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Abstract—Malicious softwares or malwares for short have Our work is a first step in a better understanding of
become a major security threat. While originating in criminal  economic network effects: there igatal effectif one agent’s
behavior, their impact are also influenced by the decisionsfo 4qq5ntion of a protection benefits other adopters and there is
legitimate end users. Getting agents in the Internet, and in inal effectif it i thers’ | fi to adont
networks in general, to invest in and deploy security featues _a marginal eriec '_ ! _|ncreases others' incentives 1o adop
and protocols is a challenge, in particular because of econic it [5]. In communication networks, the presence of the total
reasons arising from the presence of network externalities effect has been the focus of various recent works startirtigy wi

An unexplored direction of this challenge consists in under Varian’s work [6]. When an agent protects itself, it benefits
standing how to align the incentives of the agents of a large \yqt only to those who are protected but to the whole network.
network towards a better security. This paper addresses s new Indeed there is also an incentive to free-ride the totalceffe
line of research. We start with an economic model for a single g ) ’ : .
agent, that determines the optimal amount to invest in protetion.  1hose who invest in self-protection incur some cost and in
The model takes into account the vulnerability of the agent® return receive some individual benefit through the reduced
a security breach and the potential loss if a security breach individual expected loss. But part of the benefit is puble t
occurs. We derive conditions on the quality of the protectia 1o raqyced indirect risk in the economy from which everybody
ensure that the optimal amount spent on security is an incresing /" c T AC o result. the a . S

. , gents invest too little ifr sel

function of the agent’s vulnerability and potential loss. We also i . . . coe.
show that for a large class of risks, only a small fraction of he ~Protection relative to the socially efficient level. The eifincy

expected loss should be invested. loss (referred to as the price of anarchy) has been quantified
Building on these results, we study a network of interconnéed  in various game-theoretic models [7], [8], [9], [10], [11].
agents subject to epidemic risks. We derive conditions to emnire In this paper, we focus on the marginal effect and its refatio

that the incentives of all agents are aligned towards a bette oo . .
security. When agents are strategic, we show that security to the coordination problem [5]. Our work is a first step to

investments are always socially inefficient due to the netwo ~Understand the mechanism of incentives regarding sedarity
externalities. Moreover alignement of incentives typicdy implies  a large network. To do so, we need to start with an economic
a coordination problem, leading to an equilibrium with a very model for a single agent that determines the optimal amount
high price of anarchy." to invest in protection. We follow the approach proposed
by Gordon and Loeb in [12]. They found that the optimal
expenditures for protection of an agent do not always irsgea
Negligent users who do not protect their computer by regyjith increases in the vulnerability of the agent. Crucial to
larly updating their antivirus software and operating eWst theijr analysis is the security breach probability functidrich
are clearly putting their own computers at risk. But sucp|ates the security investment and the vulnerability @ th
users, by connecting to the network a computer which mayent with the probability of a security breach after prtitec
become a host from which viruses can spread, also putigis function can be seen as a proxy for the quality of the
potentially large number of) computers on the network & rissecurity protection. Our first main result (Theorem 1) gives
[2], [3]. This describes a common situation in the Interme a gyfficient conditions on this function to ensure that théropt
in enterprise networks, in which users and computers on t8gpenditures for protection always increase with increase
network faceepidemic risks Epidemic risks are risks which i the vulnerability of the agent (this sensitivity analyss
depend on the behavior of other entities in the network, sughjied monotone comparative statiés economics). From an
as whether or not those entities invest in security solstiogconomic perspective, these conditions will ensure that al
to minimize their likelihood of being infected. [4] is a rette agents with sufficiently large vulnerability value the grction
OECD survey of the misaligned incentives as perceived Ryough to invest in it. We also extend a result of [12] and show
multiple stake-holders. Our goal in this paper is to get &ebet(Theorem 2) that if the security breach probability funtie
understanding on how to align the incentives of the agents |g§-convex in the investment, thenriak-neutraf agent never
a large network towards a better security. invests more than 37% of the expected loss.

I. INTRODUCTION

lextended abstract of this work presented at INFOCOM 201%& Jérsion %i.e an agent indifferent to investments that have the sampectsd value:
corrects some inaccuracies of [1]. The author wishes toktliz®m anonymous such an agent will have no preference between i) a bet ofreithe$ or
reviewers for valuable comments. nothing, both with a probability of 50% and ii) receiving 5@th certainty



Building on these results, we study a network of inteto protect a given information set introduced by Gordon and
connected agents subject to epidemic risks. We model theeb in [12]. In one-period economic models, all decisions
effect of the network through a parametgrdescribing the and outcomes occur in a simultaneous instant. Thus dynamic
information available to the agent and capturing the sgcuraspects are not considered.
state of the network. In particular, we diverge form mosthaf t
literature on security games (except [13], [7], [14]) anthxe
the complete information assumption. In our model only glob  The model is characterized by two parameteasidv (also
statistics are publicly available and agents do not disclo§ordon and Loeb used a bit more involved notation). The
any information concerning their security strategy. WevshoParameter represents the monetary loss caused by a security
that our general framework extends previous work [7], [14]reach. The parametére R, is a positive real number. The
and allows to consider a security breach probability fiorcti Parameten represents the probability that without additional
depending on the parametﬁrOur third main result (Theorem SeCUrity, a threat results in the information set bEing tined
3) gives sufficient conditions on this function to ensuret th&nd the losg occurs. The parameteris called thevulnerabil-
the optimal protection investment always increases with & Of the asset. Being a probability, it belongs to the interval
increase in the security state of the network. [0, 1].

This property will be crucial in our last analysis: we use An agent can invest a certain amountto reduce the
our model of interconnected agent in a game theoretic gettidfobability of loss top(z,v). We make the assumptions
where agents anticipate the effect of their actions on thé0,v) = v and sincep(z, v) is a probability we assume that
security level of the network. We show how the monotonidor all > 0 andv € [0,1] we have0 < p(z,v) < v. The
ities (or the lack of monotonicities) impact the equilibriu functionp(z,v) is called thesecurity breach probability
of the security game. In particular, coordination among the The expected loss for an amounspent on security is given
agents can be ensured only if optimal protection investmédt ¢r(z,v). Hence if the agent is risk neutral, the optimal
increases with the security state of the network. Moreovégcurity investment should be the value minimizing
we distir_lguish two parts in the network exte_rr_1a|ities_t_ha1 w min {¢p(z,v) + 2 : x> 0}. 1)
call public and private. Both types of externalities areifhes
since any additional agent investing in security will irmse ~ We define the set of optimal security investment by
the security level of the whole network. However, the effect
of this additional agent will be different for an agent whal di
not invest in security from an agent who already did invest Clearly in general the functiop is set-valued and we will
in security. The public externalities correspond to themoek deal with this fact in the sequel. For now on, assume that
effect on insecure agents while the private externalit@s c the functiony is real-valued, i.e. sets reduce to singleton.
respond to the network effect on secure agents. As a residt noticed in [12], it turns out that the function(v, ¢) does
of this separation of externalities, some surprising phegma not need to be non-decreasing(in ¢) for general functions
can occur: there are situations where the incentive to frives p(z,v). An example given in [12] ipgr(z,v) = vo@tl,
protection decreases as the fraction of the populatiorsiimg where the parameter > 0 is a measure of the productivity of
in protection increases, resulting in a coordination peohl information security. This class of security breach pralisb
We also show that in the security game, security investmeffizmctions has the property that the cost of protecting lyighl
are always inefficient due to the network externalities.sThivulnerable information sets becomes extremely expensve a
raises the question whether economic tools like insurab@k [ the vulnerability of the information set becomes very clase
[17], [18] could be used to lower the social inefficiency oéthone. This is not the only class of security breach functions
gamé? with this property. Their simplicity allows to gain further

The rest of the paper is organized as follows. In Section ihsights into the relationship between vulnerability aptimal
the optimal security investment for a single agent is aredyz security investment.

In Section 1ll, we extend it to an interconnected agent and Indeed, an interior minimum™ > 0 is characterized by the
show it connects with the epidemic risk model. Finally ifirst-order condition:

Section IV, we consider the case where agents are strategic. dp .,

We introduce the notion of fulfilled expectations equilibri éa_x( ) = =1 (@)

and show our main game theoretic results.

A. Economic model of Gordon and Loeb

(v, 0) = argmin {¢p(x,v) +z : x> 0}

In the particular case whernggy (z,v) = v***1, we obtain
er () = (alogv)v®®tl. So that solving Equation (2),

[I. OPTIMAL SECURITY INVESTMENT FOR A SINGLE x ‘
AGENT we ge

. . . . —log (—falogv) 1

In this section, we present a simple one-period model of oorL(v,l) = ————22> — —.

an agent contemplating the provision of additional segurit alogv o

SNote that in this case the risk-neutral assumption madesrptiper should Figure 1 shows the optlmal_ security 'nveStment_ for various
be replaced by a risk-adverse assumption. values ofa and ¢ as a function of the vulnerability. In



which is in agreement with the fact that the associated fanct
»a 1, IS not monotone in.

It turns out that we often need to deal with cases where
o) /\ the choice sets are discrete. In reality, discrete invastsna

/ \ new security technologies are often more natural, regultin

\ discontinuities. For example the amountould live in a space

\ X c R4 having empty interiors. In these cases, Proposition
) S N A 1 is useless. In order to extend it, we introduce the notion
of general submodular functions (see Topkis [19]). We first
define the two operators andV in R™:

\

Fig. 1. Functionpgr (v, £) as a function of the vulnerability and with
parameters? = 10 anda = 0.5, 1, 1.5 (red, green, brown) TAy = sup{t eR", t<zt< y}

xVy = inf{teR" t>uz;t >y}

0A setS C R"™ is a lattice if for anyx andy in S, the elements
%;A y andz V y are also inS. A real valued functionf on a
attice S is submodular if for alle andy in S,

particular, we see that the optimal investment is zero for |
values of the vulnerability and also for high values of th
vulnerability. In other words, in this case, the marginahéfi
from investment in security for low vulnerability informan flxAy)+ flavy) < flx)+ fy).
sets does not justify the investment since the security ef t
information set is already good. However if the informatsat
is extremely vulnerable, the cost of security is too high ¢o
'profitable’, in the sense that there is no benefit in protegti
it.

? is strictly submodular or$' if the inequality is strict for all
lPairs:c,y in .S which cannot be compared with respectto
I.e such that neithet > y nory > =z holds.

We are now ready to state our main first result which is an
adaptation of Theorem 6.1 in [19]:

Theorem 1. Let S = [0, 1] x Ry.. If the functionf : X x S —

In this section, we derive sufficient conditions on the is strictly submodular in the variablesandv in X x [0, 1]
probability loss in order to avoid the non-monotonicity et for any fixed?¢ and in the variables: and ¢ in X x R, for
vulnerability of the information set. In such a case, theinf any fixedv, then(v, ) = argmin{f(z,v,f) : z € X} is
mation security decision is simple since there is an augmgntnon-decreasing.
return of investment with vulnerability: the security mgea . .
needs to adjust the security investement to the vulnetylbiliRemark 2. Note that this Thegrem QOes not require to. take
Also the security provider should set the price of its solti / (2 ¥»¢) = tp(z,v) + x. In particular it can also be applied
SO as to remain in a region where such monotonicity is vaIiEE the case of nsk—adverse_ ggents n which cAstepends on

First we need to define the monotonicity of a set-valudg® (concave) expected utility function of the agent.
function. We say that the set-valued functign: R” — 2R Proof: If x <’ andx # 2/, thenz < 2’ is written. By
is non-decreasing if for any’, 2z € R™ with 2z < z#  the definition of strict submodularity, we see that we hawve fo
(for the product order), we have for agy € f(z*) and any 2’ > z and (W', ) > (v,0):
yHefo:yLSyH- AT ’

We s(tart)with a particular case (its proof will follow from f@', v, 6) + f(z,0,0)
our more general result and is given at the end of this séction f@' v, 00) + fz,v,0)

B. Sufficient conditions for monotone investment

< fl@ v )+ f(z,0,0)
< f(x/7v7£)+f(x7v7£/)7
Proposition 1. Assume that the functiop(z,v) is twice SO that we get

continuously differentiable oR .. x [0, 1]. If F@ W 0) + flou ) < fla, 0,0+ fla,o, ).

@(Lv) <0, and, d*p (z,v) <0 3) This shqws thatf has strictly in_creas_ing _differen_ces_ in
Ox Oxdv (x,v,0), i.e. f(z,v,£) — f(z,v',¢) is strictly increasing in
then the functior(v, ) — (v, £) is non-decreasing irfv, ¢). « for all (v/,¢') > (v, £).

_ . , ) Consider(v’, ¢) > (v, ¢) and we now show thay > z for
Remark 1. The first condition requires that the function

) . aine. e, th bability of Sy € (', ) andx € ¢(v,£). Suppose that: > y, so that
p(:c,v)_|s non-increasing in, i.e. the probability of a security ., y > y. Sincey € (v, ') andz € (v, ¢), we have
break is lowered when more investment in security is done. In

f(y,v', ¢') and,

the particular case opg described above, we have flz vy, )
82pGL f(gc/\y,v,é) f(x,v,é).

=av® (1 11 . . . . . .
0x0v (z,0) = av™ (1 + afaz +1)logv) Using the fact thatf has strictly increasing differences, and
zVy >y, we get:

>
>

In particular a;fg; (x,1) = a > 0 and we see that the

functionpg;, does not satisfy the conditions of the propositiorf (z V y,v", ¢') — f(y,v",¢') < f(zVy,v,0) — f(y,v,L).



By the definition of submodularity, we have: this case, the problem is a linear program which is a convex
optimization problem. The important thing for us is that the
flavyv, )= fly,v.0) < fl@,0,0 = F@Ay,v0  fynction z s p(z,v) is log-convex inz. We then have the

Hence we finally get: following generalization of Gordon and Loeb’s Propositiin
0 < flavy o)~ flyo,¢) Theorem 2. If the functionz — p(x,v) is non-increasing
- E’ ’ ’ é’ z and log-convex inz then the optimal security investment is
< f((E,’U, ) - f((E A Y,v, ) = 07 bounded bwv/e_
which provides the desired contradiction. [ | Proof: We denotez* the optimal investment ang* =
Remark 3. It follows from the proof, that the sufficient condi?(z"; v), so that
tions on f to insure thaty _is no_n—depreasin_g, are equivalent p* + 2% < Op(z,v) + . (4)
to: f(z,v,0) — f(z,v',¢) is strictly increasing inz for all
W', ) > (v, ). We denotef (z) = log ¢p(x, v). Firs assume that — p(z,v)

N is continuously differentiable so that we have
Proof: of Proposition 1:

It follows from the definition of submodularity, that if fla) = f@)+ f(@")(x —a")
is twice-continuously differentiable, the%(w,v,é) <0 = loglp* — 1* (z —2*), (5)
implies thatf is strictly submodular in the variablasandv in lp

X x [0 1] for any fixed(. Taking, f (z, v, £) = fp(x,v)+a, we  where, in the last equality, we used (2). Hence we hA(@), >
get2L (z,0,0) = éama (x,v), we get one of the condition of log ¢p* + £, which can be rewritten as

dzov o
Proposition 1. The other condition comes from the symmetric . .
T x "
condition onf: 61(% (:c,v,é) <0. [ ] gvfp* exp (_ ép*) >z
C. A simple model and the/e rule The theorem follows in this case from the observation that
Consider now a scenario, where there de possible zexp(—z) <e! for z > 0.
protections, wherel can be infinite. Each protectiop is If we do not assume that — p(x,v) is continuously

characterized by a cost denoted > 0 and a functions;(v) differentiable, we will show (5) using (4). Namely, suppose
from [0,1] to [0,1] with the following interpretation: if the there exists’ > 0 such that

system has a probability of logs without the protectiony, , . 1, .

applying the protectior will lower this probability by a factor f(@") <logtp® — op* (2" —a%).

of s;(v) (at a costz;)

If an agent applies two different protections saand j, ' ]
then we will assume that the resulting probability of loss is  f(az’ + (1 — a)z*) < f(z*) +
si(v)s;(v). The rational behind this assumption is that the
protections are independent in a probabilistic sense. Tole-p
ability of a successful attack is the product of the probts However, by (4), we also have
to elude each of the protections.

For a total budget of, the agent will choose the subsetf(az’ + (1 —a)z™) > log (fp" — afa’ —2™))

Then by convexity, we have for any € [0

< logtlp* —

€ [K]={1,2,...,K} such that}"._,z; <z and which = loglp* — 2 (2 — 2¥) + 0(a?),
minimizes the finaI probability of Iosﬁ[gg . Hence we tp*
define the functiorp : R, — R by, and we obtain a contradiction. Hence (5) is still true in this
case and we can finish the proof as above so that the statement
. of the theorem holds. ]
p(z,v) = inf Hsj(v) st ij 16 Theorem 2 shows that for a broad class of information

et i€t security breach probability function, the optimal seguiit-

so that the optimal security investment problem is stilegiby vestment is always less than 37% of the expected loss without

(1). The problem of deriving the functigin(z, v) is a standard protection. Note that the function;;, introduced above does

integer linear programming problem which can be rewritten @ot satisfy the conditions of Theorem 1 but is log-convex so

follows log p(z,v) = that in this case, the optimal security investment is always
less than 37% of the expected loss. Indeed, we saw that for
high values of the vulnerability, the optimal investmerntéso.

inf Z cilogs;(v)] e € {0,1}, Z CiTi ST We end this section with another functigiiz, v) =

i€[K] 1€[K] (az+1)

with a, b > 0, which satisfies both the conditions of Theorems

Our aim here is not to address issues dealing with corh-and 2. Hence in this case, the optimal security investment
plexity (this problem is known as the knapsack problem) arnidcreases with the vulnerability but remains below 37% ef th
we will consider the relaxed problem wheee € [0,1]. In expected loss without protection.



[1l. OPTIMAL SECURITY INVESTMENT FOR AN model was introduced in [7]. We concentrate here on a sim-
INTERCONNECTED AGENT plified version presented in [15]. In this section, we focus o
aWe dependence of(x, v, ) in = and~. For ease of notation,

agent who needs to decide the amount to spend on securitVﬁ remove Fh_e explicit dependence in the vulnerability i

this agent is part of a network. In this section, we give rssul Fpr S|mpI|C|f[y, we assume that each agent has a discrete
concerning the incentives of an agent in a network. In ﬂ{@o!ce regardlng _self-protectlor_], so thalt = {0, 1}. If she
next section, we will consider a security game associated 4G¢1des t0 invest in self-protection, we set= 1 and say that

this model of agent and determine the equilibrium outcomd9€ 2gent is in stat& as secure, otherwise we set= 0 and
say that the agent is in staf€ as non-secure or negligent.

A. General model for an interconnected agent Note that if the cost of the security product is not one, we can

In order to capture the effect of the network, we will assumsetIII use this model by normalizing the loésy the cost of the

; : N .§<ecurity investment. In order to take her decision, the fagen
that each agent faces an internal risk and an indirect Mg < 1o evaluat (0,) andp(1,). To do so, we assume that
As explained in the introduction, the indirect risk taketoin P,y A '

account the fact that a loss can propagate in the netwoglLObal statistics on the network and on the epidemic risks ar

The estimation of the internal risk depends only on privapeuinCIy available and that the agent uses a simple epidemic

: : . ) - model that we now describe.
information available to the agent. However in order to deci .
on the amount to invest in security, the agent needs also,t gents are represented by vertices of a graph and face two

evaluate the indirect risk. This evaluation depends chyaism types of losses: direct and indirect (i.e. due to their neigh).

the information on the propagation of the risk in the networY<Ve assume that an agent in stateannot experience a direct

available to the decision-maker. We now describe an al]str%ﬁ:ss and an agent in stal¥ has a probabilityp of direct

and general setting for the information of the agent. r?s's.h-lt-)gfsn _?]33(; agr?g;r?t)l(pe()r;e:;éﬂgoat‘h(gga _Itohss rgggﬁﬁ?at
We assume that the information concerning the impact f'9 ndep y With p :

. . the neighbor is in stat& and g™ if the neighbor is in state
the network on the security of the agent is captured byﬁ with ¢ > ¢. Since only global statistics are available for
parametery living in a partially ordered sel’ (poset, i.e ' i =4 Y9

. . o )
a set on which there is a binary relation that is reﬂexivg,].e graph, we will con5|der random fam|I|e_s of grapﬁ@l
: : - . .. With n vertices and given vertex degree with a typical node
antisymmetric and transitive). Indeed this assumptionas n
a technical assumption. The interpretation is as follows:
captures the state of the network from the point of view
security and we need to be able to compare secure states f
unsecure ones.
Given~ € T, the agent is able to compute the probabilit

of loss for any amount € X" invested in security which is Using this model the agent is able to compute the functions
denoted byp(z,v,v). We still assume that the agent is risk 9 9 P

neutral , so that the optimal security investment is given by%(]o ’a’I]) 4 ?gg]p(%é%)g tzﬁgg t:;;gﬁ ;;::g;’_‘"ng result proved in

We now extend previous framework in order to model

having degree distribution denoted by the random varidble

(; ee [20]). In all cases, we assume that the family of graphs
O(") is independent of all other processes. All our results are

reigted to the large population limit:(tends to infinity). In
articular, we are interested in the fraction of the popoiat

n stateS (i.e. investing in security) and denoted by

(v, ¢,7) = argmin{lp(z,v,7) + = : v € X}. ®)  proposition 2. Let W(x) = E[z"] be the generating function

Note that in our model we consider that only global stassti©f the degree distribution of the graph. For any< [0, 1],
about the network are available to all agents. The state '€ is a unique solution ifd, 1] to the fixed point equation:
the network~ is public. A ’high’ value of v corresponds _ +
to a secure environment, typically with a high fraction of “ L=72(—ay) = (1 =7 =p) A =q7y),
the population investing in security while a 'low’ value ofdenoted byy(v). Moreover the functiony — () is non-
~ corresponds to an unsecure environment with few peoptereasing iny. Then we have,
investing in security. For example, in the epidemic risk lod
described below, decision regarding investment are binary p(ly) = 1-Y(1—qy(v)),
and the public information consists of the parameters of the p(0,7) = 1—(1-p)¥(1-qtyy)).
epidemic risk model (which are supposed to be fixed) and the i ]
fraction~ of the population investing in security. Then for any !f we defineh(y) = p(0,~) — p(1,7) as the difference of
~ € [0,1], the agent is able to compugéz, v,~) as explained the two terms given in Proposition 2, we see that the optimal
below. Note that in our model, the vulnerabilityof an agent decision is:
is an intinsic parameter of this agent, in particular it does :
depend on the behavior of otherspr fh(y)>1 < agentinvests. )
This equation can be seen as a discrete version of (2). If the
benefit of the protection which i&:(+) is more than its cost

In order to gain further insight, we consider in this sectiothere normalized to one), the agent decides to invest,wiber
the case of economic agents subject to epidemic risks. ThHie agents does not invest. In particular, we observe theat th

B. Epidemic risks model



condition for the incentive to invest in security to increasth 05 /\
the fraction of population investing in security is given: by

|
0.4 _— |

h(vy) = p(0,v) — p(1,7) is an increasing function. (8) “

034 |

We show in the next section that this result extends to a much 021 “

more general framework. o \
Before that, we recall some results of [15] describing two |

simple cases, one where the condition (8) holds and the other 00 02 b ds o5 1o

where it does not. The computation presented in this section /

are done for the standard Erdds-Rényi random grafis: =  Fig. 3.  Functionh(y) for weak protection as a function of: A = 10,

G(n, \/n) onn nodes{0,1,...,n— 1}, where each potential ¢* = 0.5, p* = 0.01 andg = 0.1

edge(i,j), 0 <i < j <n—1Iis present in the graph with

probability A\ /n, independently for alh(n—1)/2 edges. Here

A > 0 is a fixed constant independent af equals to the C. Sufficient conditions for monotone investment in a nekwor

(asymptotic as: — oc) average number of neighbors of an \ye now show how the condition (8) extends to a general

agent. As explained in the next sectlon_, these res_uI'Fs @X18f mework. This extension is given by the following result:
to a much more general framework without modifying the

qualitative insights. Theorem 3. If the functionp(z,v,v) — p(x,v’,v’) is strictly
We will consider two cases: increasing inz € X for any (v,~") > (v,~) and the function
Strong protection: an agent investing in protection cannof(%:v;7) is non-increasing inz, theny(v, £,7) defined in (6)

be harmed at all by the actions or inactions of others: 0. IS non-decreasing.

In this case, we havg(1, v) = 0 so thath(v) = p(0,v) which Proof: As noticed in Remark 3, we need to prove that

is clearly a non-increasing function ofas depicted on Figure oyr condition ensures thap(zz, v, v) — £'p(x,v', 7') is strictly

2. increasing inz € X for any (v/,¢',v') > (v,£,7). If £ =1,

this follows from the condition of the theorem. We now deal

0] with the case’ > ¢. Let 2/ > z, then by the condition of the
0 theorem, we have

0.64

gp(:cl’ va’Y) - ép(d?/, U/,'Y/) > ép(d?, va’Y) - ép(d?, v/a’}/)a

sl \ but since!’ > ¢ andp(z,v’,v") —p(a’,v",~") > 0 for 2’ > z,

\ we also have

0.1+

k Zp(‘rl7 Ula 71) - élp(xla U7I 9 ’71) > Zp(xa vl7 ’71) - Z/p(x’ ’Ula 7/)

- Summing these inequalities gives exactly the desiredtremul

Fig. 2. Functionh(~) for strong protection as a function of A = 10, Remark 4. Clearly, the condition of Theorem 3 translates in
¢t =0.5 p=0.01 the setting described in Section IlI-B to

p(0,7) = p(0,7") <p(1,7) = p(L,7"), for anyy’ >,
As v the fraction of agents investing in protection increaseghich corresponds exactly to (8).
the incentive to invest in protection decreases. In fads, léss ) )
attractive for an agent to invest in protection, should mthe N the particular case whet is a Sups?t oft, and under
then decide to do so. As more agents invest, the expecBRin€ smoothness conditions, we obtain:

benefit of following suit decreases since there is a lowgloposition 3. If the functionp(z, v, v) is twice continuously

probability of loss, the network becoming more secure.  (jfferentiable onX x [0, 1] x I, then sufficient conditions for
Weak protection: investing in protection does lower theﬂvl, 7) to be non-decreasing are:

probability of contagiony but it remains positived < g < ¢™. P

In this case, the map — h(y) can be non-decreasing for P

_(Ivva'Y) < 0, (9)
small value ofy and decreasing for values gfclose to one 62(%
(see Figure 3). For small valuesgfthe incentive for an agent ——(z,v,7) < 0, (10)
to invest in security actually increases with the propaortid ‘95”2‘%
agents investing in security (recall Condition (8)). We lwil (z,v,7) < 0. (11)
see in the next section, that this alignement of incentives dxdy

is responsible for a coordination problem when agents areAs we will see in the next section satisfying the conditions
strategic. of Theorem 3 (or Proposition 3) ensures that the incenties i



the population are aligned but this might lead to a cooridnat ~(~¢). More precisely, for an agent of tyge the willingness
problem. to pay for protection in a network with a fractioff of the

agents in stateS is given by/h(~°) so that if
IV. EQUILIBRIUM ANALYSIS OF THE SECURITY GAME

. . . .
We now present our results in a game-theoretic framewoﬁb('y ) = ¢, (wherecis the cost of the security option) (12)

where each agent is strategic. We assume that the effectis agent will invest and otherwise not. Hence (12) is in
the action of any single agent is infinitesimal but each agemtcordance with (7) (where the cost was normalized to one).
anticipates the effect of the actions of all other agentshen tNote that here, we do not make any a priori assumption on
security level of the network. the network externalities functiol which can be general and
fit to various models.

Indeed, our model corresponds exactly to the multiplieativ

In most of the literature on security games, it is assumédrmulation of Economides and Himmelberg [22] which al-
that the player has complete information. In particulaghealows different types of agents to receive differing valuds o
player knows the probability of propagation of the attack atetwork externalities from the same network. As explained
failure from each other player in the network and also thebove, agents with lowhave little or no use for the protection
cost functions of other players. In this case, the agentlis alwvhereas agents with highvalue highly security. This is taken
to compute the Nash equilibria of the games (if no constraiinito account in our model since for a fixed expected fractibn o
is made on the computing power of the agent) and decidesagents in state, agents with highf have a higher willingness
her level of investment accordingly. In particular, the @igie to pay for self-protection than agents with Idv
able to solve (6) for all possible valuespfwhich capture the  Let the cumulative distribution function of types B&¢),
decision of all other agents. Note that even if only binariye the fraction of the population having type lower thais
decisions are made by agents the size of theIsgirows given by F'(¢) < 1. We assume thaF'(¢) is continuous with
exponentially with the number of players in the networkpositive density everywhere on its support which is noreeali
Moreover in a large network, the complete information ase be|0, 1]. In particular,F is strictly increasing and it follows
sumption seems quite artificial, especially for securitynga that the inverse”—!(v) is well-defined fory € [0, 1].
where complete information would then implies that the agen Given expectationy® and cost for protectior, all agents
disclose information on their security strategy to the pudahd  with type ¢ such thatéh(+¢) > ¢ will invest in protection.
hence to the potential attacker! Hence the actual fraction of agents investing in protecton

Here we relax the assumption of complete information. Agiven byy = 1 — F (min ﬁ’ 1) ). Hence following [22],

in previous section, we assume that each agent is ableyig@ can invert this equation and we define the willingness to

compute the functiom(z, v,~) based on public information ay for the last agent in a network of sizewith expectation
and on the epidemic risk model. The values of the possibke IO% as

¢ and the vulnerability are private information of the agent .
and vary among the population. In order to define properly w(y,7°) =h(y)F (1 —1). (13)

the equilibrium of the game, we assume that all players a&gen a5 a function of its first argument, this is just an irevers

strategic and are a_bleeto do this computation. Hence if 2playemand function: it maps the quantity of protection demande
expect that a fraction® of the population invests in security,;5 the market price. Because of externalities, expectation
she can decide for her own investment. We assume that

L . ) > aftect the willingness to pay:
equilibrium expectations are fulfilled so that at equilitm the

A. Information structure and fulfilled expectations edurilim

actual value ofy coincides withv¢. This concept of fulfilled Ow (v,7%) = K (3¢ )F~1(1 — 7). (14)
expectations equilibrium to model network externalitiss i e
standard in economics (see Section 3.6.2 in [5]). For goods that do not exhibit network externalities, demand

We now describe it in more details. For simplicity ofslopes downward: as price increases, less of the good is
the presentation, we do not consider the dependence in demanded. This fundamental relationship may fail in goods
vulnerability v since in the security game, we focus on thwith network externalities. I2'(.) > 0, then the willingness
monotonicity in+ which will turn out to be crucial. We also to pay for the last unit may increase as the number expected
consider that the choice regarding investment is binaey, ifo be sold increases as can be seen from (ggé)('y,ye) > 0.

X =40,1}. For example in [22] studying the FAX market, as more and
We consider a heterogeneous population, where agemtsre agents buy a FAX, the utility of the FAX increases since
differ in loss sizes only. This loss sizeis called the type more and more agents can be reached by this communication

of the agent. We assume that agents expect a fragtioof mean. For a fixed cost in equilibrium, the expected fraction
agents in staté, i.e. to make their choice, they assume that thg' and the actual one must satisfy

fraction of agents investing in security 4¢. We now define e e 1

a network externalities function that captures the infleeot e=w(y,7%) =y )P (1 = 7). (15)
the expected fraction of agents in stafeon the willingness If we assume moreover that in equilibrium, expectations are
to pay for security. Let the network externalities functioa fulfilled, then the possible equilibria are given by the fixed



point equation: is of crucial importance. We assume that~) is single-
. peaked. Note that in the case of an homogeneous population,
c=w(y,7) =h(MEF (1 =) = w). (16) w(y) = h(y)¢, whereh(~) was computed in Section Il for the

We see that ift/(.) > 0, the concept of fulfilled expectationsepidemic risk model and was single-peaked. Since we proved

equilibrium captures the possible increase in the willeggto &t~y — w(v) is decreasing for close to one, there are
pay as the number expected to be sold increases. This woRltly two possibilities: either is is increasing for smallues
corresponds to the case where we havéy) > 0 for some ©f 7 Or it is decreasing for ally. As explained in [22], the
values of~. In such cases, a critical mass phenomenon (B§Work has a positive critical mass if and onlyyit= w(v)

in the FAX market [22]) can occurs : there is a problem df increasing for small values of.

coordination. We explain this phenomenon more formally in price
the next section and then show how our results differ from

[22]. We end this section with the following important refar

Remark 5. The case of an homogeneous population in which /\
all agents have the same type, i.e the same loss &ize ’ ! ! !
corresponds to the functiof—! being constant equal té.
In this case, the willingness to pay is simplyy) = h(v)Z.
In particular, the epidemic risk model presented above can b
used to model the network externalities by the functi¢n)

computed in Section Ill. In this case, Condition (8) stives v : .
a condition for incentives to be align. As we will see nexs th
condition might lead to critical mass: if incentives aregalied, Fig. 4. Willingness to pay curve (or demand cureefyy)

there is a coordination problem!

We now explain it thanks to Figure 4 (which should be

compared to Figure 3). Recall that in equilibrium, we have
To determine the possible equilibria, we analize the shépe o

the fulfilled expectations demanad(v). First we havew(0) > w(y") =h(y)F (1 =7") =c.

0 which is equal to the value of the self-protection assuming we imagine a constant cost decreasing parametrically,
there are no network externalities. We also havg) = 0. the network will start at a positive and significant size
This is due to the fact that we assumed that there are agegifresponding to a cost. For each smaller cost < ¢ < ¢°,
with very low ¢ who have little or no interest in self-protectionthere are three values of* consistent withc: v* = 0; an
Then in order to secure completely the network, we have {@stable value of* at the first intersection of the horizontal

B. Critical mass: coordination problem

convince even agents of very low willingness to pay. throughc with w(~); and the Pareto optimal stable value of
The slope of the fulfilled expectations demand is ~* at the largest intersection of the horizontal witiy).
/ h(v) As explained above, a network exhibits a positive critical
w(y) = TEFE(1—9) +h(F'(1—%). (17) massif and only ifim,_,o w'(y) > 0. Now by (17), we have
h(0)

The first term measures the slope of the inverse demand lim w'(y) = lim A'(y) — —,
without taking into account the effect of the expectatiofse 70 70 limy 1 /()
second term corresponds to the effect of an increase in fhefe thath(0) = w(0) and the theorem follows easily. Hence
expected fraction of agents in staffelf 1/(.) > 0 asin [22], it We see that we have the following claim:
corresponds to the increase in the willingness to pay ofds® |~ j0im 1. A network has positive  critical
agent investing in self-protection created by his own actio lim, o h'(
joining the group of agents in staté Note that in any case, if Q)
the fraction of agents in statg gets very large, i.ey — 1, the
last agent investing in self-protection has very low wiliness (i)
to pay for it. Hence fory close to one, the effect of marginal
expectations on the marginal agent investing'iis negligible.
Formally this is observed byym._,; 2/(y)F~'(1—~) = 0. It

mass if
~) > 0 and either

w(0) = 0, i.e. if all agents are in statéV then no agent

is willing to invest in self-protection;

lim, 0 h'(7) is sufficiently large, i.e. there are large
private benefits to join the group of agents in state

when the size of this group is small;

(i) lim,_1 F'(v) is sufficiently large, i.e. there is a signif-

follows that icant density of agents who are ready to invest in self-
. . h(v) h(1) protection even if the number of agents already in state
1 ! = lim — = — <0. (18 -
B ™) B F(F-1(1-7)) F'(0) (18) S is small.

Note that we allowF”’(0) = 0 in which case, Equation (18) Note that ifh/(y) > 0 for small values ofy, then incentives
should be interpreted d$m,_,; w’(y) = —oco. The sign of are aligned by results of previous Section but this mighd lea
lim,_,o w’(7) depends on the parameters of the model and a coordination problem.



Remark 6. In the case of a homogeneous population (sder the fraction of agents in staté and ¢y are the costs. We
Remark 5), the functiom(+y) is proportional to the function denote byB(~) the gross benefit for the whole population so
h(vy) computed in Section Il for the epidemic risk model. Ithat W (y) = B(y) — ¢y, then we have:

particular, in the case of weak protection, there is positiv

— -1
critical mass as shown by Figure 3. B'(y) = h(MF 7 (1-7) ,
We finish this section by explaining the main difference + (W) +g/(’7))/ FH 1 —u)du
between our model and models with standard positive exter- ) 0
nalities. Informally, in the model of [22] for the FAX market + 9'(7)/ F7Y(1 — u)du
when a new agent buy the good (a FAX machine), he has a ¥

personal benefit and he also increases the value of the fetwgfyce we assume positive externalities (19), we have that
of FAX machines. This are positive externalities which aié f B'(y) = ply) = h(y)F~'(1 — 7). We assume thaB’(.)

only by the adopters of the good. In our case, when an ag@iisingle-peaked. Note that we ha¥&(0) = 0 thanks to
chooses to invest in security, we have to distinguish beﬂweg(o) = 0. Then, the possible equilibria are now given by the

two positive externalities: one is felt by the agents inestaggyations’ () = c. Hence we proved the following theorem:
S and the other is felt by the agent in sta®& Indeed as

~ increases, both populations expereince a decrease of tid@im 2. A social planner will choose a larger fractio of
probability of loss but the value of this decrease is not tfRgents investing in self-protection than the market ebiilim

same in both populations. We call the 'public externalitiedor any fixed cost.

the decrease felt by agents in sta and it is given by  \ye refer to [7] for a quantative estimate of this price of

9(7v) = p(0,0)=p(0,7) > 0. We call the "private externalities’ anarchy for the model presented in previous section.
the decrease felt only by agents in statand it is given by

9(7) + h(y) = p(0,0) — p(1,7) > g(7). V. CONCLUSION

First note that the notations are consistent. In particular In this paper. we studv under which conditions agents
Equation (12) still gives the willingness to pay for self- paper, y 9

protection in a network with a fractioff of the agents in state n a Ia_rge _net\(vor_k nvest n self-protection. We start_ed our
S. We are still dealing with positive externalities howeve"?maIySIS with finding conditions when the amount of invest-
' ’ ment inceases for a single agent as the vulnerability and

: . , L .
this does no.t_|mply thab .(‘.) = .O (as it is the case in [2?])' loss increase. We also showed that risk-neutral agent do not
Instead, positive externalities (i.e. the fact that both plublic .

invest more than 37% of the expected loss under log-convex

externalitiesy (y) and the private externalitiggy) +h(y) are security breach probability functions. We then extended ou

increasing iny) only ensures that analysis to the case of interconnected agents of a largenetw
g'() >0and,g'() +h'(.) > 0. (19) using a simple epidemic risk models. We derived a sufficient

Assumption (19) only ensures the sensible fact that the m&@ndition on the security breach probability functionsirak
agents invest in self-protection, the more secure the mtwdt0 consideration the global knowledge on the security of
becomes. In particular, we can still hav&.) < 0 so that there the entire network for guaranteeing increasing investmattit

is no coordination problem (no critical mass). However, wigcreasing vulnerability. It would be interesting to uséet
show in the next section that even in this case, the equitibri €Pidemics models as in [23] to see the impact on the results

is not socially efficient. The intuition for this fact is thatOf this section.

incentives are not anymore aligned and since agent benefit§inally, we study a security game where agents anticipate

from the investment in security of the other agents, thefepse the effect of their actions on the security level of the netwo
to 'free-ride’ the investment of the other agents. We showed that alignement of incentives typically leads to a

o coordination problem. We also showed that in all cases, the
C. Welfare Maximization fulfilled equilibrium is not socially efficient. We explaidet by
A planner who maximizes social welfare can fully internalthe separation of the network externalities in two comptsien
ize the network externalities and this is the situation we/ nopne public (felt by agents not investing) and the other peiva
consider. We will show that there is always efficiency loss i(felt only by agents investing in self-protection).
our model with exogenous price. In other words, the price of n view of our results, it would be interesting to derive
anarchy is always greater than one. The social welfareifemctsufficient conditions for non-alignement of the incenties

IS: these conditions would ensure that there is no coordination
! 4 problem. Exploring this issue is an interesting open prob-
W) = 9(7)/7 F~(1 = u)du lem. Another interesting direction of research concerres th
2l information structure of such games. For example, in the cas
+ (9(v)+ h(v))/o F7'(1 = w)du — ¢, presented here of epidemic risk model, what is the impact of

. . . an error in the estimation of the contagion probability vihic
whereg(v) [ F~'(1 —u)du is the gross benefit for the frac-could be for example over evaluated by the firm selling the
tion of agents in stat&/ and(g(y) + k(7)) f,' F~*(1—u)du security solution? Also, in our work, the attacker is not a



strategic player: attacks are made at random with prolyabilj22] N. Economides and C. Himmelberg, “Critical mass andwoek
of success depending of the security level of the agenttedige
However if the attacker can observe the security policiksrta

by the defenders, it can exploit this information [24]. An

interesting extension would be to incorporate in our mod&fl
such a strategic attacker as in [25]. Another extensionobm&4

also consider the supply side, i.e. the firms distributing th

security solution in the population. Very basic cases haenb [25]
studied [26], [27] but again with a non strategic attacker.
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