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Abstract—Managing security risks in the Internet has so far
mostly involved methods to reduce the risks and the severity
of the damages. Those methods (such as firewalls, intrusion
detection and prevention, etc) reduce but do not eliminate risk,
and the question remains on how to handle the residual risk.

In this paper, we take a new approach to the problem of
Internet security and advocate managing this residual risk by
buying insurance against it.

Using insurance in the Internet raises several questions because
entities in the Internet face correlated risks, which means that
insurance claims will likely be correlated, making those entities
less attractive to insurance companies. Furthermore, risks are
interdependent, meaning that the decision by an entity to invest
in security and self-protect affects the risk faced by others.
We analyze the impact of these externalities on the security
investments of users using a simple 2-agent model. Our key
results are that there are sound economic reasons for agents to not
invest much in self-protection, and that insurance is a desirable
incentive mechanism which pushes agents over a threshold into
a desirable state where they all invest in self-protection. In
other words, insurance increases the level of self-protection, and
therefore the level of security, in the Internet. Therefore, we
believe that insurance should become an important component
of risk management in the Internet.

I. INTRODUCTION

The Internet has become a fundamental component of
modern economies, and it provide services, starting with
connectivity, that are strategic to companies, governments and
individual users. As a result, it has become crucial to the vari-
ous entities (operators, enterprises, individuals,...) that deliver
or use Internet services to protect the Internet infrastructure
and the services delivered through that infrastructure against
risks.

There are typically four options that individuals or organiza-
tions can take in the face of risks and the associated damages:
1) avoid the risk, 2) accept the risk and the loss when it occurs,
3) self-protect and mitigate the risk, and 4) transfer the risk
to another party.

Most entities have so far chosen a mix of options 2 and 3.
This has led to the development and deployment of a vast array
of systems to detect threats and anomalies, and to protect the
network infrastructure and its users from the negative impact
of those anomalies. In parallel, most of the research on Internet
security has similarly focused on issues related to option 3,
with an emphasis on algorithms and solutions for threat or
anomaly detection, identification, and mitigation.

Unfortunately, self protecting against risk or mitigating risk
does not eliminate risk and despite all the research, time,
effort, and investment spent in Internet security, there remains
a significant residual risk. The question then is how to handle
this residual risk.

One way to handle residual risk which has not been
considered in much detail yet is to use the fourth option
mentioned above, namely transfer the risk to another entity. A
widely used way to do this is through insurance. The risk is
transferred to an insurance company, in return for a fee which
is the insurance premium. Insurance allows individuals or
organizations to smooth payouts for uncertain events (variable
costs of the damages associated with security risks) into
predictable periodic costs. Using insurance to handle security
risks in the Internet raises several questions: does this option
make sense for the Internet, under which circumstances? Does
it provide benefits, and if so, to whom, and to what extent?
Our goal in this paper is to consider those questions.

We focus here on risks such as those caused by propagating
worms or viruses, where damages can be caused either directly
by a user, or indirectly via the user’s neighbors. Specifically,
we consider risks that are correlated, meaning that the risk
faced by an entity increases with the risk faced by the entity’s
neighbors (e.g. I am likely to be attacked by a virus if my
neighbors have just been attacked by that virus) and interde-
pendent, meaning that those risks depend on the behavior of
other entities in the network (such as their decisions to invest
in security). Thus, the reward for a user investing in security
depends on the general level of security in the network.

We analyze the impact of these characteristics on the
security investments of the users with and without insurance
being available. Users can decide whether or not to invest some
amount c in security solutions to protect themselves against
risk, which eliminates direct (but not indirect) damages.

In the 2-user case, it is known [9] that, in the absence of
insurance, there exists a Nash equilibrium in a ”good” state
(where both users self protect) if the security investment cost
c is low enough. We build upon this result to add insurance
to the 2-user case. Our main result is that if the premium is a
“good” premium then insurance is a strong incentive to invest
in security. A “good” premium is a premium negatively related
to the amount invested by the user in security; it parallels the
real life situation where homeowners who invest in a burglar
alarm and new locks expect their house theft premium to

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

978-1-4244-2026-1/08/$25.00  © 2008 IEEE 71

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 8, 2008 at 14:05 from IEEE Xplore.  Restrictions apply.



decrease following their investment.
The rest of the paper is organized as follows. In Section II,

we describe related work. In Section III, we introduce the clas-
sical expected utility model for a single user and present the
standard results about risk premium and the interplay between
self-protection and insurance. In Section IV, we describe the
2-user model, present the results for self-protection in the
absence of insurance, then build on those results to include
insurance and prove our main point. Section V concludes the
paper.

II. RELATED WORK

A vast amount of research has been published on protection
against risk in the Internet (including anomaly detection,
mitigation, etc) on one hand, and on insurance against risk on
the other hand [7]. Comparatively little has been carried out
or published at the intersection of insurance and the Internet.
We can divide relevant contributions in two areas, namely
cyberinsurance or insurance of computer risks in general
(without much focus on network effects), and insurance of
correlated or interdependent risks.

Using cyberinsurance as a way to handle the residual risk
after computer security investments have been made was
proposed more than 10 years ago [10] but popularized only
recently [12]. The authors in [8] make the economic case for
insurance, arguing that insurance results in higher security
investments and that it solves a market failure, namely the
absence of risk transfer opportunity.

The market for cyberinsurance [11] started in the late 90’s
with insurance policies offered by security software companies
partnering with insurance companies as packages (software
+ insurance). The insurance provided a way to highlight the
(supposedly high) quality of the security software being sold,
and to deliver a ”total” risk management solution (risk reduc-
tion + residual risk transfer), rather than the customary risk
reduction-only solution; see for examples solutions offered by
Counterpane/Lloyd’s of London [5]. More recently, insurance
companies started offering stand-alone products (e.g. AIG’s
NetAdvantage [1]).

A challenging problem for Internet insurance companies is
caused by correlations between risks, which makes it difficult
to spread the risk across customers; a sizeable fraction of
worm and virus attacks, for example, tend to propagate rapidly
throughout the Internet and inflict correlated damages to
customers worldwide [13]. Furthermore, entities in the Internet
face interdependent risks, i.e. risks that depend on the behavior
of other entities in the network such as whether or not they
invested in security solutions to handle their risk. Thus the
reward for a user investing in security depends on the general
level of security in the network. Correlated and interdependent
risks have only very recently started being addressed in the
literature. References [2], [3] consider insurance with corre-
lations in the extreme case of a monoculture (a system of
uniform agents) with correlated Bernouilli risks and argue that
the strong correlation of claims in that case may hinder the
development of a cyberinsurance industry.

Reference [9] considers the situation of agents faced with
interdependent risks and proposes a parametric game-theoretic
model for such a situation. In the model, agents decide whether
or not to invest in security and agents face a risk of damage
which depends on the state of other agents. The authors show
the existence of two Nash equilibria (all agents invest or none
invests), and suggest that taxation or insurance would be ways
to provide incentives for agents to invest (and therefore reach
the ”good” Nash equilibrium), but they do not analyze the
interplay between insurance and security investments. Our
work also builds on the model of [9], and considers a single
insurance market but it differs from [9] because it models
all three desirable characteristics of an Internet-like network,
namely correlated risks, interdependent agents, and a general
model of a network (although we consider the 2-agent case
in this paper), and it derives general results about the state of
the network and the behavior of the agents, with and without
insurance being available.

Next, we describe the classical expected utility model for a
single agent and present the standard results about premium
computation and the interplay between self-protection and
insurance.

III. INSURANCE AND SELF-PROTECTION: BASIC CONCEPTS

A. Classical model for insurance

The classical expected utility model is named thus because
it considers agents that attempt to maximize some kind of
expected utility function u. We denote by u[X] the value of the
utility function at X . In this paper, we assume that agents are
rational and that they are risk averse. For example, consider an
agent given the choice between i) a bet of either receiving $100
or nothing, both with a probability of 50%, or ii) receiving
some amount with certainty. A risk averse agent would rather
accept a payoff of less than $50 with probability 1 than the
bet.

We denote by w0 the initial wealth of the agent. The risk
premium π is the maximum amount of money that one is
ready to pay to escape a pure risk X , where a pure risk X
is a random variable such that E[X] = 0. The risk premium
corresponds to an amount of money paid (thereby decreasing
the wealth of the agent from w0 to w0 − π) which covers the
risk; hence, π is given by the following equation:

u[w0 − π] = E[u[w0 + X]]

The risk premium plays a fundamental role in the theory
of insurance and we refer to [7] for a detailed account of
the economics of insurance. We will focus in the rest of this
section on the interplay between insurance and self-protection
investments in networks. To simplify our analysis, we consider
simple one-period probabilistic models for the risk, in which
all decisions and outcomes occur in a simultaneous instant;

Each agent faces a potential loss �, which we take in this
paper to be a fixed (non-random) value. We denote by p the
probability of loss or damage. There are two possible final
states for the agent: a good state, in which the final wealth of
the agent is equal to its initial wealth w0, and a bad state in
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which the final wealth is w0 − �. The amount of money m
the agent is ready to invest to escape the risk is given by the
equation:

pu[w0 − �] + (1 − p)u[w0] = u[w0 − m] (1)

We can actually relate m to the risk premium defined above.
Note that the left hand-side of Equation (1) can be written as
E[u[w0 − p� − X]] with X defined by P(X = �(1 − p)) = p
and P(X = −p�) = 1− p. Hence we have E[w0 − p�−X] =
u[w0 − p�− π[p]] where π[p] denotes the risk premium when
the loss probability equals p. Therefore: m = p� + π[p].

The term p� corresponds to what is referred to as the fair
premium, i.e. the premium which exactly matches expected
loss. On the left hand side of the equation, m corresponds
to the maximum acceptable premium: if an insurer makes
a proposition at a cost of ℘, then the agent will accept the
contract if ℘ ≤ m. From the insurer’s perspective, the premium
℘ depends on the distribution of the loss (here p and �).

B. A model for self-protection

Investments in security involve either self-protection (to re-
duce the probability of a loss) and/or self-insurance (to reduce
the size of a loss). For example, intrusion detection and pre-
vention systems are mechanisms of self-protection. Denial-of-
service mitigation systems, traffic engineering solutions, over-
provisioning, and public relations companies are mechanisms
of self-insurance (over-provisioning to reduce the impact of
overloads or attacks, PR firms to reduce the impact of security
attack on a company stock price with crafty messages to
investors). It is somewhat artificial to distinguish mechanisms
that reduce the probability of a loss from mechanisms that
reduce the size of the loss, since many mechanisms do both.
Nevertheless, we focus on self-protection mechanisms only.

We first look at the problem of optimal self-protection
without insurance. We denote by c the cost of self-protection
and by p[c] the corresponding probability of loss. We expect
larger investments in self-protection to translate into a lower
likelihood of loss, and therefore we reasonably assume that
p is a non-increasing function of c. The optimal amount of
self-protection is given by the value c∗ which maximizes

p[c]u[w0 − � − c] + (1 − p[c])u[w0 − c] (2)

Consider the simple case where the loss probability is either
one of two values, namely p[c] = p+ if c < ct or p[c] =
p− if c > ct, with p+ > p−. The optimization problem (2)
above becomes easy to solve: indeed, the optimal expenditure
is either 0 or ct.

In the rest of the paper, we assume that the choice of an
agent regarding self-protection is restricted to a binary choice:
either the agent does not invest, or it invests ct which will
be denoted c for simplicity. If the agent does not invest, the
expected utility is p+u[w0 − �] + (1 − p+)u[w0]; if the agent
invests, the expected utility is p−u[w0−�−c]+(1−p−)u[w0−
c]. Using the derivation in the subsection above, we see that
these quantities are equal to u[w0 − p+�−π[p+]] and u[w0 −
c−p−�−π[p−]], respectively. Therefore, the optimal strategy

is for the agent to invest in self-protection only if the cost for
self-protection is less than the threshold

c < (p+ − p−)� + π[p+] − π[p−]. (3)

C. Interplay between insurance and self -protection

We now analyze the impact that the availability of insurance
has on the level of investment in self-protection chosen by the
agent.

Consider first the case when Equation (3) is satisfied,
namely it is best for the agent to invest in self-protection.
We assume that the agent can choose between insurance with
full coverage and self-protection. Clearly if the agent chooses
full coverage, he will not spend money on self-protection since
losses are covered and the utility becomes u[w0 − ℘]. In the
case of optimal self-protection, the utility has been computed
above: u[w0−c−p−�−π[p−]] since Equation (3) holds. Hence
the optimal strategy for the agent is to use insurance if

℘ − p−� − π[p−] < c (4)

Note that because of Equation (3), we must have

℘ < p+� + π[p+]. (5)

If Equation (3) does not hold, then it is best for the agent
not to invest in self-protection, and the choice is between
insurance and no self-protection. It is easy to see that if
Equation (5) holds, then the premium is low enough and the
optimal strategy is to pay for insurance.

In summary: if Equation (4) holds, the optimal strategy
is to pay for full coverage insurance and not invest in self-
protection. Otherwise, the optimal strategy is to invest in self-
protection and not pay for insurance.

The combination of insurance and self-protection raises the
problem of what is referred to as moral hazard. Moral hazard
occurs when agents or companies covered by insurance take
fewer measures to prevent losses from happening, or maybe
even cause the loss (and reap the insurance benefits from it).
Indeed, if the premium does not depend on whether or not
the agent invests in self-protection, then insurance becomes
a negative incentive to self-protection. A known solution to
the problem is to tie the premium to the amount of self-
protection (and, in practice, for the insurer to audit self-
protection practices and the level of care that the agent takes
to prevent the loss) [6]. Note that this condition is necessary to
avoid moral hazard: if the premium is not designed as above,
then self-protection will be discouraged by insurance and we
would observe either a large demand for insurance and a small
demand for self-protection, or the converse.

A natural candidate for such a desirable premium proposed
in [6] is the fair premium:

℘[S] = p−�, and, ℘[N ] = p+�.

With this premium, insurance co-exists with an incentive to
invest in self-protection [6]. To agents that do not invest in
prevention, the insurer may offer a premium ℘[N ] + γ, where
γ ≥ 0 denotes a premium penalty (loading). To agents that
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invest in prevention, the insurer may offer a premium ℘[S]−γ,
where γ denotes a premium rebate.

The utility for all possible cases is summarized in Table I.
The first column denotes the choice made by an agent. It is
denoted by the pair (U, V ), where U = I means that the agent
pays for insurance and U = NI otherwise, and V = S means
that the agent invests in self-protection and V = N otherwise.

TABLE I
UTILITY WITH INSURANCE AND SELF-PROTECTION - SINGLE USER CASE

(I, S) u[w0 − c − p−� + γ]
(I, N) u[w0 − p+� − γ]
(NI, S) u[w0 − c − p−� − π[p−]]
(NI, N) u[w0 − p+� − π[p+]]

Note that for any non-negative value of γ, the strategy (I, S)
always dominates the strategy (NI, S). Now for (I, S) to
dominate (I,N), we need

c < (p+ − p−)� + 2γ.

For (I, S) to dominate (NI,N), we need

c < (p+ − p−)� + γ + π[p+].

This concludes the description of results from classical
insurance theory. Next, we consider a 2-agent model with
correlated and interdependent risks.

IV. INTERDEPENDENT SECURITY AND INSURANCE: THE

2-AGENT CASE

Recall that interdependent risks are risks that depend on
the behavior of other entities in the network (e.g. whether or
not they invested in security solutions to handle their risk).
In the presence of interdependent risks, the reward for a user
investing in self-protection depends on the general level of
security in the network.

A. Interdependent risks for 2 agents

Reference [9] was the first to introduce a model for inter-
dependent security (IDS), specifically a model for two agents
faced with interdependent risks, and it proposed a parametric
game-theoretic model for such a situation. In the model, agents
decide whether or not to invest in security and agents face a
risk of damage which depends on the state of other agents.
As in Section III above, the decision is a discrete choice: an
agent either invests or does not invest in self-protection. We
assume that loss can happen in two ways: it can either be
caused directly by an agent (direct loss), or indirectly via the
actions of other agents (indirect loss). We assume that the cost
of investing in self-protection is c, and that a direct loss can
be avoided with certainty when the agent has invest in self-
protection.

The cost of protection should not exceed the possible loss,
hence 0 ≤ c ≤ �. Four possible states of final wealth of an
agent result: without protection, the final wealth is w0 in case
of no loss and w0 − � in case of loss. If an agent invests in

protection, its final wealth is w0 − c in case of no loss and
w0 − c − � in case of loss.

Consider now a network of 2 agents sharing one link. There
are four possible states denoted by (i, j), where i, j ∈ {S,N},
i describes the decision of agent 1 and j the decision of
agent 2, S means that the agent invests in self-protection,
and N means that the agent does not invest in self-protection.
We examine the symmetric case when the probability of a
direct loss is p for both agents, where 0 < p < 1. Knowing
that one agent has a direct loss, the probability that a loss
is caused indirectly by this agent to the other is q, where
0 ≤ q ≤ 1. Hence q can be seen as a probability of contagion.
To completely specify the model, we assume that direct losses
and contagions are independent events. The matrix p[i, j]
describing the probability of loss for agent 1, in state (i, j), is
given in Table II.

TABLE II
PROBABILITY OF STATES

S N
S p[S, S] = 0 p[S, N ] = pq
N p[N, S] = p p[N, N ] = p + (1 − p)pq

We now derive the payoff matrix of expected utilities for
agents 1 and 2. If both agents invest in self-protection, the
expected utility of each agent is u[w0 − c]. If agent 1 invests
in self-protection (S) but not agent 2 (N ), then agent 1 is
only exposed to the indirect risk pq from agent 2. Thus the
expected utility for agent 1 is (1 − pq)u[w0 − c] + pqu[w0 −
c − �] and the expected utility for agent 2 is (1 − p)u[w0] +
pu[w0 − �]. If neither agent invests in self-protection, then
both are exposed to the additional risk of contamination from
the other. Therefore, the expected utilities for both agents are
pu[w0 − �] + (1 − p)(pqu[w0 − �] + (1 − pq)u[w0]).

Assuming that both agents decide simultaneously whether
or not to invest in self-protection, there is no possibility
to cooperate. For investment in self-protection (S) to be a
dominant strategy, we need

u[w0 − c] ≥ (1 − p)u[w0] + pu[w0 − �] and

(1 − pq)u[w0 − c] + pqu[w0 − c − �] ≥
pu[w0 − �] + (1 − p)(pqu[w0 − �] + (1 − pq)u[w0])

With the notations introduced earlier, the inequalities above
become:

c ≤ p� + π[p] =: c1,

c ≤ p(1 − pq)� + π[p + (1 − p)pq] − π[pq] =: c2.

In most practical cases, one expects that c2 < c1, and the
tighter second inequality reflects the possibility of damage
caused by other agent. Therefore, the Nash equilibrium for
the game is in the state (S, S) if c ≤ c2 and (N,N) if c > c1.
If c2 < c ≤ c1, then both equilibria are possible and the
solution to the game is indeterminate. Overall, we have the
following:

• if c < c2: the optimal strategy is to invest in self-
protection;
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TABLE III
PAYOFF MATRIX WITH INSURANCE AND SELF-PROTECTION

agent 2: S agent 2: N
(I, S) u[w0 − c − pq� + γ]
(I, N) u[w0 − (p + pq(1 − p))� − γ]
(NI, S) u[w0 − c] (1 − pq)u[w0 − c] + pqu[w0 − c − �]
(NI, N) (1 − p)u[w0] + pu[w0 − �] pu[w0 − �] + (1 − p)(pqu[w0 − �] + (1 − pq)u[w0])

• if c2 < c < c1: if the other user in the network do invest
in self-protection, then the optimal strategy is to invest in
self-protection;

• if c1 < c: then the optimal strategy is to not invest in
self-protection.

B. IDS and full coverage insurance

We now consider the situation where the choice is left to
the agent as to whether to invest in self-protection and/or in a
full coverage insurance. As noted in Section III-C, if we want
to avoid a moral hazard problem, the insurance premium has
to be tied to the amount spent on self-protection. Note that the
probability of loss for agent 1 depends on the choice made by
agent 2, however it seems necessary (at least from practical a
point of view) to link the premium applied to agent 1 to the
behavior of agent 1 only. A possible choice (which is profit-
making for the insurance) is to choose for each decision of
the agent the fair ’worst case’ premium as follows,

℘[S] = pq�, ℘[N ] = (p + (1 − p)pq)�.

We summarize the payoff for agent 1 in Table III, depending
on the investment of agent 2 and for the four possible choice
of the agent (notations are the same as in Section III-C). We
denote

c4[γ] := p(1 − pq)� + π[p + (1 − p)pq] + γ.

Let us examine the situation depending on the behavior of
agent 2. If agent 2 invests in self-protection (denoted by S2),
then for c < c1, agent 1 chooses to invest in self-protection
also and not otherwise. Consider now the case when agent
2 does not invest in self-protection (denoted by N2). Then if
c < min(c3[γ], c4[γ]) := c[γ], the optimal strategy is (I, S).
Note that we have c4[γ] ≥ c2 for all values of γ and we proved
above that we can choose γ such that c3[γ] ≥ c2. Therefore
it is possible to tune γ such that c[γ] ≥ c2.

Note in particular that when insurance with discrimination is
available, (S, S) becomes a Nash equilibrium for c < c[γ] with
c[γ] > c2 for well-chosen values of γ. In such a case, insurance
is an incentive to self-protection. The main features present in
the single-agent are also present in the 2-agent case. However
a new feature comes into play because of the interdependent
risks, namely the existence of a new threshold c2 which
takes into account the externality modeled by the possible
contagion via the other agent. We see that the externalities
due to the interdependent risks tend to lower the incentive
for investing in self-protection. However, we also see that the
effect of the insurance (with discrimination) is unaffected by
these interdependent risks. As a result the relative efficiency
of insurance is higher in the presence of externalities.

V. CONCLUSION

One of our main contributions in this paper is to develop
and solve a simple model which explains why economically
rational entities would prefer a relatively insecure system to
a more secure one, and which shows that insurance is an
incentive mechanism which leads both users in our 2-user
model to the desirable state where they all invest in self-
protection. In reference [4], we have extended this work to
the general case of n agents and show that the results in this
paper still hold. In fact, we find that insurance is a powerful
incentive mechanism for self-protection. Specifically, we show
that the adoption of security investments follows a threshold
or tipping point dynamics, and that insurance is an incentive
mechanism which pushes entities over the threshold to the
state where they all invest in self-protection.

To conclude, we believe that Internet insurance, in addition
to providing the benefits shown in the paper, offers a fertile
area of reflection and research. It is a timely area, as well,
given the recent activities around clean-slate Internet design.
We propose to add to the slate a broader definition of risk
management, which includes the transfer of risk in addition to
only the mitigation of risk.
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