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Abstract—Malicious softwares or malwares for short have
become a major security threat. While originating in criminal
behavior, their impact are also influenced by the decisions of
legitimate end users. Getting agents in the Internet, and in
networks in general, to invest in and deploy security features
and protocols is a challenge, in particular because of economic
reasons arising from the presence of network externalities.

An unexplored direction of this challenge consists in under-
standing how to align the incentives of the agents of a large
network towards a better security. This paper addresses this new
line of research. We start with an economic model for a single
agent, that determines the optimal amount to invest in protection.
The model takes into account the vulnerability of the agent to
a security breach and the potential loss if a security breach
occurs. We derive conditions on the quality of the protection to
ensure that the optimal amount spent on security is an increasing
function of the agent’s vulnerability and potential loss. We also
show that for a large class of risks, only a small fraction of the
expected loss should be invested.

Building on these results, we study a network of interconnected
agents subject to epidemic risks. We derive conditions to ensure
that the incentives of all agents are aligned towards a better
security. When agents are strategic, we show that security
investments are always socially inefficient due to the network
externalities. Moreover alignement of incentives typically implies
a coordination problem, leading to an equilibrium with a very
high price of anarchy.1

I. I NTRODUCTION

Negligent users who do not protect their computer by regu-
larly updating their antivirus software and operating system
are clearly putting their own computers at risk. But such
users, by connecting to the network a computer which may
become a host from which viruses can spread, also put (a
potentially large number of) computers on the network at risk
[2], [3]. This describes a common situation in the Internet and
in enterprise networks, in which users and computers on the
network faceepidemic risks. Epidemic risks are risks which
depend on the behavior of other entities in the network, such
as whether or not those entities invest in security solutions
to minimize their likelihood of being infected. [4] is a recent
OECD survey of the misaligned incentives as perceived by
multiple stake-holders. Our goal in this paper is to get a better
understanding on how to align the incentives of the agents of
a large network towards a better security.

1extended abstract of this work presented at INFOCOM 2012. This version
corrects some inaccuracies of [1]. The author wishes to thank the anonymous
reviewers for valuable comments.

Our work is a first step in a better understanding of
economic network effects: there is atotal effectif one agent’s
adoption of a protection benefits other adopters and there is
a marginal effectif it increases others’ incentives to adopt
it [5]. In communication networks, the presence of the total
effect has been the focus of various recent works starting with
Varian’s work [6]. When an agent protects itself, it benefits
not only to those who are protected but to the whole network.
Indeed there is also an incentive to free-ride the total effect.
Those who invest in self-protection incur some cost and in
return receive some individual benefit through the reduced
individual expected loss. But part of the benefit is public: the
reduced indirect risk in the economy from which everybody
else benefits. As a result, the agents invest too little in self-
protection relative to the socially efficient level. The efficiency
loss (referred to as the price of anarchy) has been quantified
in various game-theoretic models [7], [8], [9], [10], [11].

In this paper, we focus on the marginal effect and its relation
to the coordination problem [5]. Our work is a first step to
understand the mechanism of incentives regarding securityin
a large network. To do so, we need to start with an economic
model for a single agent that determines the optimal amount
to invest in protection. We follow the approach proposed
by Gordon and Loeb in [12]. They found that the optimal
expenditures for protection of an agent do not always increase
with increases in the vulnerability of the agent. Crucial to
their analysis is the security breach probability functionwhich
relates the security investment and the vulnerability of the
agent with the probability of a security breach after protection.
This function can be seen as a proxy for the quality of the
security protection. Our first main result (Theorem 1) gives
sufficient conditions on this function to ensure that the optimal
expenditures for protection always increase with increases
in the vulnerability of the agent (this sensitivity analysis is
called monotone comparative staticsin economics). From an
economic perspective, these conditions will ensure that all
agents with sufficiently large vulnerability value the protection
enough to invest in it. We also extend a result of [12] and show
(Theorem 2) that if the security breach probability function is
log-convex in the investment, then arisk-neutral2 agent never
invests more than 37% of the expected loss.

2i.e an agent indifferent to investments that have the same expected value:
such an agent will have no preference between i) a bet of either 100$ or
nothing, both with a probability of 50% and ii) receiving 50$with certainty



Building on these results, we study a network of inter-
connected agents subject to epidemic risks. We model the
effect of the network through a parameterγ describing the
information available to the agent and capturing the security
state of the network. In particular, we diverge form most of the
literature on security games (except [13], [7], [14]) and relax
the complete information assumption. In our model only global
statistics are publicly available and agents do not disclose
any information concerning their security strategy. We show
that our general framework extends previous work [7], [15]
and allows to consider a security breach probability function
depending on the parameterγ. Our third main result (Theorem
3) gives sufficient conditions on this function to ensure that
the optimal protection investment always increases with an
increase in the security state of the network.

This property will be crucial in our last analysis: we use
our model of interconnected agent in a game theoretic setting
where agents anticipate the effect of their actions on the
security level of the network. We show how the monotonic-
ities (or the lack of monotonicities) impact the equilibrium
of the security game. In particular, coordination among the
agents can be ensured only if optimal protection investment
increases with the security state of the network. Moreover,
we distinguish two parts in the network externalities that we
call public and private. Both types of externalities are positive
since any additional agent investing in security will increase
the security level of the whole network. However, the effect
of this additional agent will be different for an agent who did
not invest in security from an agent who already did invest
in security. The public externalities correspond to the network
effect on insecure agents while the private externalities cor-
respond to the network effect on secure agents. As a result
of this separation of externalities, some surprising phenomena
can occur: there are situations where the incentive to invest in
protection decreases as the fraction of the population investing
in protection increases, resulting in a coordination problem.
We also show that in the security game, security investments
are always inefficient due to the network externalities. This
raises the question whether economic tools like insurance [16],
[17], [18] could be used to lower the social inefficiency of the
game3?

The rest of the paper is organized as follows. In Section II,
the optimal security investment for a single agent is analyzed.
In Section III, we extend it to an interconnected agent and
show it connects with the epidemic risk model. Finally in
Section IV, we consider the case where agents are strategic.
We introduce the notion of fulfilled expectations equilibrium
and show our main game theoretic results.

II. OPTIMAL SECURITY INVESTMENT FOR A SINGLE

AGENT

In this section, we present a simple one-period model of
an agent contemplating the provision of additional security

3Note that in this case the risk-neutral assumption made in this paper should
be replaced by a risk-adverse assumption.

to protect a given information set introduced by Gordon and
Loeb in [12]. In one-period economic models, all decisions
and outcomes occur in a simultaneous instant. Thus dynamic
aspects are not considered.

A. Economic model of Gordon and Loeb

The model is characterized by two parametersℓ andv (also
Gordon and Loeb used a bit more involved notation). The
parameterℓ represents the monetary loss caused by a security
breach. The parameterℓ ∈ R+ is a positive real number. The
parameterv represents the probability that without additional
security, a threat results in the information set being breached
and the lossℓ occurs. The parameterv is called thevulnerabil-
ity of the asset. Being a probability, it belongs to the interval
[0, 1].

An agent can invest a certain amountx to reduce the
probability of loss to p(x, v). We make the assumptions
p(0, v) = v and sincep(x, v) is a probability we assume that
for all x > 0 and v ∈ [0, 1] we have0 ≤ p(x, v) ≤ v. The
function p(x, v) is called thesecurity breach probability.

The expected loss for an amountx spent on security is given
by ℓp(x, v). Hence if the agent is risk neutral, the optimal
security investment should be the valuex∗ minimizing

min {ℓp(x, v) + x : x ≥ 0} . (1)

We define the set of optimal security investment by

ϕ(v, ℓ) = argmin {ℓp(x, v) + x : x ≥ 0}

Clearly in general the functionϕ is set-valued and we will
deal with this fact in the sequel. For now on, assume that
the functionϕ is real-valued, i.e. sets reduce to singleton.
As noticed in [12], it turns out that the functionϕ(v, ℓ) does
not need to be non-decreasing in(v, ℓ) for general functions
p(x, v). An example given in [12] ispGL(x, v) = vαx+1,
where the parameterα > 0 is a measure of the productivity of
information security. This class of security breach probability
functions has the property that the cost of protecting highly
vulnerable information sets becomes extremely expensive as
the vulnerability of the information set becomes very closeto
one. This is not the only class of security breach functions
with this property. Their simplicity allows to gain further
insights into the relationship between vulnerability and optimal
security investment.

Indeed, an interior minimumx∗ > 0 is characterized by the
first-order condition:

ℓ
∂p

∂x
(x∗, v) = −1. (2)

In the particular case wherepGL(x, v) = vαx+1, we obtain
∂pGL

∂x
(x, v) = (α log v)vαx+1. So that solving Equation (2),

we get

ϕGL(v, ℓ) =
− log (−ℓα log v)

α log v
−

1

α
.

Figure 1 shows the optimal security investment for various
values ofα and ℓ as a function of the vulnerabilityv. In



Fig. 1. FunctionϕGL(v, ℓ) as a function of the vulnerabilityv and with
parameters:ℓ = 10 andα = 0.5, 1, 1.5 (red, green, brown)

particular, we see that the optimal investment is zero for low
values of the vulnerability and also for high values of the
vulnerability. In other words, in this case, the marginal benefit
from investment in security for low vulnerability information
sets does not justify the investment since the security of the
information set is already good. However if the informationset
is extremely vulnerable, the cost of security is too high to be
’profitable’, in the sense that there is no benefit in protecting
it.

B. Sufficient conditions for monotone investment

In this section, we derive sufficient conditions on the
probability loss in order to avoid the non-monotonicity in the
vulnerability of the information set. In such a case, the infor-
mation security decision is simple since there is an augmenting
return of investment with vulnerability: the security manager
needs to adjust the security investement to the vulnerability.
Also the security provider should set the price of its solution
so as to remain in a region where such monotonicity is valid.

First we need to define the monotonicity of a set-valued
function. We say that the set-valued functionf : Rn → 2R

is non-decreasing if for anyxL, xH ∈ R
n with xL ≤ xH

(for the product order), we have for anyyL ∈ f(xL) and any
yH ∈ f(xH): yL ≤ yH .

We start with a particular case (its proof will follow from
our more general result and is given at the end of this section):

Proposition 1. Assume that the functionp(x, v) is twice
continuously differentiable onR+ × [0, 1]. If

∂p

∂x
(x, v) ≤ 0, and,

∂2p

∂x∂v
(x, v) ≤ 0 (3)

then the function(v, ℓ) 7→ ϕ(v, ℓ) is non-decreasing in(v, ℓ).

Remark 1. The first condition requires that the function
p(x, v) is non-increasing inx, i.e. the probability of a security
break is lowered when more investment in security is done. In
the particular case ofpGL described above, we have

∂2pGL

∂x∂v
(x, v) = αvαx (1 + α(αx + 1) log v) .

In particular ∂2pGL

∂x∂v
(x, 1) = α > 0 and we see that the

functionpGL does not satisfy the conditions of the proposition

which is in agreement with the fact that the associated function
ϕGL is not monotone inv.

It turns out that we often need to deal with cases where
the choice sets are discrete. In reality, discrete investments in
new security technologies are often more natural, resulting in
discontinuities. For example the amountx could live in a space
X ⊂ R+ having empty interiors. In these cases, Proposition
1 is useless. In order to extend it, we introduce the notion
of general submodular functions (see Topkis [19]). We first
define the two operators∧ and∨ in R

n:

x ∧ y = sup{t ∈ R
n, t ≤ x; t ≤ y}

x ∨ y = inf{t ∈ R
n, t ≥ x; t ≥ y}.

A setS ⊂ R
n is a lattice if for anyx andy in S, the elements

x ∧ y andx ∨ y are also inS. A real valued functionf on a
latticeS is submodular if for allx andy in S,

f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y).

f is strictly submodular onS if the inequality is strict for all
pairsx, y in S which cannot be compared with respect to≥,
i.e such that neitherx ≥ y nor y ≥ x holds.

We are now ready to state our main first result which is an
adaptation of Theorem 6.1 in [19]:

Theorem 1. LetS = [0, 1]×R+. If the functionf : X×S →
R is strictly submodular in the variablesx andv in X× [0, 1]
for any fixedℓ and in the variablesx and ℓ in X × R+ for
any fixedv, thenϕ(v, ℓ) = argmin{f(x, v, ℓ) : x ∈ X} is
non-decreasing.

Remark 2. Note that this Theorem does not require to take
f(x, v, ℓ) = ℓp(x, v) + x. In particular it can also be applied
to the case of risk-adverse agents in which casef depends on
the (concave) expected utility function of the agent.

Proof: If x ≤ x′ andx 6= x′, thenx < x′ is written. By
the definition of strict submodularity, we see that we have for
x′ > x and (v′, ℓ′) > (v, ℓ):

f(x′, v′, ℓ′) + f(x, v, ℓ′) < f(x′, v, ℓ′) + f(x, v′, ℓ′)

f(x′, v, ℓ′) + f(x, v, ℓ) < f(x′, v, ℓ) + f(x, v, ℓ′),

so that we get

f(x′, v′, ℓ′) + f(x, v, ℓ) < f(x′, v, ℓ) + f(x, v′, ℓ′).

This shows thatf has strictly increasing differences in
(x, v, ℓ), i.e. f(x, v, ℓ) − f(x, v′, ℓ′) is strictly increasing in
x for all (v′, ℓ′) > (v, ℓ).

Consider(v′, ℓ′) > (v, ℓ) and we now show thaty ≥ x for
y ∈ ϕ(v′, ℓ′) and x ∈ ϕ(v, ℓ). Suppose thatx > y, so that
x ∨ y > y. Sincey ∈ ϕ(v′, ℓ′) andx ∈ ϕ(v, ℓ), we have

f(x ∨ y, v′, ℓ′) ≥ f(y, v′, ℓ′) and,

f(x ∧ y, v, ℓ) ≥ f(x, v, ℓ).

Using the fact thatf has strictly increasing differences, and
x ∨ y > y, we get:

f(x ∨ y, v′, ℓ′)− f(y, v′, ℓ′) < f(x ∨ y, v, ℓ)− f(y, v, ℓ).



By the definition of submodularity, we have:

f(x ∨ y, v, ℓ)− f(y, v, ℓ) ≤ f(x, v, ℓ)− f(x ∧ y, v, ℓ)

Hence we finally get:

0 ≤ f(x ∨ y, v′, ℓ′)− f(y, v′, ℓ′)

< f(x, v, ℓ)− f(x ∧ y, v, ℓ) ≤ 0,

which provides the desired contradiction.

Remark 3. It follows from the proof, that the sufficient condi-
tions onf to insure thatϕ is non-decreasing, are equivalent
to: f(x, v, ℓ) − f(x, v′, ℓ′) is strictly increasing inx for all
(v′, ℓ′) > (v, ℓ).

Proof: of Proposition 1:
It follows from the definition of submodularity, that iff
is twice-continuously differentiable, then∂

2f
∂x∂v

(x, v, ℓ) ≤ 0
implies thatf is strictly submodular in the variablesx andv in
X×[0, 1] for any fixedℓ. Taking,f(x, v, ℓ) = ℓp(x, v)+x, we
get ∂2f

∂x∂v
(x, v, ℓ) = ℓ ∂2p

∂x∂v
(x, v), we get one of the condition of

Proposition 1. The other condition comes from the symmetric
condition onf : ∂2f

∂x∂ℓ
(x, v, ℓ) ≤ 0.

C. A simple model and the1/e rule

Consider now a scenario, where there areK possible
protections, whereK can be infinite. Each protectionj is
characterized by a cost denotedxj > 0 and a functionsj(v)
from [0, 1] to [0, 1] with the following interpretation: if the
system has a probability of lossv without the protectionj,
applying the protectionj will lower this probability by a factor
of sj(v) (at a costxj )

If an agent applies two different protections sayi and j,
then we will assume that the resulting probability of loss is
si(v)sj(v). The rational behind this assumption is that the
protections are independent in a probabilistic sense. The prob-
ability of a successful attack is the product of the probabilities
to elude each of the protections.

For a total budget ofx, the agent will choose the subset
J ∈ [K] = {1, 2, . . . ,K} such that

∑

j∈J xj ≤ x and which
minimizes the final probability of loss

∏

j∈J sj(v). Hence we
define the functionp : R+ → R+ by,

p(x, v) = inf







∏

j∈J

sj(v) s.t
∑

j∈J

xj ≤ x







,

so that the optimal security investment problem is still given by
(1). The problem of deriving the functionp(x, v) is a standard
integer linear programming problem which can be rewritten as
follows log p(x, v) =

inf







∑

i∈[K]

ei log sj(v)| ei ∈ {0, 1},
∑

i∈[K]

eixi ≤ x







.

Our aim here is not to address issues dealing with com-
plexity (this problem is known as the knapsack problem) and
we will consider the relaxed problem whereei ∈ [0, 1]. In

this case, the problem is a linear program which is a convex
optimization problem. The important thing for us is that the
function x 7→ p(x, v) is log-convex inx. We then have the
following generalization of Gordon and Loeb’s Proposition3:

Theorem 2. If the functionx 7→ p(x, v) is non-increasing
and log-convex inx then the optimal security investment is
bounded byℓv/e.

Proof: We denotex∗ the optimal investment andp∗ =
p(x∗, v), so that

ℓp∗ + x∗ ≤ ℓp(x, v) + x. (4)

We denotef(x) = log ℓp(x, v). Firs assume thatx 7→ p(x, v)
is continuously differentiable so that we have

f(x) ≥ f(x∗) + f ′(x∗)(x − x∗)

= log ℓp∗ −
1

ℓp∗
(x− x∗), (5)

where, in the last equality, we used (2). Hence we have,f(0) ≥
log ℓp∗ + x∗

ℓp∗
, which can be rewritten as

ℓv
x∗

ℓp∗
exp

(

−
x∗

ℓp∗

)

≥ x∗.

The theorem follows in this case from the observation that
z exp(−z) ≤ e−1 for z ≥ 0.

If we do not assume thatx 7→ p(x, v) is continuously
differentiable, we will show (5) using (4). Namely, suppose
there existsx′ ≥ 0 such that

f(x′) < log ℓp∗ −
1

ℓp∗
(x′ − x∗).

Then by convexity, we have for anyα ∈ [0, 1],

f(αx′ + (1 − α)x∗) ≤ f(x∗) + α (f(x′)− f(x∗))

< log ℓp∗ −
α

ℓp∗
(x′ − x∗).

However, by (4), we also have

f(αx′ + (1− α)x∗) ≥ log (ℓp∗ − α(x′ − x∗))

= log ℓp∗ −
α

ℓp∗
(x′ − x∗) +O(α2),

and we obtain a contradiction. Hence (5) is still true in this
case and we can finish the proof as above so that the statement
of the theorem holds.

Theorem 2 shows that for a broad class of information
security breach probability function, the optimal security in-
vestment is always less than 37% of the expected loss without
protection. Note that the functionpGL introduced above does
not satisfy the conditions of Theorem 1 but is log-convex so
that in this case, the optimal security investment is always
less than 37% of the expected loss. Indeed, we saw that for
high values of the vulnerability, the optimal investment iszero.
We end this section with another functionp(x, v) = v

(ax+1)b

with a, b > 0, which satisfies both the conditions of Theorems
1 and 2. Hence in this case, the optimal security investment
increases with the vulnerability but remains below 37% of the
expected loss without protection.



III. O PTIMAL SECURITY INVESTMENT FOR AN

INTERCONNECTED AGENT

We now extend previous framework in order to model an
agent who needs to decide the amount to spend on security if
this agent is part of a network. In this section, we give results
concerning the incentives of an agent in a network. In the
next section, we will consider a security game associated to
this model of agent and determine the equilibrium outcomes.

A. General model for an interconnected agent

In order to capture the effect of the network, we will assume
that each agent faces an internal risk and an indirect risk.
As explained in the introduction, the indirect risk takes into
account the fact that a loss can propagate in the network.
The estimation of the internal risk depends only on private
information available to the agent. However in order to decide
on the amount to invest in security, the agent needs also to
evaluate the indirect risk. This evaluation depends crucially on
the information on the propagation of the risk in the network
available to the decision-maker. We now describe an abstract
and general setting for the information of the agent.

We assume that the information concerning the impact of
the network on the security of the agent is captured by a
parameterγ living in a partially ordered setΓ (poset, i.e
a set on which there is a binary relation that is reflexive,
antisymmetric and transitive). Indeed this assumption is not
a technical assumption. The interpretation is as follows:γ
captures the state of the network from the point of view of
security and we need to be able to compare secure states from
unsecure ones.

Given γ ∈ Γ, the agent is able to compute the probability
of loss for any amountx ∈ X invested in security which is
denoted byp(x, v, γ). We still assume that the agent is risk
neutral , so that the optimal security investment is given by:

ϕ(v, ℓ, γ) = argmin{ℓp(x, v, γ) + x : x ∈ X}. (6)

Note that in our model we consider that only global statistics
about the network are available to all agents. The state of
the networkγ is public. A ’high’ value of γ corresponds
to a secure environment, typically with a high fraction of
the population investing in security while a ’low’ value of
γ corresponds to an unsecure environment with few people
investing in security. For example, in the epidemic risk model
described below, decision regarding investment are binary
and the public information consists of the parameters of the
epidemic risk model (which are supposed to be fixed) and the
fractionγ of the population investing in security. Then for any
γ ∈ [0, 1], the agent is able to computep(x, v, γ) as explained
below. Note that in our model, the vulnerabilityv of an agent
is an intinsic parameter of this agent, in particular it doesnot
depend on the behavior of others orγ.

B. Epidemic risks model

In order to gain further insight, we consider in this section
the case of economic agents subject to epidemic risks. This

model was introduced in [7]. We concentrate here on a sim-
plified version presented in [15]. In this section, we focus on
the dependence ofp(x, v, γ) in x andγ. For ease of notation,
we remove the explicit dependence in the vulnerabilityv.

For simplicity, we assume that each agent has a discrete
choice regarding self-protection, so thatX = {0, 1}. If she
decides to invest in self-protection, we setx = 1 and say that
the agent is in stateS as secure, otherwise we setx = 0 and
say that the agent is in stateN as non-secure or negligent.
Note that if the cost of the security product is not one, we can
still use this model by normalizing the lossℓ by the cost of the
security investment. In order to take her decision, the agent
has to evaluatep(0, γ) andp(1, γ). To do so, we assume that
global statistics on the network and on the epidemic risks are
publicly available and that the agent uses a simple epidemic
model that we now describe.

Agents are represented by vertices of a graph and face two
types of losses: direct and indirect (i.e. due to their neighbors).
We assume that an agent in stateS cannot experience a direct
loss and an agent in stateN has a probabilityp of direct
loss. Then any agent experiencing a direct loss ’contaminates’
neighbors independently of each others with probabilityq if
the neighbor is in stateS and q+ if the neighbor is in state
N , with q+ ≥ q. Since only global statistics are available for
the graph, we will consider random families of graphsG(n)

with n vertices and given vertex degree with a typical node
having degree distribution denoted by the random variableD
(see [20]). In all cases, we assume that the family of graphs
G(n) is independent of all other processes. All our results are
related to the large population limit (n tends to infinity). In
particular, we are interested in the fraction of the population
in stateS (i.e. investing in security) and denoted byγ.

Using this model the agent is able to compute the functions
p(0, γ) and p(1, γ) thanks to the following result proved in
[7] and [21] (using a local mean field):

Proposition 2. Let Ψ(x) = E[xD] be the generating function
of the degree distribution of the graph. For anyγ ∈ [0, 1],
there is a unique solution in[0, 1] to the fixed point equation:

y = 1− γΨ(1− qy)− (1− γ)(1− p)Ψ(1− q+y),

denoted byy(γ). Moreover the functionγ 7→ y(γ) is non-
increasing inγ. Then we have,

p(1, γ) = 1−Ψ(1− qy(γ)),

p(0, γ) = 1− (1− p)Ψ(1− q+y(γ)).

If we defineh(γ) = p(0, γ) − p(1, γ) as the difference of
the two terms given in Proposition 2, we see that the optimal
decision is:

ℓh(γ) > 1 ⇔ agent invests. (7)

This equation can be seen as a discrete version of (2). If the
benefit of the protection which isℓh(γ) is more than its cost
(here normalized to one), the agent decides to invest, otherwise
the agents does not invest. In particular, we observe that the



condition for the incentive to invest in security to increase with
the fraction of population investing in security is given by:

h(γ) = p(0, γ)− p(1, γ) is an increasing function. (8)

We show in the next section that this result extends to a much
more general framework.

Before that, we recall some results of [15] describing two
simple cases, one where the condition (8) holds and the other
where it does not. The computation presented in this section
are done for the standard Erdös-Rényi random graphs:G(n) =
G(n, λ/n) on n nodes{0, 1, . . . , n−1}, where each potential
edge(i, j), 0 ≤ i < j ≤ n − 1 is present in the graph with
probabilityλ/n, independently for alln(n−1)/2 edges. Here
λ > 0 is a fixed constant independent ofn equals to the
(asymptotic asn → ∞) average number of neighbors of an
agent. As explained in the next section, these results extend
to a much more general framework without modifying the
qualitative insights.

We will consider two cases:
Strong protection: an agent investing in protection cannot

be harmed at all by the actions or inactions of others:q = 0.
In this case, we havep(1, γ) = 0 so thath(γ) = p(0, γ) which
is clearly a non-increasing function ofγ as depicted on Figure
2.
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Fig. 2. Functionh(γ) for strong protection as a function ofγ; λ = 10,
q+ = 0.5, p = 0.01

As γ the fraction of agents investing in protection increases,
the incentive to invest in protection decreases. In fact, itis less
attractive for an agent to invest in protection, should others
then decide to do so. As more agents invest, the expected
benefit of following suit decreases since there is a lower
probability of loss, the network becoming more secure.

Weak protection: investing in protection does lower the
probability of contagionq but it remains positive:0 < q < q+.
In this case, the mapγ 7→ h(γ) can be non-decreasing for
small value ofγ and decreasing for values ofγ close to one
(see Figure 3). For small values ofγ, the incentive for an agent
to invest in security actually increases with the proportion of
agents investing in security (recall Condition (8)). We will
see in the next section, that this alignement of incentives
is responsible for a coordination problem when agents are
strategic.
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Fig. 3. Functionh(γ) for weak protection as a function ofγ; λ = 10,
q+ = 0.5, p+ = 0.01 andq = 0.1

C. Sufficient conditions for monotone investment in a network

We now show how the condition (8) extends to a general
framework. This extension is given by the following result:

Theorem 3. If the functionp(x, v, γ)− p(x, v′, γ′) is strictly
increasing inx ∈ X for any (v′, γ′) > (v, γ) and the function
p(x, v, γ) is non-increasing inx, thenϕ(v, ℓ, γ) defined in (6)
is non-decreasing.

Proof: As noticed in Remark 3, we need to prove that
our condition ensures thatℓp(x, v, γ)− ℓ′p(x, v′, γ′) is strictly
increasing inx ∈ X for any (v′, ℓ′, γ′) > (v, ℓ, γ). If ℓ = ℓ′,
this follows from the condition of the theorem. We now deal
with the caseℓ′ > ℓ. Let x′ > x, then by the condition of the
theorem, we have

ℓp(x′, v, γ)− ℓp(x′, v′, γ′) > ℓp(x, v, γ)− ℓp(x, v′, γ′),

but sinceℓ′ > ℓ andp(x, v′, γ′)−p(x′, v′, γ′) ≥ 0 for x′ > x,
we also have

ℓp(x′, v′, γ′)− ℓ′p(x′, v,′ , γ′) > ℓp(x, v′, γ′)− ℓ′p(x, v′, γ′).

Summing these inequalities gives exactly the desired result.

Remark 4. Clearly, the condition of Theorem 3 translates in
the setting described in Section III-B to

p(0, γ)− p(0, γ′) < p(1, γ)− p(1, γ′), for any γ′ > γ,

which corresponds exactly to (8).

In the particular case whereΓ is a subset ofR, and under
some smoothness conditions, we obtain:

Proposition 3. If the functionp(x, v, γ) is twice continuously
differentiable onX × [0, 1]× Γ, then sufficient conditions for
ϕ(v, ℓ, γ) to be non-decreasing are:

∂p

∂x
(x, v, γ) ≤ 0, (9)

∂2p

∂x∂v
(x, v, γ) ≤ 0, (10)

∂2p

∂x∂γ
(x, v, γ) ≤ 0. (11)

As we will see in the next section satisfying the conditions
of Theorem 3 (or Proposition 3) ensures that the incentives in



the population are aligned but this might lead to a cooridnation
problem.

IV. EQUILIBRIUM ANALYSIS OF THE SECURITY GAME

We now present our results in a game-theoretic framework
where each agent is strategic. We assume that the effect of
the action of any single agent is infinitesimal but each agent
anticipates the effect of the actions of all other agents on the
security level of the network.

A. Information structure and fulfilled expectations equilibrium

In most of the literature on security games, it is assumed
that the player has complete information. In particular, each
player knows the probability of propagation of the attack or
failure from each other player in the network and also the
cost functions of other players. In this case, the agent is able
to compute the Nash equilibria of the games (if no constraint
is made on the computing power of the agent) and decides on
her level of investment accordingly. In particular, the agent is
able to solve (6) for all possible values ofγ which capture the
decision of all other agents. Note that even if only binary
decisions are made by agents the size of the setΓ grows
exponentially with the number of players in the network.
Moreover in a large network, the complete information as-
sumption seems quite artificial, especially for security games
where complete information would then implies that the agents
disclose information on their security strategy to the public and
hence to the potential attacker!

Here we relax the assumption of complete information. As
in previous section, we assume that each agent is able to
compute the functionp(x, v, γ) based on public information
and on the epidemic risk model. The values of the possible loss
ℓ and the vulnerabilityv are private information of the agent
and vary among the population. In order to define properly
the equilibrium of the game, we assume that all players are
strategic and are able to do this computation. Hence if a player
expect that a fractionγe of the population invests in security,
she can decide for her own investment. We assume that at
equilibrium expectations are fulfilled so that at equilibrium the
actual value ofγ coincides withγe. This concept of fulfilled
expectations equilibrium to model network externalities is
standard in economics (see Section 3.6.2 in [5]).

We now describe it in more details. For simplicity of
the presentation, we do not consider the dependence in the
vulnerability v since in the security game, we focus on the
monotonicity inγ which will turn out to be crucial. We also
consider that the choice regarding investment is binary, i.e.
X = {0, 1}.

We consider a heterogeneous population, where agents
differ in loss sizes only. This loss sizeℓ is called the type
of the agent. We assume that agents expect a fractionγe of
agents in stateS, i.e. to make their choice, they assume that the
fraction of agents investing in security isγe. We now define
a network externalities function that captures the influence of
the expected fraction of agents in stateS on the willingness
to pay for security. Let the network externalities functionbe

h(γe). More precisely, for an agent of typeℓ, the willingness
to pay for protection in a network with a fractionγe of the
agents in stateS is given byℓh(γe) so that if

ℓh(γe) ≥ c, (wherec is the cost of the security option) (12)

the agent will invest and otherwise not. Hence (12) is in
accordance with (7) (where the cost was normalized to one).
Note that here, we do not make any a priori assumption on
the network externalities functionh which can be general and
fit to various models.

Indeed, our model corresponds exactly to the multiplicative
formulation of Economides and Himmelberg [22] which al-
lows different types of agents to receive differing values of
network externalities from the same network. As explained
above, agents with lowℓ have little or no use for the protection
whereas agents with highℓ value highly security. This is taken
into account in our model since for a fixed expected fraction of
agents in stateS, agents with highℓ have a higher willingness
to pay for self-protection than agents with lowℓ.

Let the cumulative distribution function of types beF (ℓ),
i.e the fraction of the population having type lower thanℓ is
given byF (ℓ) ≤ 1. We assume thatF (ℓ) is continuous with
positive density everywhere on its support which is normalized
to be[0, 1]. In particular,F is strictly increasing and it follows
that the inverseF−1(γ) is well-defined forγ ∈ [0, 1].

Given expectationγe and cost for protectionc, all agents
with type ℓ such thatℓh(γe) > c will invest in protection.
Hence the actual fraction of agents investing in protectionis
given byγ = 1−F

(

min
(

c
h(γe) , 1

))

. Hence following [22],
we can invert this equation and we define the willingness to
pay for the last agent in a network of sizeγ with expectation
γe as

w(γ, γe) = h(γe)F−1(1− γ). (13)

Seen as a function of its first argument, this is just an inverse
demand function: it maps the quantity of protection demanded
to the market price. Because of externalities, expectations
affect the willingness to pay:

∂w

∂γe
(γ, γe) = h′(γe)F−1(1− γ). (14)

For goods that do not exhibit network externalities, demand
slopes downward: as price increases, less of the good is
demanded. This fundamental relationship may fail in goods
with network externalities. Ifh′(.) > 0, then the willingness
to pay for the last unit may increase as the number expected
to be sold increases as can be seen from (14):∂w

∂γe (γ, γ
e) > 0.

For example in [22] studying the FAX market, as more and
more agents buy a FAX, the utility of the FAX increases since
more and more agents can be reached by this communication
mean. For a fixed costc, in equilibrium, the expected fraction
γe and the actual oneγ must satisfy

c = w(γ, γe) = h(γe)F−1(1− γ). (15)

If we assume moreover that in equilibrium, expectations are
fulfilled, then the possible equilibria are given by the fixed



point equation:

c = w(γ, γ) = h(γ)F−1(1− γ) =: w(γ). (16)

We see that ifh′(.) > 0, the concept of fulfilled expectations
equilibrium captures the possible increase in the willingness to
pay as the number expected to be sold increases. This would
corresponds to the case where we havew′(γ) > 0 for some
values ofγ. In such cases, a critical mass phenomenon (as
in the FAX market [22]) can occurs : there is a problem of
coordination. We explain this phenomenon more formally in
the next section and then show how our results differ from
[22]. We end this section with the following important remark:

Remark 5. The case of an homogeneous population in which
all agents have the same type, i.e the same loss sizeℓ
corresponds to the functionF−1 being constant equal toℓ.
In this case, the willingness to pay is simplyw(γ) = h(γ)ℓ.
In particular, the epidemic risk model presented above can be
used to model the network externalities by the functionh(γ)
computed in Section III. In this case, Condition (8) still gives
a condition for incentives to be align. As we will see next, this
condition might lead to critical mass: if incentives are aligned,
there is a coordination problem!

B. Critical mass: coordination problem

To determine the possible equilibria, we analize the shape of
the fulfilled expectations demandw(γ). First we havew(0) ≥
0 which is equal to the value of the self-protection assuming
there are no network externalities. We also havew(1) = 0.
This is due to the fact that we assumed that there are agents
with very low ℓ who have little or no interest in self-protection.
Then in order to secure completely the network, we have to
convince even agents of very low willingness to pay.

The slope of the fulfilled expectations demand is

w′(γ) = −
h(γ)

F ′(F−1(1 − γ))
+ h′(γ)F−1(1− γ). (17)

The first term measures the slope of the inverse demand
without taking into account the effect of the expectations.The
second term corresponds to the effect of an increase in the
expected fraction of agents in stateS. If h′(.) > 0 as in [22], it
corresponds to the increase in the willingness to pay of the last
agent investing in self-protection created by his own action in
joining the group of agents in stateS. Note that in any case, if
the fraction of agents in stateS gets very large, i.e.γ → 1, the
last agent investing in self-protection has very low willingness
to pay for it. Hence forγ close to one, the effect of marginal
expectations on the marginal agent investing inS is negligible.
Formally this is observed bylimγ→1 h

′(γ)F−1(1− γ) = 0. It
follows that

lim
γ→1

w′(γ) = lim
γ→1

−
h(γ)

F ′(F−1(1− γ))
= −

h(1)

F ′(0)
< 0. (18)

Note that we allowF ′(0) = 0 in which case, Equation (18)
should be interpreted aslimγ→1w

′(γ) = −∞. The sign of
limγ→0 w

′(γ) depends on the parameters of the model and

is of crucial importance. We assume thatw(γ) is single-
peaked. Note that in the case of an homogeneous population,
w(γ) = h(γ)ℓ, whereh(γ) was computed in Section III for the
epidemic risk model and was single-peaked. Since we proved
that γ 7→ w(γ) is decreasing forγ close to one, there are
only two possibilities: either is is increasing for small values
of γ or it is decreasing for allγ. As explained in [22], the
network has a positive critical mass if and only ifγ 7→ w(γ)
is increasing for small values ofγ.

price

c

c0

γ
γi γsγ0

Fig. 4. Willingness to pay curve (or demand curve)w(γ)

We now explain it thanks to Figure 4 (which should be
compared to Figure 3). Recall that in equilibrium, we have

w(γ∗) = h(γ∗)F−1(1− γ∗) = c.

If we imagine a constant costc decreasing parametrically,
the network will start at a positive and significant sizeγ0

corresponding to a costc0. For each smaller costc1 < c < c0,
there are three values ofγ∗ consistent withc: γ∗ = 0; an
unstable value ofγ∗ at the first intersection of the horizontal
throughc with w(γ); and the Pareto optimal stable value of
γ∗ at the largest intersection of the horizontal withw(γ).

As explained above, a network exhibits a positive critical
mass if and only iflimγ→0 w

′(γ) > 0. Now by (17), we have

lim
γ→0

w′(γ) = lim
γ→0

h′(γ)−
h(0)

limγ→1 F ′(γ)
,

note thath(0) = w(0) and the theorem follows easily. Hence
we see that we have the following claim:

Claim 1. A network has positive critical mass if
limγ→0 h

′(γ) > 0 and either
(i) w(0) = 0, i.e. if all agents are in stateN then no agent

is willing to invest in self-protection;
(ii) limγ→0 h

′(γ) is sufficiently large, i.e. there are large
private benefits to join the group of agents in stateS
when the size of this group is small;

(iii) limγ→1 F
′(γ) is sufficiently large, i.e. there is a signif-

icant density of agents who are ready to invest in self-
protection even if the number of agents already in state
S is small.

Note that ifh′(γ) > 0 for small values ofγ, then incentives
are aligned by results of previous Section but this might lead
to a coordination problem.



Remark 6. In the case of a homogeneous population (see
Remark 5), the functionw(γ) is proportional to the function
h(γ) computed in Section III for the epidemic risk model. In
particular, in the case of weak protection, there is positive
critical mass as shown by Figure 3.

We finish this section by explaining the main difference
between our model and models with standard positive exter-
nalities. Informally, in the model of [22] for the FAX market,
when a new agent buy the good (a FAX machine), he has a
personal benefit and he also increases the value of the network
of FAX machines. This are positive externalities which are felt
only by the adopters of the good. In our case, when an agent
chooses to invest in security, we have to distinguish between
two positive externalities: one is felt by the agents in state
S and the other is felt by the agent in stateN . Indeed as
γ increases, both populations expereince a decrease of their
probability of loss but the value of this decrease is not the
same in both populations. We call the ’public externalities’
the decrease felt by agents in stateN and it is given by
g(γ) = p(0, 0)−p(0, γ) ≥ 0. We call the ’private externalities’
the decrease felt only by agents in stateS and it is given by
g(γ) + h(γ) = p(0, 0)− p(1, γ) ≥ g(γ).

First note that the notations are consistent. In particular,
Equation (12) still gives the willingness to pay for self-
protection in a network with a fractionγe of the agents in state
S. We are still dealing with positive externalities, however
this does not imply thath′(.) > 0 (as it is the case in [22]).
Instead, positive externalities (i.e. the fact that both the public
externalitiesg(γ) and the private externalitiesg(γ)+h(γ) are
increasing inγ) only ensures that:

g′(.) ≥ 0 and,g′(.) + h′(.) ≥ 0. (19)

Assumption (19) only ensures the sensible fact that the more
agents invest in self-protection, the more secure the network
becomes. In particular, we can still haveh′(.) < 0 so that there
is no coordination problem (no critical mass). However, we
show in the next section that even in this case, the equilibrium
is not socially efficient. The intuition for this fact is that
incentives are not anymore aligned and since agent benefits
from the investment in security of the other agents, they prefers
to ’free-ride’ the investment of the other agents.

C. Welfare Maximization

A planner who maximizes social welfare can fully internal-
ize the network externalities and this is the situation we now
consider. We will show that there is always efficiency loss in
our model with exogenous price. In other words, the price of
anarchy is always greater than one. The social welfare function
is:

W (γ) = g(γ)

∫ 1

γ

F−1(1− u)du

+ (g(γ) + h(γ))

∫ γ

0

F−1(1− u)du− cγ,

whereg(γ)
∫ 1

γ
F−1(1− u)du is the gross benefit for the frac-

tion of agents in stateN and(g(γ) + h(γ))
∫ γ

0
F−1(1−u)du

for the fraction of agents in stateS andcγ are the costs. We
denote byB(γ) the gross benefit for the whole population so
thatW (γ) = B(γ)− cγ, then we have:

B′(γ) = h(γ)F−1(1− γ)

+ (h′(γ) + g′(γ))

∫ γ

0

F−1(1− u)du

+ g′(γ)

∫ 1

γ

F−1(1− u)du

Since we assume positive externalities (19), we have that
B′(γ) ≥ p(γ) = h(γ)F−1(1 − γ). We assume thatB′(.)
is single-peaked. Note that we haveW (0) = 0 thanks to
g(0) = 0. Then, the possible equilibria are now given by the
equationB′(γ) = c. Hence we proved the following theorem:

Claim 2. A social planner will choose a larger fractionγ of
agents investing in self-protection than the market equilibrium
for any fixed costc.

We refer to [7] for a quantative estimate of this price of
anarchy for the model presented in previous section.

V. CONCLUSION

In this paper, we study under which conditions agents
in a large network invest in self-protection. We started our
analysis with finding conditions when the amount of invest-
ment inceases for a single agent as the vulnerability and
loss increase. We also showed that risk-neutral agent do not
invest more than 37% of the expected loss under log-convex
security breach probability functions. We then extended our
analysis to the case of interconnected agents of a large network
using a simple epidemic risk models. We derived a sufficient
condition on the security breach probability functions taking
into consideration the global knowledge on the security of
the entire network for guaranteeing increasing investmentwith
increasing vulnerability. It would be interesting to use other
epidemics models as in [23] to see the impact on the results
of this section.

Finally, we study a security game where agents anticipate
the effect of their actions on the security level of the network.
We showed that alignement of incentives typically leads to a
coordination problem. We also showed that in all cases, the
fulfilled equilibrium is not socially efficient. We explained it by
the separation of the network externalities in two components:
one public (felt by agents not investing) and the other private
(felt only by agents investing in self-protection).

In view of our results, it would be interesting to derive
sufficient conditions for non-alignement of the incentivesas
these conditions would ensure that there is no coordination
problem. Exploring this issue is an interesting open prob-
lem. Another interesting direction of research concerns the
information structure of such games. For example, in the case
presented here of epidemic risk model, what is the impact of
an error in the estimation of the contagion probability which
could be for example over evaluated by the firm selling the
security solution? Also, in our work, the attacker is not a



strategic player: attacks are made at random with probability
of success depending of the security level of the agent targeted.
However if the attacker can observe the security policies taken
by the defenders, it can exploit this information [24]. An
interesting extension would be to incorporate in our model
such a strategic attacker as in [25]. Another extension could
also consider the supply side, i.e. the firms distributing the
security solution in the population. Very basic cases have been
studied [26], [27] but again with a non strategic attacker.
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