). The rational behind this assumption is that the
protections are independent in a probabilistic sense. The prob-
ability of a successful attack is the product of the probabilities
to elude each of the protections.

For a total budget of x, the agent will choose the sub-
set J ∈ [K] = {1, 2, . . . ,K} such that

∑

j∈J xj ≤
x and which minimizes the final probability of loss
∏

j∈J sj(v). Hence we define the function p : R+ →

R+ by, p(x, v) = inf
{

∏

j∈J sj(v) s.t
∑

j∈J xj ≤ x
}

,
so that the optimal security investment problem is still
given by (1). The problem of deriving the function
p(x, v) is a standard integer linear programming prob-
lem which can be rewritten as follows log p(x, v) =
inf

{

∑

i∈[K] ei log sj(v)| ei ∈ {0, 1},
∑

i∈[K] eixi ≤ x
}

.
Our aim here is not to address issues dealing with com-

plexity (this problem is known as the knapsack problem) and
we will consider the relaxed problem where ei ∈ [0, 1]. In
this case, the problem is a linear program which is a convex

optimization problem. The important thing for us is that the
function x 7→ p(x, v) is log-convex in x. We then have the
following generalization of Gordon and Loeb’s Proposition 3:

Theorem 2. If the function x 7→ p(x, v) is non-increasing
and log-convex in x then the optimal security investment is
bounded by `v/e.

Proof: We denote x∗ the optimal investment and p∗ =
p(x∗, v), so that

`p∗ + x∗ ≤ `p(x, v) + x. (4)

We denote f(x) = log `p(x, v). Firs assume that x 7→ p(x, v)
is continuously differentiable so that we have

f(x) ≥ f(x∗) + f ′(x∗)(x − x∗)

= log `p∗ −
1
`p∗

(x− x∗), (5)

where, in the last equality, we used (2). Hence we have, f(0) ≥
log `p∗ + x∗

`p∗ , which can be rewritten as

`v
x∗

`p∗
exp

(

−
x∗

`p∗

)

≥ x∗.

The theorem follows in this case from the observation that
z exp(−z) ≤ e−1 for z ≥ 0.

If we do not assume that x 7→ p(x, v) is continuously
differentiable, we will show (5) using (4). Namely, suppose
there exists x′ ≥ 0 such that

f(x′) < log `p∗ −
1
`p∗

(x′ − x∗).

Then by convexity, we have for any α ∈ [0, 1],

f(αx′ + (1 − α)x∗) ≤ f(x∗) + α (f(x′)− f(x∗))

< log `p∗ −
α
`p∗

(x′ − x∗).

However, by (4), we also have

f(αx′ + (1− α)x∗) ≥ log (`p∗ − α(x′ − x∗))

= log `p∗ −
α
`p∗

(x′ − x∗) +O(α2),

and we obtain a contradiction. Hence (5) is still true in this
case and we can finish the proof as above so that the statement
of the theorem holds.

Theorem 2 shows that for a broad class of information
security breach probability function, the optimal security in-
vestment is always less than 37% of the expected loss without
protection. Note that the function pGL introduced above does
not satisfy the conditions of Theorem 1 but is log-convex so
that in this case, the optimal security investment is always
less than 37% of the expected loss. Indeed, we saw that for
high values of the vulnerability, the optimal investment is zero.
We end this section with another function p(x, v) = v

(ax+1)b
with a, b > 0, which satisfies both the conditions of Theorems
1 and 2. Hence in this case, the optimal security investment
increases with the vulnerability but remains below 37% of the
expected loss without protection.



III. OPTIMAL SECURITY INVESTMENT FOR AN
INTERCONNECTED AGENT

We now extend the previous framework in order to model an
agent who needs to decide the amount to spend on security if
this agent is part of a network. In this section, we give results
concerning the incentives of an agent in a network. In the
next section, we will consider a security game associated to
this model of agent and determine the equilibrium outcomes.

A. General model for an interconnected agent

In order to capture the effect of the network, we will assume
that each agent faces an internal risk and an indirect risk.
As explained in the introduction, the indirect risk takes into
account the fact that a loss can propagate in the network.
The estimation of the internal risk depends only on private
information available to the agent. However in order to decide
on the amount to invest in security, the agent needs also to
evaluate the indirect risk. This evaluation depends crucially on
the information on the propagation of the risk in the network
available to the decision-maker. We now describe an abstract
and general setting for the information of the agent.

We assume that the information concerning the impact of
the network on the security of the agent is captured by a
parameter γ living in a partially ordered set Γ (poset, i.e
a set on which there is a binary relation that is reflexive,
antisymmetric and transitive). Indeed this assumption is not
a technical assumption. The interpretation is as follows: γ
captures the state of the network from the point of view of
security and we need to be able to compare secure states from
unsecure ones.

Given γ ∈ Γ, the agent is able to compute the probability
of loss for any amount x ∈ X invested in security which is
denoted by p(x, v, γ). We still assume that the agent is risk
neutral , so that the optimal security investment is given by:

ϕ(v, `, γ) = argmin{`p(x, v, γ) + x : x ∈ X}. (6)

Note that in our model we consider that only global statistics
about the network are available to all agents. The state of
the network γ is public. A ’high’ value of γ corresponds
to a secure environment, typically with a high fraction of
the population investing in security while a ’low’ value of
γ corresponds to an unsecure environment with few people
investing in security. For example, in the epidemic risk model
described below, decision regarding investment are binary
and the public information consists of the parameters of the
epidemic risk model (which are supposed to be fixed) and the
fraction γ of the population investing in security. Then for any
γ ∈ [0, 1], the agent is able to compute p(x, v, γ) as explained
below. Note that in our model, the vulnerability v of an agent
is an intrinsic parameter of this agent, in particular it does not
depend on the behavior of others or γ.

B. Epidemic risks model

In order to gain further insight, we consider in this section
the case of economic agents subject to epidemic risks. This

model was introduced in [8]. We concentrate here on a sim-
plified version presented in [14]. In this section, we focus on
the dependence of p(x, v, γ) in x and γ. For ease of notation,
we remove the explicit dependence in the vulnerability v.

For simplicity, we assume that each agent has a discrete
choice regarding self-protection, so that X = {0, 1}. If she
decides to invest in self-protection, we set x = 1 and say that
the agent is in state S as secure, otherwise we set x = 0 and
say that the agent is in state N as non-secure or negligent.
Note that if the cost of the security product is not one, we can
still use this model by normalizing the loss ` by the cost of the
security investment. In order to take her decision, the agent
has to evaluate p(0, γ) and p(1, γ). To do so, we assume that
global statistics on the network and on the epidemic risks are
publicly available and that the agent uses a simple epidemic
model that we now describe.

Agents are represented by vertices of a graph and face two
types of losses: direct and indirect (i.e. due to their neighbors).
We assume that an agent in state S cannot experience a direct
loss and an agent in state N has a probability p of direct
loss. Then any agent experiencing a direct loss ’contaminates’
neighbors independently of each others with probability q if
the neighbor is in state S and q+ if the neighbor is in state
N , with q+ ≥ q. Since only global statistics are available for
the graph, we will consider random families of graphs G(n)

with n vertices and given vertex degree with a typical node
having degree distribution denoted by the random variable D
(see [23]). In all cases, we assume that the family of graphs
G(n) is independent of all other processes. All our results are
related to the large population limit (n tends to infinity). In
particular, we are interested in the fraction of the population
in state S (i.e. investing in security) and denoted by γ.

Using this model the agent is able to compute the functions
p(0, γ) and p(1, γ) thanks to the following result proved in
[8] and [24] (using a local mean field):

Proposition 2. Let Ψ(x) = E[xD] be the generating function
of the degree distribution of the graph. For any γ ∈ [0, 1],
there is a unique solution in [0, 1] to the fixed point equation:
y = 1 − γΨ(1 − qy) − (1 − γ)(1 − p)Ψ(1 − q+y), denoted
by y(γ). Moreover the function γ 7→ y(γ) is non-increasing
in γ. Then we have, p(1, γ) = 1 − Ψ(1 − qy(γ)), p(0, γ) =
1− (1− p)Ψ(1− q+y(γ)).

If we define h(γ) = p(0, γ) − p(1, γ) as the difference of
the two terms given in Proposition 2, we see that the optimal
decision is:

`h(γ) > 1 ⇔ agent invests. (7)

This equation can be seen as a discrete version of (2). If the
benefit of the protection which is `h(γ) is more than its cost
(here normalized to one), the agent decides to invest, otherwise
the agents does not invest. In particular, we observe that the
condition for the incentive to invest in security to increase with
the fraction of population investing in security is given by:

h(γ) = p(0, γ)− p(1, γ) is an increasing function. (8)



We show in the next section that this result extends to a much
more general framework.

Before that, we recall some results of [14] describing two
simple cases, one where the condition (8) holds and the other
where it does not. The computation presented in this section
are done for the standard Erdös-Rényi random graphs: G(n) =
G(n, λ/n) on n nodes {0, 1, . . . , n−1}, where each potential
edge (i, j), 0 ≤ i < j ≤ n − 1 is present in the graph with
probability λ/n, independently for all n(n−1)/2 edges. Here
λ > 0 is a fixed constant independent of n equals to the
(asymptotic as n → ∞) average number of neighbors of an
agent. As explained in the next section, these results extend
to a much more general framework without modifying the
qualitative insights.

We will consider two cases:
Strong protection: an agent investing in protection cannot

be harmed at all by the actions or inactions of others: q = 0.
In this case, we have p(1, γ) = 0 so that h(γ) = p(0, γ) which
is clearly a non-increasing function of γ as depicted on Figure
2.

g
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Fig. 2. Function h(γ) for strong protection as a function of γ; λ = 10,
q+ = 0.5, p = 0.01

As γ the fraction of agents investing in protection increases,
the incentive to invest in protection decreases. In fact, it is less
attractive for an agent to invest in protection, should others
then decide to do so. As more agents invest, the expected
benefit of following suit decreases since there is a lower
probability of loss, the network becoming more secure.

Weak protection: investing in protection does lower the
probability of contagion q but it remains positive: 0 < q < q+.
In this case, the map γ 7→ h(γ) can be non-decreasing for
small value of γ and decreasing for values of γ close to one
(see Figure 3). For small values of γ, the incentive for an agent
to invest in security actually increases with the proportion
of agents investing in security (recall Condition (8)). We
will see in the next section, that this alignment of incentives
is responsible for a coordination problem when agents are
strategic.

C. Sufficient conditions for monotone investment in a network

We now show how the condition (8) extends to a general
framework. This extension is given by the following result:

g
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Fig. 3. Function h(γ) for weak protection as a function of γ; λ = 10,
q+ = 0.5, p+ = 0.01 and q = 0.1

Theorem 3. If the function p(x, v, γ)− p(x, v′, γ′) is strictly
increasing in x ∈ X for any (v′, γ′) > (v, γ) and the function
p(x, v, γ) is non-increasing in x, then ϕ(v, `, γ) defined in (6)
is non-decreasing.

Proof: As noticed in Remark 3, we need to prove that
our condition ensures that `p(x, v, γ)− `′p(x, v′, γ′) is strictly
increasing in x ∈ X for any (v′, `′, γ′) > (v, `, γ). If ` = `′,
this follows from the condition of the theorem. We now deal
with the case `′ > `. Let x′ > x, then by the condition of the
theorem, we have

`p(x′, v, γ)− `p(x′, v′, γ′) > `p(x, v, γ)− `p(x, v′, γ′),

but since `′ > ` and p(x, v′, γ′)−p(x′, v′, γ′) ≥ 0 for x′ > x,
we also have

`p(x′, v′, γ′)− `′p(x′, v,′ , γ′) > `p(x, v′, γ′)− `′p(x, v′, γ′).

Summing these inequalities gives exactly the desired result.

Remark 4. Clearly, the condition of Theorem 3 translates in
the setting described in Section III-B to p(0, γ) − p(0, γ′) <
p(1, γ)− p(1, γ′), for any γ′ > γ, which corresponds exactly
to (8).

In the particular case where Γ is a subset of R, and under
some smoothness conditions, we obtain:

Proposition 3. If the function p(x, v, γ) is twice continuously
differentiable on X × [0, 1] × Γ, then sufficient conditions
for ϕ(v, `, γ) to be non-decreasing are: ∂p

∂x(x, v, γ) ≤ 0,
∂2p
∂x∂v (x, v, γ) ≤ 0, ∂2p

∂x∂γ (x, v, γ) ≤ 0.

As we will see in the next section satisfying the conditions
of Theorem 3 (or Proposition 3) ensures that the incentives in
the population are aligned but this might lead to a coordination
problem.

IV. EQUILIBRIUM ANALYSIS OF THE SECURITY GAME

We now present our results in a game-theoretic framework
where each agent is strategic. We assume that the effect of
the action of any single agent is infinitesimal but each agent
anticipates the effect of the actions of all other agents on the
security level of the network.



A. Information structure and fulfilled expectations equilibrium
In most of the literature on security games, it is assumed

that the player has complete information. In particular, each
player knows the probability of propagation of the attack or
failure from each other player in the network and also the
cost functions of other players. In this case, the agent is able
to compute the Nash equilibria of the games (if no constraint
is made on the computing power of the agent) and decides on
her level of investment accordingly. In particular, the agent is
able to solve (6) for all possible values of γ which capture the
decision of all other agents. Note that even if only binary
decisions are made by agents the size of the set Γ grows
exponentially with the number of players in the network.
Moreover in a large network, the complete information as-
sumption seems quite artificial, especially for security games
where complete information would then implies that the agents
disclose information on their security strategy to the public and
hence to the potential attacker!

Here we relax the assumption of complete information. As
in previous section, we assume that each agent is able to
compute the function p(x, v, γ) based on public information
and on the epidemic risk model. The values of the possible loss
` and the vulnerability v are private information of the agent
and vary among the population. In order to define properly
the equilibrium of the game, we assume that all players are
strategic and are able to do this computation. Hence if a player
expect that a fraction γe of the population invests in security,
she can decide for her own investment. We assume that at
equilibrium expectations are fulfilled so that at equilibrium the
actual value of γ coincides with γe. This concept of fulfilled
expectations equilibrium to model network externalities is
standard in economics (see Section 3.6.2 in [5]).

We now describe it in more details. For simplicity of
the presentation, we do not consider the dependence in the
vulnerability v since in the security game, we focus on the
monotonicity in γ which will turn out to be crucial. We also
consider that the choice regarding investment is binary, i.e.
X = {0, 1}.

We consider a heterogeneous population, where agents
differ in loss sizes only. This loss size ` is called the type
of the agent. We assume that agents expect a fraction γe of
agents in state S, i.e. to make their choice, they assume that the
fraction of agents investing in security is γe. We now define
a network externalities function that captures the influence of
the expected fraction of agents in state S on the willingness
to pay for security. Let the network externalities function be
h(γe). More precisely, for an agent of type `, the willingness
to pay for protection in a network with a fraction γe of the
agents in state S is given by `h(γe) so that if

`h(γe) ≥ c, (where c is the cost of the security option) (9)

the agent will invest and otherwise not. Hence (9) is in
accordance with (7) (where the cost was normalized to one).
Note that here, we do not make any a priori assumption on
the network externalities function h which can be general and
fit to various models.

Indeed, our model corresponds exactly to the multiplicative
formulation of Economides and Himmelberg [25] which al-
lows different types of agents to receive differing values of
network externalities from the same network. As explained
above, agents with low ` have little or no use for the protection
whereas agents with high ` value highly security. This is taken
into account in our model since for a fixed expected fraction of
agents in state S, agents with high ` have a higher willingness
to pay for self-protection than agents with low `.

Let the cumulative distribution function of types be F (`),
i.e the fraction of the population having type lower than ` is
given by F (`) ≤ 1. We make the following hypothesis:

Hypothesis 1. F (`) is continuous with positive density every-
where on its support which is normalized to be [0, 1].

Note in particular that F is strictly increasing and it follows
that the inverse F−1(γ) is well-defined for γ ∈ [0, 1].

Given expectation γe and cost for protection c, all agents
with type ` such that `h(γe) > c will invest in protection.
Hence the actual fraction of agents investing in protection is
given by γ = 1−F

(

min
(

c
h(γe) , 1

))

. Hence following [25],
we can invert this equation and we define the willingness to
pay for the last agent in a network of size γ with expectation
γe as

w(γ, γe) = h(γe)F−1(1− γ). (10)

Seen as a function of its first argument, this is just an inverse
demand function: it maps the quantity of protection demanded
to the market price. Because of externalities, expectations
affect the willingness to pay:

∂w
∂γe (γ, γ

e) = h′(γe)F−1(1− γ). (11)

For goods that do not exhibit network externalities, demand
slopes downward: as price increases, less of the good is
demanded. This fundamental relationship may fail in goods
with network externalities. If h′(.) > 0, then the willingness
to pay for the last unit may increase as the number expected
to be sold increases as can be seen from (11): ∂w

∂γe (γ, γe) > 0.
For example in [25] studying the FAX market, as more and
more agents buy a FAX, the utility of the FAX increases since
more and more agents can be reached by this communication
mean. For a fixed cost c, in equilibrium, the expected fraction
γe and the actual one γ must satisfy

c = w(γ, γe) = h(γe)F−1(1− γ). (12)

If we assume moreover that in equilibrium, expectations are
fulfilled, then the possible equilibria are given by the fixed
point equation:

c = w(γ, γ) = h(γ)F−1(1− γ) =: w(γ). (13)

We see that if h′(.) > 0, the concept of fulfilled expectations
equilibrium captures the possible increase in the willingness to
pay as the number expected to be sold increases. This would
corresponds to the case where we have w′(γ) > 0 for some
values of γ. In such cases, a critical mass phenomenon (as



in the FAX market [25]) can occurs : there is a problem of
coordination. We explain this phenomenon more formally in
the next section and then show how our results differ from
[25]. We end this section with the following important remark:

Remark 5. The case of an homogeneous population in which
all agents have the same type, i.e the same loss size `
corresponds to the function F−1 being constant equal to `.
In this case, the willingness to pay is simply w(γ) = h(γ)`.
In particular, the epidemic risk model presented above can be
used to model the network externalities by the function h(γ)
computed in Section III. In this case, Condition (8) still gives
a condition for incentives to be align. As we will see next, this
condition might lead to critical mass: if incentives are aligned,
there is a coordination problem!

B. Critical mass: coordination problem

To determine the possible equilibria, we analize the shape
of the fulfilled expectations demand w(γ). First we have
w(0) ≥ 0 which is equal to the value of the self-protection
assuming there are no network externalities. We also have
w(1) = 0 since by Hypothesis 1, we have F−1(0) = 0.
In words, this means that there are agents with very low `
who have little or no interest in self-protection. Then in order
to secure completely the network, we have to convince even
agents of very low willingness to pay.

The slope of the fulfilled expectations demand is

w′(γ) = −
h(γ)

F ′(F−1(1 − γ))
+ h′(γ)F−1(1− γ). (14)

The first term measures the slope of the inverse demand
without taking into account the effect of the expectations. The
second term corresponds to the effect of an increase in the
expected fraction of agents in state S. If h′(.) > 0 as in [25], it
corresponds to the increase in the willingness to pay of the last
agent investing in self-protection created by his own action in
joining the group of agents in state S. Note that in any case, if
the fraction of agents in state S gets very large, i.e. γ → 1, the
last agent investing in self-protection has very low willingness
to pay for it. Hence for γ close to one, the effect of marginal
expectations on the marginal agent investing in S is negligible.
Formally this is observed by limγ→1 h′(γ)F−1(1− γ) = 0. It
follows that

lim
γ→1

w′(γ) = lim
γ→1

−
h(γ)

F ′(F−1(1− γ))
= −

h(1)
F ′(0)

< 0. (15)

Note that we allow F ′(0) = 0 in which case, Equation (15)
should be interpreted as limγ→1w′(γ) = −∞. The sign of
limγ→0 w′(γ) depends on the parameters of the model and
we will see that it is of crucial importance. We make the
following hypothesis

Hypothesis 2. The function w(γ) is single-peaked.

Note that in the case of an homogeneous population,
w(γ) = h(γ)`, where h(γ) was computed in Section III for
the epidemic risk model and is single-peaked.

We are now ready to state the main result of this section:

Theorem 4. Under Hypothesis 1 and 2, a network has positive
critical mass if limγ→0 h′(γ) > 0 and either

(i) w(0) = 0, i.e. if all agents are in state N then no agent
is willing to invest in self-protection;

(ii) limγ→0 h′(γ) is sufficiently large, i.e. there are large
private benefits to join the group of agents in state S
when the size of this group is small;

(iii) limγ→1 F ′(γ) is sufficiently large, i.e. there is a signif-
icant density of agents who are ready to invest in self-
protection even if the number of agents already in state
S is small.

Remark 6. Note that if h′(γ) > 0 for small values of γ, then
incentives are aligned by results of previous Section but this
might lead to a coordination problem. Indeed as shown by
previous theorem, this is a necessary condition for a network
to exhibit positive critical mass. In the case of a homogeneous
population (see Remark 5), the function w(γ) is proportional
to the function h(γ) computed in Section III for the epidemic
risk model. In particular, in the case of weak protection, there
is positive critical mass as shown by Figure 3.

Proof: Since we proved that γ 7→ w(γ) is decreasing for
γ close to one, there are only two possibilities: either is is
increasing for small values of γ or it is decreasing for all γ.
As explained in Lemma 1 of [25], the network has a positive
critical mass if and only if γ 7→ w(γ) is increasing for small
values of γ.

price

c

c0

γ
γi γsγ0

Fig. 4. Willingness to pay curve (or demand curve) w(γ)

This is illustrated thanks to Figure 4 (which should be
compared to Figure 3). Recall that in equilibrium, we have
w(γ∗) = h(γ∗)F−1(1 − γ∗) = c. If we imagine a constant
cost c decreasing parametrically, the network will start at a
positive and significant size γ0 corresponding to a cost c0.
For each smaller cost c1 < c < c0, there are three values of
γ∗ consistent with c: γ∗ = 0; an unstable value of γ∗ at the
first intersection of the horizontal through c with w(γ); and
the Pareto optimal stable value of γ∗ at the largest intersection
of the horizontal with w(γ).

As explained above, a network exhibits a positive critical
mass if and only if limγ→0 w′(γ) > 0. Now by (14), we
have limγ→0 w′(γ) = limγ→0 h′(γ) − h(0)

limγ→1 F ′(γ) , note that
h(0) = w(0) and the theorem follows easily.



We finish this section by explaining the main difference
between our model and models with standard positive exter-
nalities. Informally, in the model of [25] for the FAX market,
when a new agent buys the good (a FAX machine), he has a
personal benefit and he also increases the value of the network
of FAX machines. This is a positive externality which are felt
only by the adopters of the good. Indeed, when this agent
buys the good, this is a negative externality on the agents
who did not buy the good (see [26], Example A9 in [17]).
In our case, when an agent chooses to invest in security, the
externalities are always positive and we have to distinguish
between two positive externalities: one is felt by the agents in
state S and the other is felt by the agent in state N . Indeed as
γ increases, both populations experience a decrease of their
probability of loss but the value of this decrease is not the
same in both populations. We call the ’public externalities’
the decrease felt by agents in state N and it is given by
g(γ) = p(0, 0)−p(0, γ) ≥ 0. We call the ’private externalities’
the decrease felt only by agents in state S and it is given by
g(γ) + h(γ) = p(0, 0)− p(1, γ) ≥ g(γ).

First note that the notations are consistent. In particular,
Equation (9) still gives the willingness to pay for self-
protection in a network with a fraction γe of the agents in state
S. We are still dealing with positive externalities, however
this does not imply that h′(.) > 0 (as it is the case in [25]).
Instead, positive externalities (i.e. the fact that both the public
externalities g(γ) and the private externalities g(γ)+h(γ) are
increasing in γ) only ensures that:

g′(.) ≥ 0 and, g′(.) + h′(.) ≥ 0. (16)

Assumption (16) ensures the sensible fact that the more agents
invest in self-protection, the more secure the network becomes
(this is the total effect). If in addition, h′(.) ≥ 0, then
adoption of security increases others’ incentive to invest (this
is the marginal effect) and there might be a critical mass
effect. Recent works on the marginal effect include Segal’s
increasing externalities [17] or Topkis’supermodularity [18].
On the contrary when h′(.) < 0, there is no coordination
problem (no critical mass). However, we show in the next
section that even in this case, the equilibrium is not socially
efficient. The intuition for this fact is that incentives are not
anymore aligned and since agent benefits from the investment
in security of the other agents, they prefers to ’free-ride’ the
investment of the other agents.

C. Welfare Maximization

A planner who maximizes social welfare can fully internal-
ize the network externalities and this is the situation we now
consider. We will show that there is always efficiency loss in
our model with exogenous price. In other words, the price of
anarchy is always greater than one.

Theorem 5. Under Hypothesis 1 and 2, a social planner will
choose a larger fraction γ of agents investing in self-protection
than the market equilibrium for any fixed cost c.

We refer to [8] for an estimate of this price of anarchy for
the epidemic risks model presented in previous section and
to [24] for an extension to graphs with power-law degrees
distribution.

Proof: The social welfare function is:

W (γ) = g(γ)
∫ 1

γ
F−1(1− u)du

+ (g(γ) + h(γ))
∫ γ

0
F−1(1 − u)du− cγ,

where g(γ)
∫ 1
γ F−1(1− u)du is the gross benefit for the frac-

tion of agents in state N and (g(γ) + h(γ))
∫ γ
0 F−1(1−u)du

for the fraction of agents in state S and cγ are the costs. We
denote by B(γ) the gross benefit for the whole population so
that W (γ) = B(γ)− cγ, then we have:

B′(γ) = h(γ)F−1(1− γ)

= + (h′(γ) + g′(γ))
∫ γ

0
F−1(1− u)du

+ g′(γ)
∫ 1

γ
F−1(1− u)du.

Recall that by (12), the equilibria of the game (without the so-
cial planner) are the values γ such that w(γ) = h(γ)F−1(1−
γ) = c. In particular for such a value of γ, since we assume
positive externalities (16), we have that B′(γ) ≥ w(γ) = c,
hence W ′(γ) ≥ 0 and the theorem follows.

V. CONCLUSION

In this paper, we study under which conditions agents
in a large network invest in self-protection. We started our
analysis with finding conditions when the amount of invest-
ment increases for a single agent as the vulnerability and
loss increase. We also showed that risk-neutral agent do not
invest more than 37% of the expected loss under log-convex
security breach probability functions. We then extended our
analysis to the case of interconnected agents of a large network
using a simple epidemic risk models. We derived a sufficient
condition on the security breach probability functions taking
into consideration the global knowledge on the security of
the entire network for guaranteeing increasing investment with
increasing vulnerability. It would be interesting to use other
epidemics models as in [27] to see the impact on the results
of this section.

Finally, we study a security game where agents anticipate
the effect of their actions on the security level of the network.
We showed that in all cases, the fulfilled equilibrium is not
socially efficient. We explained it by the separation of the
network externalities in two components: one public (felt by
agents not investing) and the other private (felt only by agents
investing in self-protection). We also showed that alignment
of incentives typically leads to a coordination problem.

In view of our results, it would be interesting to derive
sufficient conditions for non-alignment of the incentives as
these conditions would ensure that there is no coordination



problem. Exploring this issue is an interesting open prob-
lem. Another interesting direction of research concerns the
information structure of such games. For example, in the case
presented here of epidemic risk model, what is the impact of
an error in the estimation of the contagion probability which
could be for example over evaluated by the firm selling the
security solution? Also, in our work, the attacker is not a
strategic player: attacks are made at random with probability
of success depending of the security level of the agent targeted.
However if the attacker can observe the security policies taken
by the defenders, it can exploit this information [28]. An
interesting extension would be to incorporate in our model
such a strategic attacker as in [29]. Another extension could
also consider the supply side, i.e. the firms distributing the
security solution in the population. Very basic cases have been
studied [30], [31] but again with a non strategic attacker.
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