
Math Meth Oper Res (2008) 67:341–371
DOI 10.1007/s00186-007-0175-8

ORIGINAL ARTICLE

Packet reordering in networks with heavy-tailed delays

Marc Lelarge

Received: 15 February 2006 / Revised: 5 June 2007 / Published online: 20 July 2007
© Springer-Verlag 2007

Abstract An important characteristic of any TCP connection is the sequencing of
packets within that connection. Out-of sequence packets indicate that the connec-
tion suffers from loss, duplication or reordering. More generally, in many distributed
applications information integrity requires that data exchanges between different nodes
of a system be performed in a specific order. However, due to random delays over dif-
ferent paths in a system, the packets may arrive at the receiver in a different order
than their chronological order. In such a case, a resequencing buffer at the receiver
has to store disordered packets temporarily. We analyze both the waiting time of a
packet in the resequencing buffer and the size of this resequencing queue. We derive
the exact asymptotics for the large deviation of these quantities under heavy-tailed as-
sumptions. In contrast with results obtained for light-tailed distributions, we show that
there exists several “typical paths” that lead to the large deviation. We derive explicitly
these different “typical paths” and give heuristic rules for an optimal balancing.

Keywords Asymptotics · Parallel queues · Resequencing · Heavy tail

1 Motivation

Reordering the out-of-order arrival packets at the destination is a common phenomenon
in the Internet (Bennett et al. 1999; Paxson 1997). The major cause of reordering has
been found to be the parallelism in Internet components (switches) and links (Bennett
et al. 1999). Reordering greatly impacts the performance of applications in the Internet.
In a TCP connection, the reordering of three or more packet positions within a flow may
cause fast retransmission and fast recovery multiple times resulting in a reduced TCP

M. Lelarge (B)
INRIA & Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France
e-mail: marc.lelarge@ens.fr

123

342 M. Lelarge

congestion

1.5 G

0.75 G

1.5 G

1 G

2 G

1.5 G

0.75 G

2 G

1 G

1.5 G

Fig. 1 Without trunking

2 G

1.5 G

0.75 G

1.5 G

2 G

1.5 G

0.75 G

1.5 G

2 G

2 G

Fig. 2 With trunking

window and consequently in a drop in link utilization and hence in less throughput
for application (Laor and Gendel 2002). For delay-based real-time service in UDP
(such as VoIP or video conference), the ability to restore order at the destination will
likely have finite limits. The deployment of a real-time service necessitates certain
reordering constraints to be met. To verify whether these QoS requirements can be
satisfied, knowledge about the reordering behavior in the Internet seems desirable. In
this paper, we analyze the effect of heavy-tailed delays on the resequencing delay and
on the number of out-of-order arrival packets.

Consider the following situation where there are four physical connections between
the same pair of devices. Each link has a capacity of 2 Gbit/s. Assume now that this
system has to process the following traffic’s profile (in Gbit/s): 2, 1.5, 0.75, 1.5 and 2
from five different flows. If the system allocates to each physical connection a set of
flows, it cannot proceed the whole traffic and at least one physical link is congested
whereas others are underutilized. In the case of Fig. 1, the effective throughput is 5.75
Gbits/s, whereas the maximum throughput for the entire group of links is 8 Gbits/s.

One way to solve this problem is to aggregate the four links into a single logical 8
Gbits/s trunk group. This trunk group combines the bandwidth of all links to optimize
data traffic load-sharing (see Fig. 2).

There exists several ways to load balance the traffics across parallel links and we
will not discuss this issue here. We will only give some examples where the situation
described above happens.

Storage area networks (SANs) provide the data communication infrastructure for
storage systems consisting of switches, servers and storage systems. In this context,
redundancy of physical connection is a protection against failure. A failure does not
completely “break the pipe” but simply makes the pipe thinner. In the case of SANs,
there exists software solutions in order to increase performance with Inter-Switch Link
(ISL) Trunking see for example (http://www.brocade.com). It allows up to four ISLs
between two 2Gbit/s switches to be logically combined in order to balance data traffic
(as described in our example above). There are several advantages for this technology:
it distributes heavy SAN frame traffic across all the ISLs in a trunk, it eliminates the

123

Packet reordering in networks 343

need for data rerouting if one link of the trunk fails and it simplifies management by
reducing the number of ISLs required.

In the context of communication networks, multiple links are quite frequently placed
between a pair of devices in order to increase performance by “widening the pipe”
(without going to a newer, more expensive technology). In this situation, establishing
Point-to-Point Protocol (PPP) over each connection independently is far from an ideal
solution, because it is then necessary to manually distribute the traffic over the two (or
more) channels or links. A better solution would combine multiple links and use them
as if they were one high-performance link. Some hardware devices actually allow
this to be done at the hardware level itself; in Integrated Services Digital Network
(ISDN) this technology is sometimes called bonding when done at layer one. For
those hardware units that do not provide this capability, PPP makes it available in the
form of the PPP Multilink Protocol (MP). This protocol was originally described in
RFC 1717, and was updated in RFC 1990 (http://www.ietf.org/rfc/rfc1990.txt). MP
allows PPP to bundle multiple physical links and use them like a single, high-capacity
link. Once operational, it works by fragmenting whole PPP frames and sending the
fragments over different physical links. For the transmission, MP first encapsulates the
datagrams into a modified version of the regular PPP frame. It then takes that frame and
decides how to transmit it over the multiple physical links. Typically, this is done by
dividing the frame into fragments that are evenly spread out over the set of links. These
are then encapsulated and sent over the physical links. At the reception, MP takes the
fragments received from all physical links and reassembles them into the original PPP
frame. That frame is then processed like any PPP frame, by looking at its Protocol field
and passing it to the appropriate network layer protocol. The fragmenting of data in
MP introduces a number of complexities that the protocol must handle. In particular,
since fragments are being sent roughly concurrently, we need to identify them with a
sequence number to allow reassembly.

Note that it is also possible to load balance the traffic at the layer 3 (Internet).
For example it can be enable on Cisco Express Forwarding thanks to the command
ip load-sharing: “Per-packet load balancing allows the router to send data packets
over successive equal-cost paths without regard to individual destination hosts or user
sessions. Path utilization is good, but packets destined for a given destination host
might take different paths and might arrive out of order.”

Indeed, in all the examples cited above, due to random delays over different paths,
the method of per-packet load balancing can mean that packets in a particular connec-
tion or flow arrive at their destination out of sequence. It can cause problems, especially
for the streaming media, like video and audio. In the case of reliable protocols such
as TCP, packets have to be delivered to the receiving application in the order they
are transmitted at the sender. In order to deliver the arrived packet to the application
in sequence, the receiver’s transport layer needs to temporarily buffer out-of order
packets and resequence them as more packets arrive.

In this paper, we analyze a model where misordering is caused by multipath routing.
Packets are generated according to a renewal process. Then they arrive at a disordering
feed-forward network. A resequencing buffer follows the disordering network. We
assume that the delays (which will be made precise in what follows) at the different
stations of the disordering network are heavy-tailed. We will see that this stochastic

123

344 M. Lelarge

assumption allows to model transfer of very large files or failure of devices or links (that
are typically very long in comparison to packet service times). In an Internet context,
there are statistical evidence of the presence of heavy-tailed file size or transfer time
(see Willinger et al. 1997; Crovella 2000 and the references therein). We should stress
that presence of heavy-tailed distribution is a strong motivation for load balancing.
In particular, it allows in certain conditions to guarantee a minimal bandwidth to
each class of flows (Crovella et al. 1999). Moreover, the structural model proposed
in Willinger et al. (2003) provides a direct link between the observed self-similarity
characteristic of measured aggregate network traffic, and the strong empirical evidence
in favor of heavy-tailed, infinite variance phenomena at the level of individual network
connections. In our model, we are able to derive exact asymptotics of the packet
resequencing delay and of the size of the resequencing queue. In view of the recent
experiment results obtained in Zhou and Mieghem (2004), our main results are the
first networking model that could explain the power law observed for the reordered
packet length and the long tailness of packet lag (see Xia and Tse 2003 for a simplified
model). To the best of our knowledge, there are very few results on this problem under
heavy-tailed assumptions. A similar framework has been studied by Jean-Marie and
Gün (1993), where the disordering network consists of K parallel M/G I/1 queues
and the corresponding distribution of the resequencing delay is derived. A survey is
given in Baccelli and Makowski (1989). More recently, Xia and Tse (2004) consider a
2 − M/M/1 queueing system and derive large deviation results for the resequencing
queue size. Under general light-tailed assumptions, the asymptotics for the end-to-end
sojourn time of a packet (taking into account the resequencing delay) is computed in
Lelarge (2006) for general disordering networks. We should stress that techniques used
to derive light-tailed asymptotics are quite different from those presented in this paper
and we refer to Lelarge (2007) for a general methodology when dealing with light-
tailed distributions. As pointed out by Han and Makowski (2006), the asymptotics
in the heavy-tailed case are radically different from the light-tailed asymptotics. The
main results of our paper allow to get the exact asymptotics (which is much more
precise than in the log scale as usually done in the large deviation literature) of the
resequencing delay and of the resequencing queue size for this disordering network
under heavy-tail assumptions.

In the next section, we describe our mathematical model and give a summary of
our results. In Sect. 3 we give the exact asymptotics that we are able to derive for the
resequencing delay and the resequencing queue size. We give some heuristic rules for
optimal balancing. Concerning the resequencing delay, the results are derived from
Dieker and Lelarge (2006). The cases that are not covered in this reference are proved
in Sect. 8. For the resequencing queue size, new arguments have to be derived. They
are given in Sect. 4 and then developed in Sects. 5 and 6. Finally, concluding remarks
are discussed in Sect. 7.

2 Mathematical model

Consider the situation described in the introduction with two links and with cross
traffic, illustrated in Fig. 3. As an user of the network, we are interested by the delays

123

Packet reordering in networks 345

node 2

cross traffic

node 1

node 4

node 3

ζ
(4)
n

n

n − 1

n + 2

n + 1

n + 3
n + 4n + 5

Fig. 3 The case of two links

of our own packets. In our model, the tagged flow will correspond to these specific
packets.

We assume that the service times of packets of the tagged flow are negligible
compared to the queueing delays. We see that the time spent in a server is mainly due
to the cross traffic. Thus in order to analyze the delay of the tagged packets, we define
the virtual service times for each tagged packet to be the amount of cross traffic arrived
between two successive arrivals of the tagged customers. This (virtual) service time
is denoted as ζ

(i)
n (for link i). These sequences will be assumed to be independent and

to have heavy-tailed distributions. The resulting queueing system (with such virtual
service times) is a single class FIFO queueing network.

From now on, packets will correspond to the virtual service times (i.e. there is only
one packet for each tagged packet). We assume that they are ordered when they arrive
in node 1. In our example, we want to model a situation where a packet that leaves
the first node is randomly routed up (to node 2) or down (to node 3). In the case of
Fig. 3, packets with numbers n and n + 2 are waiting in the resequencing buffer for
the packet number n − 1 (and then n + 1). Note that in this case, packets n and n + 2
have necessarily been routed to node 2 when they left node 1. Indeed the following
remark will be of importance in what follows:

Remark 1 Packets in the resequencing queue are always coming from the same node
and waiting for a packet in the other node.

When we will consider the resequencing queue size, we are counting the number of
(virtual) packets. In order to go back to the real number of packets, we have to take
into account a multiplicative factor that depends on the statistic of the cross traffic.

We now briefly give a flavor of our results in the case depicted on Fig. 3:
Assume that the aggregate service time of node i is heavy-tailed:

P(ζ (i)
n > x) ∼ �i x−αi , as x → ∞,

where αi > 1, �i ≥ 0. We assume that a fraction p of the packets are sent to node 2
and the remaining fraction (1 − p) is sent to node 3.

The asymptotics of the resequencing delay R (i.e. the time spent in node 4) is given
by

P(R > x) ∼ CR(p)x− maxi (αi)−1, as x → ∞,

123

346 M. Lelarge

node 1 p

1−p

node 2

node 3

node 4

Fig. 4 Resequencing problem

where CR(p) is a function of the routing probability p that is given in an explicit form
in what follows.

The asymptotics of the resequencing queue size Qr (i.e. the number of packets in
node 4) is given by

P(Qr > n) ∼ CQ(p)n− maxi (αi)−1, as n → ∞,

where the function CQ(p) is different from CR(p).
We will optimize delay and queue size asymptotics, by determining optimal values

of p that minimize CR(p) or CQ(p) and we will see in details the implications due to
the fact that CR(p) �= CQ(p). This optimization is important because it is well known
that TCP performs poorly under significant packet reordering that is not necessarily
caused by packet losses (Blanton and Allman 2002). Our results can explain the
power laws observed empirically by Zhou and Mieghem (2004) for the resequencing
of UDP packets. We should stress that reordering can become a significant factor in
the future Internet as result of increased parallelism. Our model is accurate for the
study of other networks with radically different characteristics too. This is the case
of wireless networks, in particular multi-hop mobile ad-hoc networks. In this case
routing protocols need to recompute routes often which may lead to packet reordering
(due to the multiple paths as in our example).

In the sequel, we shall thus consider the model described in Fig. 4.
We assume that packets arrive in the first queue according to a renewal process {Tn}.

We will model the routing at node 1 by a Bernoulli routing. Once packet k reaches
the receiver, it leaves the system if all packets j with j < k have already left the
system. Otherwise it stays in the resequencing buffer, where it waits for the packets
with number less than k.

One of our main tool in our analysis will be the work of Baccelli and Foss (2004) and
the subsequent works done in Baccelli et al. (2004) and Dieker and Lelarge (2006). We
briefly describe how we can model the system described above thanks to the (max,plus)
algebra. This formalism is not essential in our paper and we refer to Baccelli et al.
(1992) for more references. However, we stress that (max,plus) formalism is crucial for
the proof of Theorem 1 below (that can be found in Dieker and Lelarge 2006). In view of
the key role of this theorem for our analysis, we chose to show the connection between
our model and (max,plus) algebra. Moreover, it allows for a rigorous presentation of
our model.

Consider first the standard fork and join system. In this auxiliary model, a different
kind of routing is in action. Each time a packet (say k) finishes its service ζ

(1)
k in node 1,

there is one packet sent up and one packet sent down simultaneously. The ‘up’-packet

123

Packet reordering in networks 347

(‘down’-packet) is then also the k-th packet for node 2 (for node 3 respectively).
The k-th packet joins the queue of node 4 once both packets have left node 2 and 3
respectively. Each node is a standard ·/G/1/∞ queue.

Let X (i)
n denotes the departure time of the n-th packet from node i . We have the

following equations:

X (1)
n+1 = max(Tn+1, X (1)

n) + ζ
(1)
n+1,

X (2)
n+1 = max(X (1)

n+1, X (2)
n) + ζ

(2)
n+1,

X (3)
n+1 = max(X (1)

n+1, X (3)
n) + ζ

(3)
n+1,

X (4)
n+1 = max(X (2)

n+1, X (3)
n+1, X (4)

n) + ζ
(4)
n+1.

Note that our system is linear in the (max, plus) semi-ring Rmax = R ∪ {−∞} (see
Baccelli et al. 1992 for a precise definition), which allows us to use results of Dieker
and Lelarge (2006).

In order to model the desired routing mechanism we will use the idea of clones, i.e.,
packets that behave like real packets except that they never require any service time:
their service time is null. Suppose that the real route of packet k is up. Then at the end
of its service in the first node, a clone is sent to node 3. Since ζ

(3)
k = 0, the departure

time of packet k from node 3 is X (3)
k = max(X (1)

k , X (3)
k−1). Similarly, if the real route

of packet k is down, then a clone is sent up. In both cases the “real” packet k joins the
queue of node 4 once “real” packet k − 1 has joined it (and not before). In particular
packets are ordered when they leave node 4. This shows that the resequencing delay
of packet n is given by

Rn = max
{

X (4)
n − X (2)

n , X (4)
n − X (3)

n

}
. (1)

It corresponds to the time spent by “real” packet in the resequencing buffer. In partic-
ular, if we take ζ

(4)
k = 0 for all k, this delay is purely due to multi-path routing.

We now give the stochastic assumptions made on the service times distribution. Here
and later in the paper, for positive functions f and g, the equivalence f (x) ∼ dg(x)

with d > 0 means f (x)/g(x) → d as x → ∞. By convention, the equivalence
f (x) ∼ dg(x) with d = 0 means f (x)/g(x) → 0 as x → ∞; this is written as
f (x) = o(g(x)). Recall that a distribution function G on R+ is called subexponential
if G∗2(x) ∼ 2G(x), where G∗2 is the tail of the twofold convolution of G. Note that a
subexponential distribution G is long-tailed: for any y > 0, we have G(x+y) ∼ G(x).

A tail distribution G is called regularly varying with index −α ≤ 0, G ∈ R(−α) if

lim
x→∞

G(t x)

G(x)
= t−α, ∀t > 0.

Such distributions with α > 0 are automatically subexponential. Weibull or lognormal
distributions are other examples of subexponential distributions (that are not regularly
varying), see Embrechts et al. (2003) for more details on subexponential distributions.

123

348 M. Lelarge

Throughout, we let F be a distribution function on R+ such that:

• F is subexponential, with finite first moment;
• The integrated distribution Fs of F with the tail

F
s
(x) := 1 − Fs(x) := min

⎧⎨
⎩1,

∞∫

x

F(u)du

⎫⎬
⎭

is subexponential.

For example if F ∈ R(−α) with α > 1, then the distribution function F satisfies
previous assumptions. Weibull and lognormal distributions are other examples that
satisfy these assumptions.

Let {σn = (σ
(1)
n , . . . σ

(4)
n)}n be an i.i.d. sequence of mutually independent random

variables with finite mean and such that the following equivalence holds when x tends
to infinity (with d(j) ≥ 0):

P(σ
(j)
1 > x) ∼ d(j)F(x),

for all j = 1, . . . , 4 with
∑4

j=1 d(j) > 0. In particular at least one component of σn is
heavy-tailed. Note that some components are allowed to be light-tailed in which case
we take the corresponding d(j) = 0. Moreover if two components of σn are heavy-
tailed then, we take for F the “dominating one”. For example if P(σ

(1)
0 > x)∈R(−α1)

and P(σ
(2)
0 > x) ∈ R(−α2) with 1 < α1 < α2 and the other components are light-

tailed. Then we can take F(x) = P(σ
(1)
0 > x), d(1) = 1 and d(i) = 0 for i = 2, 3, 4.

Let {rn}n∈Z be a sequence of i.i.d. random variables, independent of everything
else, with values in {2, 3}. We write P(rn = 2) = 1 − P(rn = 3) =: p, and assume
that 0 < p < 1. In order to apply our idea of clones, we define

ζ (1)
n := σ (1)

n , ζ (2)
n := σ (2)

n 11{rn=2}, ζ (3)
n := σ (3)

n 11{rn=3}, ζ (4)
n := σ (4)

n .

We denote γi := E[ζ (i)
0] and γ := maxi=1,...,3 γi . In our context, we will always

assume that the service time at the resequencing queue is null, σ
(4)
n = 0 for all n. But

our results are still valid if it is such that d(4) = 0 and that γ4 < mini=1,...,3 γi .
We will always assume that

γ < a := E[T1 − T0]. (2)

We know that under this condition, the system is stable, see Baccelli et al. (1992). In
particular, we can define the stationary end-to-end delay (or sojourn time in the whole
network) Z and the stationary resequencing delay R (which is the stationary version
of (1)).

123

Packet reordering in networks 349

3 Main results

The following proposition follows form the analysis made in Dieker and Lelarge
(2006) (the first part of the theorem given by Eq. (3) is a slight extension of Baccelli
et al. 2004),

Theorem 1 We have as x → ∞,

P(Z > x) ∼
(

d(1)

a − γ
+ pd(2)

a − γ2
+ (1 − p)d(3)

a − γ3

)
F

s
(x). (3)

We denote

G(x) =
(

pd(2)

a − γ2
+ (1 − p)d(3)

a − γ3

)
F

s
(x). (4)

We have

1. if γ1 > max(γ2, γ3), then

P(R > x) = G(x) + o(F
s
(x)).

2. if γ3 > max(γ1, γ2) := γ1∨2, then

P(R > x) = d(1)

a − γ3
F

s
(

a − γ1∨2

γ3 − γ1∨2
x

)
+ G(x) + o(F

s
(x)).

3. if γ3 = γ2 ≥ γ1 and F
s ∈ R(−α) with α > 0, then

P(R > x) = G(x) + o(F
s
(x)).

Remark 2 Note that results of Baccelli et al. (2004) and Dieker and Lelarge (2006)
deal with networks with a general topology that belongs to the class of stochastic
event graphs. This theorem follows directly from these results except case 3 when
γ3 = γ2 ≥ γ1 (see Sect. 8 for a proof). We can interchange indices 2 and 3 in the
case 2.

An important consequence of our result is that the asymptotics of the resequencing
delay (or the end-to-end delay) does NOT change with the link speed, assuming the
traffic characteristics are not altered by the technology change. The reason for this is
that if c is the speed factor gained thanks to the technology, then we have to replace
each a = E[T1 − T0] by ca in the formulas above. But if we want to keep the same
load for the system, we will put more traffic and hence adapt the intensity of the arrival
process {T ′

n} such that E[T ′
1 − T ′

0] = a′ = a/c and we see that for a fixed load the
asymptotics are preserved.

We give now some practical applications of our results:

123

350 M. Lelarge

Consider the case depicted on Fig. 3, where a link of 4 Gbit/s feeds two links of 2
Gbit/s. In order to take into account the factor 2 between these throughputs, we assume
that

σ (2)
n

d= σ (3)
n

d= 2σ (1)
n .

Hence in this case, we have γ2 = 2pγ1 and γ3 = 2(1 − p)γ1. Moreover if we denote
F(x) = P(σ

(1)
0 > x), then we have P(σ

(2)
0 > x) = P(σ

(3)
0 > x) = F(x/2). In

particular if F ∈ R(−α), we have d(1) = 1 and d(2) = d(3) = 2α . In the case
p = 1/2, we are in case 3 and we have

P(R > x) ∼ G(x) = 2α

a − γ1
F

s
(x).

In the case p < 1/2, we have γ2 < γ1 < γ3, and we are in case 2. The resequencing
delay will have a tail asymptotics of the same order but with a constant C(p) that is
larger than in the case p = 1/2. In particular C(p) > C(1/2) = 2α

a−γ1
for p �= 1/2.

Since node 1 represents the access to the links represented by node 2 and node 3,
it may be more realistic to make different assumptions on the tail distribution of the
service times in node 1. One can assume that this access is not bottleneck in which
case, we can consider d(1) = 0. Consider now a link of capacity C that feeds two
links of respective capacities uC (represented by node 2) and (1 − u)C (represented
by node 3) with 0 < u ≤ 1/2. Hence, we assume that

uσ (2)
n

d= (1 − u)σ (3)
n . (5)

Taking the expectation, we get uE[σ (2)
n] = (1 − u)E[σ (3)

n] := c. Hence, we have

γ2 = pc

u
, γ3 = (1 − p)c

1 − u
.

Note that if min{c/u, c/(1−u)} = c/(1−u) < a, i.e. if u < 1−c/a, then the system
with p = 0 is still stable and there is no need for resequencing: we can put all the
traffic on one link. We assume in particular that 1 − c/a < 1/2, i.e. β := a/c < 2.

For the tail distributions, we assume that they are regularly varying and from (5),
we have:

P(σ (2)
n > x) ∼ u−α F(x), P(σ (3)

n > x) ∼ (1 − u)−α F(x).

For this model, the asymptotics of the resequencing delay is given by G(x) in (4). We
denote by p(u) the value of the routing parameter p that gives the minimal asymptotics,
i.e. that minimizes the coefficient in (4). We have (with β = a/c < 2)

p(u) =
uα/2β + (1 − u)α/2

(
1

1−u − β
)

uα/2−1 + (1 − u)α/2−1 , u > 1 − 1

β
. (6)

123

Packet reordering in networks 351

Fig. 5 Optimal load in the link
with small capacity for different
values of α:
u → γ2(u) = p(u)c/u
represents the amount of traffic
that should be sent in link with
capacity u in order to optimize
the resequencing delay

0.5

0.6

0.7

0.8

0.9

1

0.2 0.25 0.3 0.35 0.4 0.45 0.5
u

α = 1

α = 2.5

Figure 5 gives the curves of p(u)/u = γ2(u)/c for different values of α∈{1, . . . , 2.5}.
We see that we have γ2(u) < c < γ3(u) for u < 1/2. Hence we have to put less

traffic on the link with minimal capacity and a little more on the link with maximal
capacity. The reason why this asymmetric choice is optimal is the following: in any
case, as we will see the cause for a large delay is that one service time in the network
is very big whereas all the others are close to their means. But if this big service time
occurs in the link with small capacity, it takes a long time for this link to process
it. Hence we see that we have to compare the relative efficiency of both links for
processing big services in order to get the optimal solution. We define for 1−β(1−u) ≤
p ≤ βu,

C2(p, u) := p

uα(a − γ2(p, u))
, C3(p, u) := 1 − p

(1 − u)α(a − γ3(p, u))
.

Looking back to the coefficient in Eq. (4), it is equal in our model to,

C(p, u) := C2(p, u) + C3(p, u) ≈ max (C2(p, u), C3(p, u)) ,

where the approximation is good when p/u → β (i.e. γ2(p, u)) → a) or (1 − p)/

(1 − u) → β (i.e. γ3(p, u)) → a). The approximation above is due to the fact that
for fixed u, the function p → C2(p, u) is non-decreasing whereas the function p →
C3(p, u) is non-increasing. It has the following interpretation: when p ≈ 1−β(1−u)

then the large delay is mainly due to node 3 (since the effect of a big service time in
node 3 dominates C(p, u)). We put too much traffic in this link. The symmetric case
is p ≈ βu, which corresponds to an overloading of link 2.

123

352 M. Lelarge

Fig. 6 Heuristic rule for
1.5 < α < 2.5, the error made
on the routing parameter p (in
the optimization of the
resequencing delay) by using the
approximate rule lies between
the two curves

–0.1

–0.05

0

0.05

0.1

0.25 0.3 0.35 0.4 0.45 0.5
u

The quantities C2(p, u) and C3(p, u) are measuring the “cost” of each node for a
given (p, u). In view of the monotonicity of these functions and of the fact that the total
cost is approximately the maximum of the costs, we see that the optimal parameter
p∗ is defined by the following equation C2(p∗, u) = C3(p∗, u). It turns out that this
rule gives a very good approximation.

Indeed it can be more simplified while remaining accurate. Define:

C̃2(p, u) := 1/u

1 − ρ2(p, u)
, C̃3(p, u) := 1/(1 − u)

1 − ρ3(p, u)
, (7)

with ρi (p, u) = γi (p, u)/a. The solution p̃∗ of the equation C̃2(p, u) = C̃3(p, u) is
clearly a good approximation of p∗. Figure 6 shows the curve (p(u)− p̃∗(u))/p(u) for
different values of α. The error in the choice of p is less than 10% for 1.5 < α < 2.5
and decreases when u → 1/2 when we use the approximate rule compare to the
optimal p(u) defined in (6).

The main interest of the rule defined by (7) is that we can apply it when only the
average load of each link is known. Moreover this rule is quite natural. Assume that
we are only given the average load of each link as a function of p (this can be done
empirically). With so little information, we can only use well-known formulas for the
M/M/1 queue and estimate that the mean sojourn time in each node is approximately
given by Ti := E[σ (i)]/(1 − ρi). In particular, in order to minimize the resequencing
delay, we should choose p such that T2 = T3. In view of (5), this equation is exactly
the one given by the rule defined by (7)!

Consider now the case d(1) > 0.
Note that we have to take into account a new effect: when γ2 �= γ3 there is an

additional term that corresponds to the case where the big service time occurs in
node 1. Then, there is a resequencing delay that is due to the mismatch between the

123

Packet reordering in networks 353

Fig. 7 Optimal loads for two
different models: the curve
γ1 p(u)/u gives the optimal load
of link with capacity u if node 1
(representing I/O delays) is
light-tailed and the curve γ2(u)

corresponds to the case where
the node 1 is heavy-tailed

0.2

0.4

0.6

0.8

1

oa
ds

0.1 0.2 0.3 0.4 0.5
parameter u

γ2(u)
γ1p(u)/u

throughputs of nodes 2 and 3. This effect will affect the optimal choice of p. In a
model, where

σ (1)
n

d= uσ (2)
n

d= (1 − u)σ (3)
n ,

we have E[σ (1)
n] = uE[σ (2)

n] = (1 − u)E[σ (3)
n] := γ1. Figure 7 gives the curves

(for u ≤ 0.5) corresponding to

• (upper one) γ2(u) the optimal load of node 2 in this model, computed thanks to
case 2 of Theorem 1;

• (lower one) γ1 p(u)/u the optimal load of node 2 in previous model.

The other parameters are fixed as follows: α = 3/2, a = 1.2, γ1 = 1. The fact that
γ2(u) ≥ γ1 p(u)/u shows the impact of a big service time in node 1.

We can consider other scenarios. For example, we may not control the traffic in the
links in parallel that our own traffic is using. In the case of Fig. 8, we see that service
times at node 1 represent the I/O delays and are completely independent of the service
times at node 2 and 3.

In particular, depending on what we want to model, results will be quite different.
For example, if the I/O is bottleneck, then we may assume that d(1) = 1 whereas
d(2) = d(3) = 0. In this case, we see that it is quite important that γ2 = γ3, i.e. that
the load is equally distributed among the different links.

Let Qr be the resequencing queue size just after the arrival of packet number 0 to
the resequencing queue when the system is in the stationary regime.

In the next sections, we will show the following theorem:

123

354 M. Lelarge

Fig. 8 User’s perspective cross traffic

Theorem 2 Let Qr be the stationary size of the resequencing buffer. We denote

H(n) =
(

pd(2)

a − γ2
F

s
(

an

1 − p

)
+ (1 − p)d(3)

a − γ3
F

s
(

an

p

))
.

Assume that F
s ∈ R(−α) with α > 0, then we have as n → ∞,

1. if γ1 > max(γ2, γ3) or if γ3 = γ2, then

P(Qr > n) = H(n) + o(F
s
(n)). (8)

2. if γ3 > max(γ1, γ2) := γ1∨2, then

P(Qr > n) = d(1)

a − γ3
F

s
(

a − γ1∨2

γ3 − γ1∨2

γ3n

p

)
+ H(n) + o(F

s
(n)). (9)

Comparing both theorems shows that results are quite similar. In particular, the
same remarks as the ones done after Theorem 1 can be done for the resequencing
delay. In the heavy-tailed case, the “typical paths” that lead to a large resequencing
delay or to a large resequencing queue size are the same. We will describe these paths
more precisely in the next section and in the proof of the theorem.

However, we see on Fig. 9 that considering the resequencing delay or the resequenc-
ing queue size is slightly different. The upper curve represents the optimal load for the
resequencing delay and the lower one for the resequencing queue size (for α = 1.5).
We see that we have to put even less traffic on the link with small capacity if we want
to optimize the resequencing queue length. Considering the case when p = p(u), we
know that a big service time in node 2 or in node 3 will have the same impact on
the resequencing delay. But given a resequencing delay and the fact that p < 1/2, it
seems clear that if the resequencing delay is due to a big service time in node 2, the
resequencing queue size will be bigger than if the delay is due to a big service time in
node 3. Lowering p will have two contradictory effects: it will lower the probability of
a large delay due to node 2 and it will make the resequencing queue size even bigger
if the delay is due to node 2. Figure 9 tells us that the first effect dominates the second
one and we have to lower p.

Note that Theorem 2 can be seen as an extension of Theorem 2 in Dieker and
Lelarge (2006). In particular, we consider here a much more complex function of the

123

Packet reordering in networks 355

Fig. 9 Comparison of the
optimal loads for the
resequencing delay and the
resequencing queue size

0.5

0.6

0.7

0.8

0.9

1

0.2 0.25 0.3 0.35 0.4 0.45 0.5

load optimizing delay

load optimizing queue size

network: compare the representation of Qr given in Sect. 6.1 with the function �

introduced in Sect. 3 of Dieker and Lelarge (2006). We give here original arguments
and a self-contained proof of Theorem 2 that could be adapted to prove Theorem 1
too.

4 Idea of the proof

We present now how we adapt the ideas of Baccelli and Foss (2004) to our framework.
We will give a generalization of the so called “single big event theorem”, well known
for isolated queues, to the resequencing buffer. In the G I/G I/1 queue, this theorem
states that in the case of subexponential service times, large workloads occur on a
typical event where a single large service time has taken place in a distant past, and all
other service time are close to their mean. Similarly, in our resequencing problem with
subexponential service times, large resequencing delays or queue sizes occur when a
single large service time has taken place in one of the nodes 1, 2 or 3, and all other
service times are close to their mean.

The first step consists in finding an upper bound for Qr for which the asymptotic
is easy to derive (and satisfy the “single-big-event” theorem). Thanks to Remark 1,
we note that there are only two possibilities for Qr to be positive (we take r0 = 2, the
case r0 = 3 is symmetric):

1. when packet 0 arrives in the resequencing buffer, there are only packets coming
from the (same) node 2 and waiting for packets with ri = 3 and i < 0.

2. when packet 0 arrives in the resequencing buffer, there are only packets coming
from the (other) node 3 waiting for a packet with ri = 2 and i > 0 (with our
definition of Qr , packets that were waiting for the number 0 are not counted in
Qr).

In the first case, the total number of packets in the network at time T0 is clearly an
upper bound for Qr . To make this definition precise, we consider the network in its

123

356 M. Lelarge

stationary regime and define Qt as the minimal integer k such that packet −k has left
node 4 at the arrival time of packet 0, T0. Note that thanks to the FIFO assumption, Qt

corresponds exactly to the total number of packets in the network of Fig. 4 (or in the
fork-and-join model if we do not count the clones at node 2 and 3). In case 1, we have
Qr ≤ Qt since any packet that is in the resequencing queue when packet number 0
joins this queue was already in the network at time T0.

In case 2, the situation is different since all the packets present in the resequencing
queue arrived after packet 0 in the network. In this case, we have clearly Qr ≤∑∞

i=1 11{Ti ≤Z} := N (Z), where Z is the time spent in the whole network by packet 0
and N is the counting process associated with the arrival times {Tn}.

Hence we have Qr ≤ max (Qt , N (Z)) := U .
We are able to derive an upper bound for the tail asymptotics of U as follows. First

note that we have

P (U > x) ≤ P(Qt > x) + P(N (Z) > x).

Thanks to the distributional Little’s law Haji and Newell (1971), we have Qt
d= N (Z)

in distribution. Hence we have P(Qt > x) ∼ P(N (Z) > x).
We are able to derive the tail asymptotics of this latter quantity thanks to Theorem

1 and to the results of Asmussen et al. (1999) or Foss and Korshunov (2000):

Proposition 1 Assume that F
s ∈ R(−α) with α ∈ (0,∞). Then we have as n → ∞,

P(Qt > n) ∼ P(N (Z) > n) ∼ P(Z > na),

where a = E[T1 − T0].
Proof We want to apply Theorem 3.1 of Foss and Korshunov (2000). Note that by
definition of regular variation (Bingham et al. 1989) we have g(x) = − log F

s
(x) =

α log(x)− log L(x), where L ∈ R(0). Hence, for any function d(x) such that d(x) →
∞ as x → ∞, we have,

g

(
x + x

d(x)

)
= g(x) + o(1), as x → ∞.

Thanks to Theorem 3.1 of Foss and Korshunov (2000), we have

P(Qt > n) = P(N (Z) > n) ∼ P(Z > na),

because P(Z > x) is α insensitive by Theorem 1. ��
This proposition allows us to define a typical event in the same spirit as in Baccelli

and Foss (2004). This event Tx = Ax ∪ Bx will be explicitly constructed in Sect. 5
and is such that:

1. P(Ax) ∼ P(Qt > x) and P(Bx) ∼ P(N (Z) > x);
2. P(Qt > x, Ac

x) = o(P(Qt > x)) and P(N (Z) > x, Bc
x) = o(P(N (Z) > x)).

123

Packet reordering in networks 357

Hence the event Ax (resp. Bx) “describes” the way the rare events {Qt > x} (resp.
{N (Z) > x}) occurs. It will be made clear in the next section. Once we defined this
event, we have

P(Qr > x) = P(Qr > x, Tx) + P(Qr > x, T c
x)

≤ P(Qr > x, Tx) + P(max(Qt , N (Z)) > x, T c
x)

≤ P(Qr > x, Tx) + P(Qt > x, Ac
x) + P(N (Z) > x, Bc

x).

But the term P(Qt > x, Ac
x) + P(N (Z) > x, Bc

x) = o(F
s
(x)) thanks to Proposition

1 and Theorem 1. Hence we have

P(Qr > x) = P(Qr > x, Tx) + o(F
s
(x)).

The last part of the proof (Sect. 6) is the computation of the quantity P(Qr > x, Tx).

5 Typical event for Qt and N(Z)

In this section we first derive the typical event Ax for the total queue length Qt .
We first consider a G I/G I/1/∞ queue with mean inter-arrival times a = E[τn]

and mean service times b = E[σn], where a > b. Denote by F the distribution function
of σ and assume that F

s
is regularly varying. We define

Sτ
n =

n∑
1

τ−i , Sσ
n =

n∑
1

σ−i , Sn = Sσ
n − Sτ

n .

For any sequence εn , we define the following sequence of events, n ≥ x ,

Kn,x =
{∣∣∣∣

Sτ
k

k
− a

∣∣∣∣ ≤ εk, ∀x ≤ k ≤ n

} ⋂{∣∣∣∣
Sσ

k

k
− b

∣∣∣∣ ≤ εk+1, ∀x ≤ k < n

}
.

Due to the strong law of large numbers, there exists a non-increasing sequence εn such
that εn → 0 and nεn → ∞ as n → ∞ and

sup
n≥x

P(Kn,x) → 1 as x → ∞. (10)

Lemma 1 Let Q be the stationary queue length in the FIFO G I/G I/1/∞ queue.
Let Kn,x be defined as above and ηn = 3εn, let

An,y = Kn,y ∩ {σ−n > y + n(a − b + ηn)}, Ax =
⋃
n≥x

An,xb.

Then, as x → ∞,

P(Q > x) ∼ P(Q > x, Ax) ∼ P(Ax) ∼
∑
n≥x

P(An,xb). (11)

123

358 M. Lelarge

Proof Simple calculations using the fact that F
s

is regularly varying show that, as
x → ∞,

∑
n≥x

P(An,xb) =
∑
n≥x

P(Kn,xb)P(σ−n > xb + n(a − b + ηn))

∼
∑
n≥0

F(xb + (n + x)(a − b + ηn))

∼
∑
n≥0

F(xa + n(a − b)) ∼ 1

a − b
F

s
(ax),

where we used the independence between Kn,x and σ−n for the first line and (10) to
get the second line.

Note that Proposition 1 is also valid for a G I/G I/1 queue (see Foss and Korshunov
2000), hence we have P(Q > x) ∼ 1

a−b F
s
(ax).

Thus, if we show that the sequences {Kn,y} and {ηn} are such that, for all sufficiently
large x , (a) the events An,xb are disjoint for all n ≥ x , (b) An,xb ⊂ {Q > x} for all
n ≥ x , then

P(Q > x) ≥ P(Q > x, Ax) = P(Ax) ∼ 1

a − b
F

s
(ax).

Hence in this case we have the equivalence (11). We now show that the sequences
{Kn,x } and {ηn} satisfy (a) and (b).

We denote for � ≥ 0, Sσ[−n,−n+�] = ∑−n+�
i=−n σi and Q[−n,0] the size of the queue at

time T0+ in the system fed by packets −n,−n + 1, . . . , 0 only (or in other words, the
system fed with the arrival process T−n, T−n+1, . . . , T0). Note that Sσ[−n,−n+�] ≤ Sτ

n
implies that Q[−n,0] ≤ n − � and that Sσ[−n,−n+�] ≥ Sτ

n implies that Q[−n,0] ≥ n − �.
Hence we have Q[−n,0] = n − sup{�, Sσ[−n,−n+�] ≤ Sτ

n }. For n ≥ x , on the event
An,xb, we have σ−n + (b − εn)Q[−n,0] ≤ n(a + εn), which implies

Q ≥ Q[−n,0] ≥ xb

b − εn
+ n(ηn − 2εn)

b − εn
≥ x .

Hence we showed that (b) is satisfied. For the part (a), if εx ≤ (a − b)/2 then the
events An,xb are disjoint for n ≥ x . Indeed, on the event An,xb, we have Sn > xb
and S∗

n−1 = maxx≤ j≤n−1 S j ≤ max0≤ j≤n−1 j (b − a + 2εx) ≤ 0; and the events
{S∗

n−1 ≤ 0} ∩ {Sn > x} are clearly disjoint. ��

We now extend previous lemma to our more general framework. We still denote
Sτ

n = ∑n
1 τ−i and we now introduce S(�)

n = ∑n
1 ζ

(�)
−i . We denote by Nx a function of

x such that Nx → ∞ and Nx/x → 0 as x → ∞. For any sequence εn , we define the

123

Packet reordering in networks 359

following sequence of events, n ≥ Nx ,

Kn,x =
{∣∣∣∣

Sτ
k

k
− a

∣∣∣∣ ≤ εk, ∀Nx ≤ k ≤ n

}

⋂{∣∣∣∣∣
S(�)

k

k
− γ�

∣∣∣∣∣ ≤ εk+1, ∀Nx ≤ k < n, ∀� ∈ [1, 3]
}

. (12)

Note that Kn,x is independent of the vector (ζ
(1)
−n , ζ

(2)
−n , ζ

(3)
−n , ζ

(4)
−n) and that due to the

strong law of large number, we have still (10).
We define γ[≥1] = max(γ1, γ2, γ3), γ[≥i] = γi for i = 2, 3.

Proposition 2 Let Qt be the stationary total number of packets in the network (defined
in Sect. 4). Let ηn be a sequence tending to 0 as n tends to infinity, and Kn,y the sequence
of events defined above. Let,

A(j)
n,y = Kn,y ∩ {ζ (j)

−n > y + n(a − γ[≥ j] + ηn)}, j ∈ [1, 3]
A(j)

x =
⋃
n≥x

A(j)
n,xγ[≥ j] ,

and Ax = ∪3
j=1 A(j)

x . Then, as x → ∞,

P(Qt > x) ∼ P(Qt > x, Ax) ∼ P(Ax) ∼
∑

j

∑
n≥x

P(A(j)
n,xγ[≥ j]). (13)

Proof Note that with the same argument as in the proof of Lemma 1, the events {A(j)
n,x }

are disjoint for x sufficiently large. Hence we have

P(Ax) =
∑

j

∑
n≥x

P(A(j)
n,xγ[≥ j])

=
∑

j

∑
n≥x

P(Kn,xγ[≥ j])P(ζ
(j)
−n > xγ[≥ j] + n(a − γ[≥ j] + ηn))

∼
∑

j

d̃(j)
∑
n≥x

F(xγ[≥ j] + n(a − γ[≥ j]))

∼
∑

j

d̃(j)

a − γ[≥ j]
F

s
(ax).

Hence thanks to Theorem 1, we have P(Qt > x) ∼ P(Ax). To prove the proposition,
we have only to prove that Ax ⊂ {Qt > x}, i.e. that A(j)

n,xγ[≥ j] ⊂ {Qt > x} for all j
and n ≥ x . We proceed as in previous proof. Take j = 2, we have Qt ≥ n − kn where

kn = sup

{
�; ζ

(2)
−n + max

�≤i≤n−1

(
S(2)
[−n+1,−i] + S(4)

[−i,−l]
)

≤ Sτ
n

}
,

123

360 M. Lelarge

with S(j)
[u,v] = ∑v

i=u ζ
(j)
i for u ≤ v and j ∈ [1, 4]. Note that kn is the number of

departures from the system constituted of nodes 2 and 4 without taking into account
the node 3 (i.e. if service times ar null in node 3). Hence kn is clearly an upper bound
on the real number of departures from the whole network on the interval of time
(−Sτ

n , 0]. On the event A(2)
n,xγ[≥2] , we have ζ

(2)
−n + (max{γ2, γ4} − εn)kn ≤ n(a + εn).

For simplicity we omit now the terms εn or ηn since they do not play any role. We
have

Qt ≥ n − kn ≥ n − na − xγ[≥2] − n(a − γ[≥2])
γ[≥2]

= x .

The proof is similar to show that A(j)
n,xγ[≥ j] ⊂ {Qt > x} for j = 1, 3. ��

Consider a sequence of Jn,x such that

1. supn≥x P(Jn,x) → 1 as x → ∞;

2. Jn,x is independent of the vector (ζ
(1)
−n , ζ

(2)
−n , ζ

(3)
−n , ζ

(4)
−n).

Note that P(Kn,x ∩ Jn,x) ≥ P(Kn,x) + P(Jn,x) − 1, hence we have supn≥x P(Kn,x ∩
Jn,x) → 1 as x → ∞. Then the following result follows directly from the proof of
Proposition 2:

Corollary 1 The result of Proposition 2 holds when we replace the events Kn,x by
the event K̃n,x = Kn,x ∩ Jn,x .

We now define the typical event for N (Z). It directly follows from the typical event
for the random variable Z given in Baccelli et al. (2004), Property 2 on page 85.

Proposition 3 Let ηn be a sequence tending to 0 as n tends to infinity, and K̃n,y the

sequence of events defined above. Let, B(j)
x = ⋃

n≥Nx
Ã(j)

n,xa, and Bx = ∪3
j=1 B(j)

x .
Then, as x → ∞,

P(N (Z) > x) ∼ P(N (Z) > x, Bx) ∼ P(Bx) ∼
∑

j

∑
n≥Nx

P(Ã(j)
n,xa). (14)

Proof It follows directly from Property 2 of Baccelli et al. (2004) that

P(Z > ax) ∼ P(Bx) ∼
∑

j

∑
n≥Nx

P(Ã(j)
n,xa),

and that Bx ⊂ {Z > ax}. Now on the event Kn,x , we have

N (Z) =
∑

k

11{Sτ
k ≤Z} ≥

∑
k≥Nx

11{k(a−εk)≤ax} ≥ x − C Nx .

Hence we have

P(N (Z) > x, Bc
x) ≤ P(N (Z) ∈ (x − C Nx , x))

= P(N (Z) > x − C Nx) − P(N (Z) > x)

= o(P(N (Z) > x)),

123

Packet reordering in networks 361

by definition of Nx . ��
We summarize the results of this section in the following corollary,

Corollary 2 Consider a sequence of Jn,x such that

1. supn≥x P(Jn,x) → 1 as x → ∞;

2. Jn,x is independent of the vector (ζ
(1)
−n , ζ

(2)
−n , ζ

(3)
−n , ζ

(4)
−n).

Let K̃n,x = Kn,x ∩ Jn,x where Kn,x is the event defined in (12). Let ηn be a sequence
tending to 0 as n tends to infinity, and

Ã(j)
n,y = K̃n,y ∩ {ζ (j)

−n > y + n(a − γ[≥ j] + ηn)}, j ∈ [1, 3]
Ã(j)

x =
⋃

n≥Nx

Ã(j)
n,xγ[≥ j] ,

and Tx = ∪3
j=1 Ã(j)

x . Then, as x → ∞,

P (Qr > x) = P (Qr > x, Tx) + o(F
s
(x))

=
3∑

j=1

∑
n≥Nx

P

(
Qr > x, Ã(j)

n,xγ[≥ j]
)

+ o(F
s
(x)). (15)

Note that Ax ∪ Bx ⊂ Tx , and then the corollary follows from previous propositions.

6 Computation of P(Qr > x, Tx)

In this section, we will see how to chose the events Jn,x of Corollary 2 in order to
make the computation of the sum (15) as easy as possible.

6.1 Representation of Qr

We give here an explicit representation of Qr that follows directly from the argument
given in Sect. 4. For n ≥ 0, let

Di
n = sup

k≤n,rk=i

{
Tk + sup

k≤�≤n

(
S1[k,�] + Si

[�,n]
)}

,

be the departure time of packet n ∈ Z from node i = 2, 3. Define N 2− := max{
k, D3−k > D2

0

}
, N 2++ = max

{
k ≥ 0, D2

0 > D3
k

}
and N 2+ = min

{
j ≥ 1, r j = 2

}
with the convention max ∅ = −∞. Then we have

Qr 11{r0=2} =
0∑

i=−N 2−

11{ri =2}

︸ ︷︷ ︸
�2

+
N 2++∑

i=N 2+

11{ri =3}

︸ ︷︷ ︸
2

,

123

362 M. Lelarge

with the convention
∑0

∞ = 0 or
∑−∞

k = 0. The symmetric formula holds for r0 = 3,
hence Qr is explicitly given. We denote by �3, 3 the corresponding quantities.

Note that only one sum is non-null, in particular, we have the following decompo-
sition of the event {Qr 11{r0=2} > x} = {� > x, r0 = 2} ∪ { > x, r0 = 2}. Hence
we see that in order to compute the sum (15), we have to compute the quantities where
the dot is for � or ,

∑
n≥Nx

P

(
.i > x, r0 = i, Ã(j)

n,xγ[≥ j]
)

,

for j = 1, 2, 3 and i = 2, 3. We will compute each of these terms separately. It is
possible since if we define an event Jn,x satisfying the conditions of Corollary 2, then
the intersection of these events, will still satisfy these conditions.

6.2 The case j = 2 or 3

Lemma 2 We have as x → ∞,

∑
n≥Nx

P

(
�2 > x, r0 = 2, Ã(2)

n,xγ2

)
= o(F

s
(x)).

Proof Note that on the event Ã(2)
n,xγ2 , we have r−n = 2, hence conditionally on Ã(2)

n,xγ2 ,

{D3−k}k≥0 and ζ
(2)
−n are independent. On the event A(2)

n,xγ2 ∩ {r0 = 2}, we have

D2
0 ≥ ζ

(2)
−n − n(a + εn) + n(γ2 − εn) ≥ xγ2.

Moreover we have D3−k ≤ D3
0 for all k ≥ 0. Since N 2− = max{k, D3−k > D2

0}, we
have

{�2 > x} ⊂ {N 2− �= −∞} ⊂ {D3
0 ≥ xγ2}.

From this, we have the following upper bound

P(�2 > x, r0 = 2, A(2)
n,xγ2

) ≤ P(D3
0 ≥ xγ2)P(ζ

(2)
−n > xγ2 + n(a − γ2 + ηn)).

Hence summing over n, we get

∑
n>Nx

P(�2 > x, r0 =2, A(2)
n,xγ2

) ≤ P(D3
0 ≥ xγ2)

∑
n>0

P(ζ
(2)
−n > xγ2 + n(a − γ2 + ηn))

≤ o(F
s
(x)).

��

123

Packet reordering in networks 363

Lemma 3 We have as x → ∞,

∑
n≥Nx

P

(
�3 > x, r0 = 3, Ã(2)

n,xγ2

)
= p(1 − p)d(2)

a − γ2
F

s
(

ax

1 − p

)
+ o(F

s
(x)).

Proof We have �3 = ∑0
i=−N 3−

11{ri =3} with N 3− = max{k, D2−k > D3
0}. We will

denote by zx a function of x such that zx → ∞ and zx = o(x).

We denote X−k(i) :=
(

Ti + supi≤�≤−k S1[i,�] + S2[�,−k]
)

11ri =2 and define the fol-

lowing sequence of events,

Jn,x =
⋂
k<n

{
sup

−n+1≤i≤−k
X−k(i) ≤ zx

}

∩
⋂

i≤−n

{
Ti − T−n + sup

i≤�≤−n−1
S1[i,�] + S2[�,−k] ≤ zx

}

∩
{∣∣∣∣∣

∑0
i=−k 11{ri =3}

k
− (1 − p)

∣∣∣∣∣ ≤ εk, Nx ≤ k ≤ n

}

∩ {D2−n−1 ≤ zx }.

We can choose a non-increasing sequence εn such that the conditions of Corollary 2
are satisfied (note in particular that Jn,x is independent of ζ−n). Once we chose the
sequence ε, we define the function zx := xε�x�. For 0 ≤ k ≤ n, we have

D2−k = sup
i≤−k

X−k(i)≤ sup
−n+1≤i≤−k

X−k(i) + X−k(−n)+ sup
i≤−n−1

(X−k(i) − X−k(−n))

Moreover, we have

sup
i≤−n−1

(X−k(i) − X−k(−n)) ≤ sup
i≤−n

Ti − T−n + sup
i≤�≤−n−1

S1[i,�] + S2[�,−k].

Hence on the event Jn,x , we have

D2−k ≤ 2zx + T−n + sup
−n≤�≤−k

S1[i,�] + S2[�,−k],

and we have clearly for k ≤ n,

D2−k ≥ T−n + sup
−n≤�≤−k

S1[i,�] + S2[�,−k].

In what follows, C denotes a constant that may vary from place to place, but remains
always finite and does not depend on n or x . On the event K̃n,xγ2 , we have for all
k ≤ n,

123

364 M. Lelarge

D2−k ≥ −na + ζ
(2)
−n + (n − k)γ2 − C(nεn + zx)

D2−k ≤ −na + ζ
(2)
−n + (n − k)γ2 + C(nεn + zx).

We will take the following convenient convention for summarizing these inequalities

D2−k ≈ −na + ζ
(2)
−n + (n − k)γ2 ∓ C(nεn + zx).

Hence on the event K̃n,xγ2 ∩ {r0 = 3, D3
0 ≤ zx }, we have since D2−n−1 ≤ zx ,

N 3 = max{k ≤ n, D2−k > D3
0}

≈ n − (na − ζ
(2)
−n)+

γ2
∓ C(nεn + zx)

≈ min

(
n,

ζ
(2)
−n + n(γ2 − a)

γ2

)
∓ C(nεn + zx)

Hence we have

�3 ≈ (1 − p) min

(
n,

ζ
(2)
−n + n(γ2 − a)

γ2

)
∓ C(nεn + zx).

Using the fact that n ≥ Nx and εn is non decreasing so that ∀n ≥ Nx , xεn ≤ xεNx ≤
Czx , we derive from previous equation,

�3 > x ⇒
{

n > x
1−p − Czx

ζ
(2)
−n >

γ2x
1−p + n(a − γ2) − C(nεn + zx)

�3 > x ⇐
{

n > x
1−p + Czx

ζ
(2)
−n >

γ2x
1−p + n(a − γ2) + C(nεn + zx)

Note that we have

{
n > x

1−p

ζ
(2)
−n >

γ2x
1−p + n(a − γ2)

⇒
{

n > Nx

ζ
(2)
−n > γ2x + n(a − γ2)

(16)

We have

P(�3 > x, Ã(2)
n,γ2x , r0 = 3) = P(�3 > x, Ã(2)

n,γ2x , r0 = 3, D3
0 ≤ zx)

+P(�3 > x, Ã(2)
n,γ2x , r0 = 3, D3

0 > zx).

123

Packet reordering in networks 365

Note that the second term is upper bounded by P(Ã(2)
n,γ2x , r0 = 3, D3

0 > zx) and its
sum over n can be shown to be o(F

s
(x)) as in the proof of previous lemma. Hence

we have

∑
n>x

P(�3 > x, Ã(2)
n,γ2x , r0 = 3) =

∑
n>x

P(�3 > x, Ã(2)
n,γ2x , r0 =3, D3

0 ≤ zx)+o(F
s
(x))

= (1 − p)
∑

n>x/(1−p)

P(ζ
(2)
−n >

γ2x

1 − p
+ n(a − γ2))

+o(F
s
(x)),

where the last inequality follows from (16) and the fact that F
s

is regularly varying.
Finally we get

∑
n>x

P(�3 > x, r0 = 3, Ã(2)
n,xγ2

) = (1 − p)pd(2)

a − γ2
F

s
(

ax

1 − p

)
+ o(F

s
(x)).

��

Lemma 4 We have as x → ∞

∑
n≥Nx

P(2 > x, r0 = 2, Ã(2)
n,xγ2

) = p2d(2)

a − γ2
F

s
(

ax

1 − p

)
+ o(F

s
(x)).

Proof With the same argument as above, we can define a sequence of events Jn,x

satisfying the conditions of Corollary 2 and such that for n > Nx , we have on the
event Jn,x , for k ≥ 0,

D2
0 ≈

(
−na + ζ

(2)
−n + nγ2

)
∓ C(nεn + zx),

D3
k ≈ ka ∓ C(kεk + zx),

N 2+ ≤ zx .

From these, we derive as in proof of Lemma 3 the following approximation

N 2++ ≈ ζ
(2)
−n − na + nγ2

a
∓ C(nεn + zx).

Hence, we have

2 ≈ (1 − p)
ζ

(2)
−n − na + nγ2

a
∓ C(nεn + zx).

123

366 M. Lelarge

The end of the proof follows exactly the steps of the poof of Lemma 3:

∑
n≥Nx

P(2 > x, r0 = 3, Ã(2)
n,xγ2

) = p
∑

n≥Nx

P

(
ζ

(2)
−n >

ax

1 − p
+ n(a − γ2)

)

+o(F
s
(x)).

��
Lemma 5 We have as x → ∞

∑
n≥Nx

P(3 > x, r0 = 3, Ã(2)
n,xγ2

) = o(F
s
(x)).

Proof In the same way as in the proof of Lemma 2, we have D2
N 3+−1

≥ xγ2, hence

we have {N 3++ �= −∞} ⊂ {D3
0 ≥ xγ2}, and the end of the argument is completely

similar. ��

6.3 The case j = 1

6.3.1 The case γ1 > max(γ2, γ3)

We only consider the case r0 = 2 (the case r0 = 3 is symmetric).

Lemma 6 We have as x → ∞
∑

n≥Nx

P(�2 > x, r0 = 2, Ã(1)
n,xγ[≥1]) = o(F

s
(x)),

∑
n≥Nx

P(2 > x, r0 = 2, Ã(1)
n,xγ[≥1]) = o(F

s
(x)).

Proof We can define a sequence of events Jn,x satisfying the conditions of Corollary
2 and such that for n > Nx , we have on the event Jn,x , for k ≤ n,

D3−k ≈ −na + ζ
(1)
−n + (n − k)γ1 ∓ C(nεn + zx),

D2
0 ≈ −na + ζ

(1)
−n + nγ1 ∓ C(nεn + zx).

From these equations, we derive that N 2− ≤ C(nεn + zx) ≤ Cnεn for n > x (by
definition of zx). But we have �2 ≤ N 2− ≤ Cnεn , hence �2 > x ⇒ Cnεn > x and
we can find a function h(x) (depending only on the sequence εn such that �2 > x ⇒
Cn > h(x) and h(x)/x → ∞. Hence we have

∑
n>x

P(�2 > x, Ã(1)
n,xγ1

, r0 =2)≤
∑

n>h(x)

P(ζ
(1)
−n > xγ1 + n(a − γ1 + ηn))≤C F

s
(h(x)).

123

Packet reordering in networks 367

For all M > 0, we have h(x) ≥ Mx for x sufficiently large, hence F
s
(h(x)) ≤

F
s
(Mx)≤ 2α

Mα F
s
(x) for x sufficiently large. This implies that F

s
(h(x))=o(F

s
(h(x))).

The case of 2 can be done following the same kind of argument. ��

6.3.2 The case γ3 > max(γ1, γ2) = γ1∨2

Lemma 7 We have as x → ∞
∑

n≥Nx

P(�2 > x, r0 = 2, Ã(1)
n,xγ[≥1]) = pd(1)

a − γ3
F

s
(

xγ3(a − γ1∨2)

p(γ3 − γ1∨2)

)
+ o(F

s
(x)).

Proof It is easy to construct an appropriate sequence of events Jn,x satisfying the
conditions of Corollary 2 such that, we have on the event Jn,x ,

D3−n−1 ≤ zx

D3−k ≈ −na + ζ
(1)
−n + (n − k)γ3 ∓ C(nεn + zx), ∀k ≤ n

D2
0 ≈ max

(
−na + ζ

(1)
−n + nγ1∨2, 0

)
∓ C(nεn + zx).

From these equations, we derive that

N 2− ≈ min

(
n
γ3 − γ1∨2

γ3
,
ζ

(1)
−n − n(a − γ3)

γ3

)
∓ C(nεn + zx),

and then that

�2 ≈ p min

(
n
γ3 − γ1∨2

γ3
,
ζ

(1)
−n − n(a − γ3)

γ3

)
∓ C(nεn + zx).

With the same argument as above, we have

∑
n>x

P(�2 > x, Ã(1)
n,γ3x , r0 = 2) =

∑
n>γ3x/p(γ3−γ1∨2)

pP

(
ζ

(1)
−n > xγ3/p + n(a − γ3)

)

+o(F
s
(x))

= pd(1)

a − γ3
F

s
(

xγ3(a − γ1∨2)

p(γ3 − γ1∨2)

)
+ o(F

s
(x)).

��
Lemma 8 We have as x → ∞
∑

n≥Nx

P(3 > x, r0 = 3, Ã(1)
n,xγ[≥1]) = (1 − p)d(1)

a − γ3
F

s
(

xγ3(a − γ1∨2)

p(γ3 − γ1∨2)

)
+ o(F

s
(x)).

123

368 M. Lelarge

Proof We construct events Jn,x such that

D3
0 ≈

(
ζ

(1)
−n − na + nγ3

)+ ∓ C(nεn + zx),

D2
k ≈ max

(
ζ

(1)
−n − na + (n + k)γ3, ka

)
∓ C(nεn + zx),

N 3+ ≤ zx .

From these equations, we derive (we omitted the term: ∓C(nεn + zx))

N 3++ ≈ min

(
n(γ3 − γ1∨2)

γ1∨2
,
ζ

(1)
−n − na + nγ3

a

)
,

3 ≈ p min

(
n(γ3 − γ1∨2)

γ1∨2
,
ζ

(1)
−n − na + nγ3

a

)
.

Hence we have

∑
n≥Nx

P(3 > x, r0 = 3, Ã(1)
n,xγ[≥1]) = (1 − p)

∑

n≥ γ1∨2x
p(γ3−γ1∨2)

P

(
ζ

(1)
−n >

ax

p
+ n(a − γ3)

)
+ o(F

s
(x)),

from which the result follows. ��
Lemma 9 We have as x → ∞

∑
n≥Nx

P(�3 > x, r0 = 3, Ã(1)
n,xγ[≥1]) = o(F

s
(x)),

∑
n≥Nx

P(2 > x, r0 = 2, Ã(1)
n,xγ[≥1]) = o(F

s
(x)).

Proof The proof of these results is very similar to the proof of Lemma 6 and is omitted.
��

7 Conclusion

We analyzed the impact of heavy-tailed delays on different paths for the resequenc-
ing delay and the resequencing queue size. We compute the exact asymptotics for a
simple model of 2 queues in parallel. These asymptotics are dominated by the heavi-
est tail distribution of the delays among the 2 queues. We studied in details different
stochastic assumptions and gave the corresponding rule-of-thumb that minimizes the
resequencing delay or queue size (in an asymptotic sense). Surprisingly, we found that
the values of the optimal load-balancing is not the same depending on the quantity

123

Packet reordering in networks 369

to optimize. Moreover, in certain cases, the rule-of-thumb agrees with a natural rule
when only the average load of each link is known and a M/M/1 model is used.

As a final remark, we should stress that our results can be extended to other network
topologies. The framework of Baccelli et al. (2004) and Dieker and Lelarge (2006)
covers the class of stochastic event graphs.

There are two straightforward extensions of our results:

• one is to consider K nodes in parallel with K > 2;
• the other is to replace each node in parallel by a more complex network belonging

to the class of the stochastic event graphs.

In both cases, we see that the upper bound derived in Sect. 4 is still valid. Moreover
Theorem 1 as stated in Dieker and Lelarge (2006) covers these cases. Hence we can
apply exactly the same methodology and we will get the exact asymptotics of the
resequencing queue size.

These extensions to other load-balanced routing networks can help us to understand
the theoretical bounds and be useful to the general class of multicommodity network
problems. In particular, the problem of reordering packets appears in the architecture
of parallel switches (Iyer and McKeown 2003; Keslassy et al. 2005). In the context
of ad-hoc networks, it is known that load-balancing packets across multiple paths
increase the throughput. In this context, empirical studies (Hui et al. 2005) show that
the distribution of the inter-contact time between nodes in an opportunistic networking
environment follows an approximate power law over a large range, which gives credit
to our analysis.

8 Proof of Theorem 1 point 3

Note that this is the only case, that is not covered by Dieker and Lelarge (2006).
We have R = max{X (4) − X (2), X (4) − X (3)}, where X (i) denote the departure time

of packet or clone 0 from node i in the stationary regime. We have here

X (2) = sup
k≤0

{
Tk + sup

k≤�≤n

(
S1[k,�] + S2[�,n]

)}
.

For ε such that ε < a − γ2, we define

S(2)
[�,n](ε) =

n∑
i=�

(ζ (2) + ε)+, X (2)
ε = sup

k≤0

{
Tk + sup

k≤�≤n

(
S1[k,�] + S2[�,n](ε)

)}
.

First consider the case ε > 0. Note that this quantity is finite and corresponds exactly
to the same system where we add ε at each service time in the node 2 in such a
way that the system is still stable. We have obviously X (2)

ε ≥ X (2), which implies
Rε = max{X (4) − X (2)

ε , X (4) − X (3)} ≤ R. We can apply Theorem 1 to Rε and we
get

123

370 M. Lelarge

P(Rε > x) = d(1)

a − γ2 − ε
F

s
(

a − γ3

ε
x

)
+

(
pd(2)

a − γ2 − ε
+ (1 − p)d(3)

a − γ3

)

×F
s
(x) + o(F

s
(x)).

Hence if we assume that F
s ∈ R(−α) with α > 0, we have

lim
x→∞

P(Rε > x)

F
s
(x)

=
(

d(1)

a − γ2 − ε

(
ε

a − γ3

)α

+ pd(2)

a − γ2 − ε
+ (1 − p)d(3)

a − γ3

)
.

Since P(R > x) ≥ P(Rε > x) we have

lim inf
x→∞

P(R > x)

F
s
(x)

≥ pd(2)

a − γ2
+ (1 − p)d(3)

a − γ3

For the upper bound, one can proceed similarly with ε < 0.

References

Asmussen S, Klüppelberg C, Sigman K (1999) Sampling at subexponential times, with queueing
applications. Stochas Process Appl 79(2):265–286

Baccelli F, Foss S (2004) Moments and tails in monotone-separable stochastic networks. Ann Appl Probab
14(2):612–650

Baccelli F, Makowski A (1989) Queueing models for systems with synchronization constraints. Proc IEEE
77(1):138–161

Baccelli F, Cohen G, Olsder GJ, Quadrat J-P (1992) Synchronization and Linearity. Wiley. Available at
http://www-rocq.inria.fr/metalau/cohen/SED/book-online.html

Baccelli F, Lelarge M, Foss S (2004) Asymptotics of subexponential max plus networks: the stochastic
event graph case. Queueing Syst 46(1–2):75–96

Bennett JCR, Partridge C, Shectman N (1999) Packet reordering is not pathological network behavior.
IEEE/ACM Trans Netw 7(6):789–798

Bingham NH, Goldie CM, Teugels JL (1989) Regular variation. Volume 27 of Encyclopedia of mathematics
and its applications. Cambridge University Press, Cambridge

Blanton E, Allman M (2002) On making TCP more robust to packet reordering. SIGCOMM Comput
Commun Rev 32(1):20–30

Crovella ME (2000) Performance evaluation with heavy tailed distributions. In: Lecture Notes in Computer
Science 1786, pp 1–9

Crovella ME, Frangioso R, Harchol-Balter M (1999) Connection scheduling in Web servers. In: 1999
USENIX Symposium on Internet Technologies and Systems (USITS ’99)

Dieker AB, Lelarge M (2006) Tails for (max, plus) recursions under subexponentiality. Queueing Syst
53(4):213–230

Embrechts P, Klüppelberg C, Mikosch T (2003) Modelling extremal events for insurance and finance.
Springer, Heidelberg

Foss S, Korshunov D (2000) Sampling at a random time with a heavy-tailed distribution. Markov Process.
Related Fields 6(4):543–568

Haji R, Newell GF (1971) A relation between stationary queue and waiting time distributions. J Appl Prob
8:617–620

Han Y, Makowski A (2006) Resequencing delays under multipath routing - Asymptotics in a simple queueing
model. In: INFOCOM

Hui P, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C (2005) Pocket switched networks and human
mobility in conference environments. In: WDTN ’05: Proceeding of the 2005 ACM SIGCOMM
workshop on Delay-tolerant networking. ACM Press, New York, pp 244–251

123

http://www-rocq.inria.fr/metalau/cohen/SED/book-online.html

Packet reordering in networks 371

Iyer S, McKeown NW (2003) Analysis of the parallel packet switch architecture. IEEE/ACM Trans Netw
11(2):314–324

Jean-Marie A, Gün L (1993) Parallel queues with resequencing. J Assoc Comput Mach 40(5):1188–1208
Keslassy I, Chang C, McKeown N, Lee D (2005) Optimal load-balancing. In Infocom 2005, Miami, Florida
Laor M, Gendel L (2002) The effect of packet reordering in a backbone link on application throughput.

IEEE Network
Lelarge M (2006) Tail asymptotics for discrete event systems. In valuetools ’06: Proceedings of the 1st

international conference on Performance evaluation methodolgies and tools. ACM Press, New York,
pp 36

Lelarge M (2007) Tail asymptotics for monotone-separable networks. J Appl Probab 44(2):306–320
Paxson V (1997) Automated packet trace analysis of TCP implementations. In: SIGCOMM ’97: Proceedings

of the ACM SIGCOMM ’97 conference on Applications, technologies, architectures, and protocols
for computer communication. ACM Press, New York, pp 167–179

Willinger W, Taqqu MS, Sherman R, Wilson DV (1997) Self-similarity through high-variability: statistical
analysis of Ethernet LAN traffic at the source level. IEEE/ACM Trans Netw 5(1):71–86

Willinger W, Paxson V, Riedi RH, Taqqu MS (2003) Long-range dependence and data network traffic. In:
Theory and applications of long-range dependence. Birkhäuser Boston, Boston, pp 373–407

Xia Y, Tse DNC (2003) Analysis on packet resequencing for reliable network protocols. In INFOCOM
Xia Y, Tse D (2004) On the large deviation of resequencing queue size: 2-M/M/1 case. IEEE INFOCOM

Proceedings
Zhou X, Mieghem PV (2004) Reordering of IP packets in internet. Lecture notes in computer science

3015:237–246

123

	Packet reordering in networks with heavy-tailed delays
	Abstract
	Motivation
	Mathematical model
	Main results
	Idea of the proof
	Typical event for Qt and N(Z)
	Computation of P(Qr>x,Tx)
	Representation of Qr
	The case j=2 or 3
	The case j=1
	The case 1>max(2,3)
	The case 3>max(1,2)=12
	Conclusion
	Proof of Theorem 1 point 3
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

