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Abstract. We analyze diffusion models on sparse random networks with
neighborhood effects. We show how large cascades can be triggered by
small initial shocks and compute critical parameters: contagion threshold
for a random network, phase transition in the size of the cascade.

1 Introduction

In Crossing the Chasm [12], Moore begins with the diffusion of innovations the-
ory from Everett Rogers [16], and argues there is a chasm between the early
adopters of the product (the technology enthusiasts and visionaries) and the
early majority (the pragmatists). According to Moore, the marketer should fo-
cus on one group of customers at a time, using each group as a base for marketing
to the next group. The most difficult step is making the transition between vi-
sionaries (early adopters) and pragmatists (early majority). This is the chasm
that he refers to.

In this paper, we analyze a simple model of diffusion with neighborhood ef-
fects on random networks and we show that it can explain this chasm. Most of
the epidemic models [14], [15] consider a transmission mechanism which is inde-
pendent of the local condition faced by the agents concerned. But if there is a
factor of persuasion or coordination involved, relative considerations tend to be
important in understanding whether some new behavior or belief is adopted [17].

We begin by discussing one of the most basic game-theoretic diffusion models
proposed by Morris [13]. Consider a graph G in which the nodes are the individ-
uals in the population and there is an edge (i, j) if i and j can interact with each
other. Each node has a choice between two possible behaviors labeled A and
B. On each edge (i, j), there is an incentive for i and j to have their behaviors
match, which is modeled as the following coordination game parameterized by a
real number q ∈ (0, 1): if i and j choose A (resp. B), they each receive a payoff
of q (resp. (1 − q)); if they choose opposite strategies, then they receive a payoff
of 0. Then the total payoff of a player is the sum of the payoffs with each of
her neighbors. If the degree of node i is di and SB

i is her number of neighbors
playing B, then the payoff to i from choosing A is q(di − SB

i ) while the payoff
from choosing B is (1 − q)SB

i . Hence i should adopt B if SB
i > qdi and A if

SB
i ≤ qdi. A number of qualitative insights can be derived from a diffusion model
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even at this level of simplicity. Specifically, consider a network where all nodes
initially play A. If a small number of nodes are forced to adopt strategy B (the
seed) and we apply best-response updates to other nodes in the network, then
these nodes will be repeatedly applying the following rule: switch to B if enough
of your neighbors have already adopted B. There can be a cascading sequence
of nodes switching to B such that a network-wide equilibrium is reached in the
limit. This equilibrium may involve uniformity with all nodes adopting B or it
may involve coexistence, with the nodes partitioned into a set adopting B and
a set sticking to A. Morris [13] considers the case of infinite regular graph G
and provides graph-theoretic characterizations for when these different types of
equilibria arise.

Our work allows us to study rigorously an extension of this model, the sym-
metric threshold model, when the underlying network is a random network
with given vertex degrees. We are able to characterize the relation between the
network and the individual behavior. In particular, we compute the contagion
threshold of the random network and validate a heuristic result of Watts [18].
We also show that there is a phase transition for the set of adopters at a critical
value of the size of the initial seed. To the best of our knowledge, this result
is new and our work is the first rigorous analysis of a general threshold model
on a random network. Although random graphs are not considered to be highly
realistic models of most real-world networks, they are often used as first approx-
imation and are a natural first choice for a sparse interaction network in the
absence of any known geometry of the problem.

In [4], the influence maximization problem is defined as follows: given a social
network, find a small set of ’target’ individuals so as to maximize the number
of customers who will eventually purchase the product following the effect of
word-of-mouth. Hardness results have been obtained in [8],[3] and there is a
large literature on this topic. However, in most practical cases, the structure of
the underlying network is not known and then one has to rely on distributional
assumptions (like distribution of the degrees). Our model allows to answer the
probabilistic version of the influence maximization problem, when the exact
topology of the social network is not known.

The rest of the paper is organized as follows. In Section 2, we describe our
model. Section 3 contains the main results in particular, the contagion threshold
is computed and the phase transition phenomena is explained. Section 4 contains
technical details and we conclude in Section 5.

2 Model

2.1 The Configuration Model

In this section, we define our random graph model which is standard in the liter-
ature on random graphs [2]. Let n ∈ N and let (di)n

1 = (d(n)
i )n

1 be a sequence of
non-negative integers such that

∑n
i=1 di is even. We define a random multigraph

with given degree sequence (di)n
1 , denoted by G∗(n, (di)n

1 ) by the configuration
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model [2]: take a set of di half-edges for each vertex i and combine the half-
edge into pairs by a uniformly random matching of the set of all half-edges.
Conditioned on the multigraph G∗(n, (di)n

1 ) being a simple graph, we obtain a
uniformly distributed random graph with the given degree sequence, which we
denote by G(n, (di)n

1 ).
We will let n → ∞ and assume that we are given (di)n

1 satisfying the following
regularity conditions [11]:

Condition 1. For each n, (di)n
1 = (d(n)

i )n
1 is a sequence of non-negative in-

tegers such that
∑n

i=1 di is even and, for some probability distribution (pr)∞r=0
independent of n,

(i) #{i : di = r}/n → pr for every r ≥ 0 as n → ∞;
(ii) λ :=

∑
r rpr ∈ (0, ∞);

(iii)
∑n

i=1 di/n → λ as n → ∞;
(iv)

∑
i d2

i = O(n).

In words, (pr) describes the distribution of the degrees, λ is the average mean
degree in the graph, condition (iii) ensures that the number of edges divided
by n tends to the average degree divided by 2. The technical condition (iv) is
required to transfer the results from G∗(n, (di)n

1 ) to G(n, (di)n
1 ) [5].

The results of this work can be applied to some other random graphs models
too by conditioning on the vertex degrees. For example, for the Erdös-Rényi
graph G(n, p) with np → λ ∈ (0, ∞), the assumptions hold with pr the distribu-
tion of a Poisson random variable with mean λ.

We consider asymptotics as n → ∞ and say that an event holds w.h.p. (with
high probability) if it holds with probability tending to 1 as n → ∞.

2.2 Symmetric Threshold Model

The contagion model of [13] is the simplest model for cascading behavior in
a social network: people switch to a new behavior when a certain threshold
fraction of neighbors have already switched. Our symmetric threshold model
generalizes this model by allowing the threshold fraction be a random variable
with distribution depending on the degree of the node and which are independent
among nodes. This is to account for our lack of knowledge of the exact threshold
value of each individual. Formally, we define for each d ∈ N, a sequence of i.i.d.
random variables in N denoted by (K(d), Ki(d))∞i=1. The threshold associated to
node i is Ki(di) where di is the degree of node i.

Now the progressive dynamics of the behavior operates as follows: some set
of nodes S starts out adopting the new behavior B; all other nodes start out
adopting A. We will say that a node is active if it is following B. Time operates
in discrete steps t = 1, 2, 3, . . .. At a given time t, any inactive node i becomes
active if its fraction of active neighbors exceeds its threshold Ki(di) + 1. This in
turn may cause others nodes to become active leading to potentially cascading
adoption of behavior B. We will suppose that Ki(1) = 0 for all i, so that any
leaf of the network is active as soon as its parent becomes active.
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It is easy to see that the final set of active nodes (after n time steps if the
network is of size n) only depends on the initial set S (and not on the order of
the activations) and can be obtained as follows: set Xi = 1 for all i in the set of
initial adopters. Then as long as there exists i such that

∑
j∼i Xj > Ki(di), set

Xi = 1. When this algorithm finishes, the final state of node i is represented by
Xi: Xi = 1 if node i is active and Xi = 0 otherwise. It is easily seen that the
linear threshold model [9] is covered by our framework (see [10] for a proof).

3 Main Results

3.1 Contagion Threshold of a Random Graph

We consider the simple contagion model studied by Morris in [13] on a random
graph, i.e. Ki(d) = qd for all i. We define the contagion threshold of the graph to
be the maximum q for which a single individual can trigger a global cascade, i.e.
activate a strictly positive fraction of the total population, w.h.p. This notion
is the natural extension of the contagion threshold defined in [13] for regular
graphs.

Proposition 1. The contagion threshold qc is given by

qc = sup

⎧
⎨

⎩
q :

∑

1≤s<1/q

s(s − 1)ps > λ

⎫
⎬

⎭
.

This result is in accordance with the heuristic result of [18] (see in particular the
cascade condition Eq. 5 in [18]) and is proved in Section 4. Figure 1 gives the
contagion threshold as a function of λ, the mean degree of the graph.

Note that q is related to the quality of the new technology: the lower q is,
the better the quality of the new technology is. In particular if q < 1/2, then
technology B is better than technology A. Hence qc can be interpreted as the
minimal quality for technology B to get a non-negligible adoption with a finite
initial seed of adopters.
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Fig. 1. qc for the contagion model on a Poisson random graph (green dashed) and on
a Power-law random graph (red) as a function of λ
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3.2 Phase Transition in the Contagion Model

We now still consider the contagion model but for q > qc. In this case, in order
to trigger a large cascade, the set of initial adopters must be a non-negligible
fraction of the total population. For simplicity, we assume that each node of the
network is part of the initial set of adopters with probability α independently
of everything else. In particular, the fraction of initial adopters is α and we now
compute the final proportion of active nodes: Φ(α) = limn→∞

�n
i=1 Xi

n .
We need to introduce some notation first. For integers � ≥ 0 and 0 ≤ r ≤ � let

b�r denote the binomial probabilities b�r(p) :=
(

�
r

)
pr(1−p)�−r. We denote by D a

random variable with distribution P(D = r) = pr. For 0 ≤ p ≤ 1 we let Dp be the
thinning of D obtained by taking D points and then randomly and independently
keeping each of them with probability p: P(Dp = r) =

∑∞
�=r p�b�r(p). We now

define h(p) = E[Dp11(Dp ≥ (1 − q)D)].
The following proposition shows that the map α �→ Φ(α) exhibits point of

discontinuity.

Proposition 2. Consider a random graph such that p1 > 0 and let p̃ be the
largest local maximum point of ψ(p) = h(p)/p2 in (0, 1). Then there is a phase
transition at αc = 1 − λ

ψ(p̃) : the function Φ(.) is discontinuous at αc.

Figure 2 shows an example of such a phase transition in the case of Poisson
random graphs.
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Fig. 2. Function Φ(α) for the contagion model on a Poisson random graph with para-
meter λ = 6 and q = 0.3

Returning to the (probabilistic) influence maximization problem, our deriva-
tion of the function Φ(α) is of crucial importance. In particular, the fact that
this function is highly non-linear seems not to have been taken into account so
far and will have a big impact on the optimal strategy. In the case where the
marketer knows the degree of each individual (but not the underlying social net-
work), our derivation of Φ(α) will allow her to target her effort, by choosing the
variable α.
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3.3 Dynamic of the Epidemic

In previous section, α was related to the amount spent by the marketer and
q corresponded to the quality of the new technology. We now consider that α
is actually fixed and corresponds to the fraction of technology enthusiasts in
the population. The rest of the population consists of pragmatists. Then the
marketer’s effort allows to increase the perceived quality by decreasing the value
of q. It is easy to see that the phase transition described in previous section
translates in a phase transition in the parameter q. Moreover, let consider the
simple following dynamic of the epidemic: the edges of the active nodes become
active(meaning that the end-point of the edge actually notices that his neighbor
is active) at rate 1 (see [10] for more details) . Then Figure 3 shows the case
where the real quality of the technology is q = 0.3. Without any marketing, a
small fraction of the pragmatists adopt the new technology but with marketing,
the diffusion is able to ’cross the chasm’ and a large fraction of the population
adopt the new technology.
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Fig. 3. Dynamic of the epidemic for Poisson random graph with λ = 6, α = 0.06 and
for q = 0.29 and q = 0.3

4 Exact Asymptotics

In this section, we state the theorem which is the corner stone of our work (see
[10] for a proof). Recall that Dp is the thinning of D (defined in Section 3.2).
We define the functions

h(p) := E [Dp11(Dp ≥ D − K(D))] , (1)
h1(p) := P(Dp ≥ D − K(D)). (2)

Theorem 1. Consider the graph G(n, (di)n
1 ) satisfying Condition 1 wehre each

node is part of the initial set of adopters with probability α independently of
everything else. Let p̂ := max{p ∈ [0, 1] : (1 − α)h(p) = λp2}.

(i) If (1 − α)h(p) < λp2 for all p ∈ (0, 1], which is equivalent to p̂ = 0, then
w.h.p. Φ(α) = 1.
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(ii) If (1 − α)h(p) ≥ λp2 for some p ∈ (0, 1], which is equivalent to p̂ ∈ (0, 1],
and further p̂ is not a local maximum point of (1−α)h(p)−λp2, then w.h.p.
Φ(α) = 1 − (1 − α)h1(p̂).

The proof of this Theorem consists in an extension of the work of Janson and
Luczak [7] where the k-core problem is studied. Our model is related to the
bootstrap percolation which is more or less the opposite of taking the k-core:
with our notation, it consists in taking Ki(di) = k a fix constant. For regular
graphs (i.e. di = d for all i), this process has been studied. Theorem 1 of [1] or
Theorem 5.1 of [6] correspond exactly to our Theorem in the particular case of
a d-regular graph, with fixed threshold.

Proof. of Proposition 1: Following the heuristic in [18], we introduce the following
threshold: Ki(d) = (d + 1)11(d ≥ 1/q). In words, a node i becomes active if one
of his neighbor is active and di < 1/q. Clearly the nodes that become active
in this model need to have only one active neighbor in the original contagion
model with parameter q. For any node i, let Ci denotes the final set of active
nodes when starting with only i as active node. Clearly, if j ∈ Ci, then we have
Ci = Cj . Now if we prove that Φ(0+) = limα→0 Φ(α) − α > 0, then for any
Φ(0+) > α > 0, at least one of the nα nodes say i in the initial set has activated
at least Φ(0+)

α n nodes. Hence we have #Ci/n ≥ Φ(0+)
α and any point in Ci will

activate at least the set Ci in the original contagion model. We now prove that
for q < qc, we have Φ(0+) > 0. This will implies that the contagion threshold is
larger than qc. We have

h(p) = E[Dp11(D ≥ 1/q) + D11(D < 1/q, Dp = D)]

=
∑

s≥1/q

spps +
∑

s<1/q

spsp
s

= p

⎛

⎝
∑

s≥1/q

sps +
∑

s<1/q

spsp
s−1

⎞

⎠ .

Let f(p) = λp − h(p)
p . The condition Φ(0+) > 0 is equivalent to for ε > 0 small

enough f(1 − ε) > 0. We have f(1 − ε) = ε
(
−λ +

∑
s<1/q s(s − 1)ps

)
+ o(ε),

which is the condition of the proposition. The proof that for q > qc a single active
node cannot activate a positive fraction of the population is similar and omitted.

Proof. of Proposition 2: Let f(p, α) = λp2 − (1 − α)h(p). Note that f(0, α) = 0
and f(1, α) = αλ). Then we have f(p, α) ∼ −(1 − α)p1p < 0 as p → 0 and
αλ − f(p, α) ∼ (1 − p)

(
(1 − α)(

∑
s<1/q s(s − 1)ps − λ) − 2αλ

)
< 0 as p → 1

and the result follows easily.

5 Conclusion

We proposed a simple model of diffusion with neighborhood effects which allows
to explain the ’chasm’. We should emphasize that the random graph model
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considered eliminates a lot of the network structure from the problem (only
the degree distributions are preserved). We expect that other local effects like
clustering will have a significant impact on the diffusion. However our work
shows that neighborhood effects ’alone’ can explain the ’chasm’ and we think
that these effects will actually ’add up’. These issues are left for future research.
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