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Abstract In the context of communication networks, the framework of stochastic
event graphs allows a modeling of control mechanisms induced by the communica-
tion protocol and an analysis of its performances. We concentrate on the logarithmic
tail asymptotics of the stationary response time for a class of networks that admit
a representation as (max,plus)-linear systems in a random medium. We are able to
derive analytic results when the distribution of the holding times are light-tailed. We
show that the lack of independence may lead in dimension bigger than one to non-
trivial effects in the asymptotics of the sojourn time. We also study in detail a simple
queueing network with multipath routing.

Keywords Queueing theory · Large deviations

1 Introduction

In this paper, we study tail asymptotics of the form

lim
x→∞

1

x
log P(Z > x) = −θ∗ < 0,

where the random variable Z corresponds to a “global” state variable associated to a
(max,plus)-linear system. We only deal with light-tailed distributions, i.e. distribution
functions that decay exponentially fast. The simplest example of random variable
covered by our results is the stationary waiting time in a FIFO GI/GI/1 queue.
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This case has been extensively studied in the literature and much finer estimates are
available, see the complementary works Iglehart (1972) and Pakes (1975).

In recent years, there has been some interest in extending this result to networks
of queues. Chang (1995) considers an intree network and uses large deviations tech-
niques to show that the queue length distributions have an exponentially decaying
tail. Ganesh and Anantharam (1996) obtains the decay rate of the tail distribution for
two exponential server queues in series fed by renewal arrivals. In Bertsimas et al.
(1998), the decay rate of the stationary waiting time and queue length distributions
at each node are computed in an acyclic network in the context of quite general
arrival and service processes. Literature on large deviations of queueing networks
with feedback is rare and confined to the setting of networks described by finite-
dimensional Markov processes, see Dupuis and Ellis (1995), Dupuis et al. (1991)
and the recent works Ignatiouk-Robert (2000), Ignatiouk-Robert (2005). Moreover,
these works concentrate on local large deviations and cannot handle the large
deviations of the network in its stationary regime. The large deviations asymptotics
of queueing systems are difficult to analyze because they are dynamical systems with
discontinuities. To the best of our knowledge, there is no rigorous result on the large
deviations of non-exponential networks with feedback in their stationary regime.

In this paper, we consider a class of networks that admit a (max,plus)-linear
representation. This class contains the stochastic event graphs (which can be used
to model window-based congestion control mechanism like TCP) and hence our
results give the tail asymptotics of the steady state end-to-end response times of these
networks. We should stress that the results of this paper are not restricted to this sub-
class and we give an example of a network with multipath routing that is covered by
our framework.

From a mathematical point of view, we study Z the stationary solution of a
(max,plus)-linear recursion. For example, in the case of Lindley’s recursion, Z is the
stationary workload of a single server queue. In a multi-dimensional setting, Z will
be the biggest coordinate of the solution vector. For example, in the case of queues
in tandem, Z will be the stationary end-to-end delay. The main contribution of this
paper is to derive the tail asymptotics for Z using moment generating functions.
Precise results concerning large deviations of products of random topical operators
have been obtained in Toomey (2002). However very restrictive conditions are
required on the coefficients of the matrix and only the irreducible case is studied
in Toomey (2002). Here we do not assume these requirements to be fulfilled and
we show that under mild assumptions on the matrix structure, an expression for
the tail behavior of Z is explicitly given and can be computed (or approximated) in
practical cases.

In the next section, we first give the general (max,plus) framework (Baccelli
et al. 1992), with some examples of queueing networks. Then we give the stochastic
assumptions and the tail asymptotics of the stationary solution of the (max,plus)-
linear recursion is derived in Theorem 1 which clearly extends the case of the single
server queue. Theorem 2 gives a more explicit form of the exponential decay rate.

In Section 3, we study two queueing applications. First we consider a system of
two queues in tandem and show that when the service times at both queues are
identical, then depending on the value of the intensity of the arrival process there
is a phase transition in the behavior of the network reaching a large end-to-end delay
(Proposition 2). Then we study in detail a simple example of queueing networks
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with resequencing. Multipath routing has recently received some attention in the
context of both wired and wireless communication networks. By sending data packets
along different paths, multipath routing can potentially help balance the traffic load
and reduce congestion levels in the network, thereby resulting in lower end-to-end
delay. We show how our framework can model such mechanisms and give analytical
insights.

Sections 4, 5 contain the proofs of Theorem 1 and Theorem 2 respectively. We
give some further research directions in the conclusion.

2 Tails for discrete event systems

In this paper we consider open systems with a single input marked point process N =
{(Tn, An, Bn)}−∞<n<∞, where in a queueing context the sequence {Tn} describes the
customer arrival times in the network and {An, Bn} carries the information related
to the n-th customer (like its service time at the different stations, routing decisions).
We give a precise description of the dynamic of the system in the next section and of
the random variable Z for which we derive the logarithmic tail asymptotics.

2.1 (Max, plus)-linear systems

The (max, plus) semi-ring Rmax is the set R ∪ {−∞}, equipped with max, written
additively (i.e., a ⊕ b = max(a, b)) and the usual sum, written multiplicatively (i.e.,
a ⊗ b = a + b). The zero element is −∞. For matrices of appropriate sizes, we de-
fine (A ⊕ B)(i, j ) = A(i, j ) ⊕ B(i, j ) := max(A(i, j ), B(i, j )) and (A ⊗ B)(i, j ) = ⊕

k A(i,k) ⊗
B(k, j ) := maxk(A(i,k) + B(k, j )). By convention if A is a matrix and c ∈ Rmax, then
(A ⊗ c)(i, j ) := A(i, j ) ⊗ c.

Let s be an arbitrary fixed natural number. We assume that we are given with a
sequence of matrices with non-negative coefficients: An of size s × s and Bn of size
s × 1. To the sequences {An}n, {Bn}n, and {Tn}n, we associate the following (max,
plus)-linear recurrence:

Xn+1 = An+1 ⊗ Xn ⊕ Bn+1 ⊗ Tn+1, (1)

where {Xn, n ∈ Z} is a sequence of state variables of dimension s. In Examples 1, 2,
3, we derive the explicit form of this recursion for the single server queue, queues in
tandem, and a fork join system. We refer to these examples to get an interpretation
of the various quantities.

The stationary solution of this equation is constructed as follows. We write

Y[m,n] :=
⊕

m≤k≤n

D[k+1,n] ⊗ Bk ⊗ Tk, (2)

where for k < n, D[k+1,n] = ⊗k+1
j=n A j = An ⊗ · · · ⊗ Ak+1 and D[n+1,n] = E, the

identity matrix (the matrix with all its diagonal elements equal to 0 and all its
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non-diagonal elements equal to −∞). It is readily checked that Y[m,m] = Bm ⊗ Tm,
and for all n ≥ m,

Y[m,n+1] = An+1 ⊗ Y[m,n] ⊕ Bn+1 ⊗ Tn+1.

In view of Eq. 2, the sequence {Y[−n,0]} is non-decreasing in n, so that we can define
the stationary solution of Eq. 1,

Y(−∞,0] := lim
n→∞ Y[−n,0] ≤ ∞.

We define the stationary maximal dater by

0 ≤ Z := Z (−∞,0] =
⊕

1≤i≤s

Y(i)
(−∞,0] − T0 ≤ ∞. (3)

The following expression for the stationary maximal dater shows the similitude with
the traditional stationary workload of a single server queue:

Z = sup
n≤0

{Sn − (T0 − Tn)}, (4)

where the process {Sn}n≤0 is defined by

Sn :=
⊕

1≤i≤s

(
D[n+1,0] ⊗ Bn

)(i)
. (5)

Example 1 Consider a FIFO single server queue where Tn is the arrival time of the
n-th customer and σn is its service time. Equation 1 is then the standard Lindley’s
recursion,

Xn+1 = max(Xn + σn+1, Tn+1 + σn+1)

= σn+1 ⊗ Xn ⊕ σn+1 ⊗ Tn+1.

The interpretation of Xn is the departure time of the n-th customer from the queue.
Note that in this case, we have Sn = ∑0

i=n σi and Z is the stationary workload.

Example 2 Consider now a system of two queues in tandem, where Tn is the arrival
time of the n-th customer in the system and σ (i)

n is its service time at queue i, for
i = 1, 2. Then Eq. 1 is given by

(
X (1)

n+1

X (2)
n+1

)

=
(

σ
(1)
n+1 −∞

σ
(1⊗2)
n+1 σ

(2)
n+1

)(
X (1)

n

X (2)
n

)

⊕
(

σ
(1)
n+1

σ
(1⊗2)
n+1

)

Tn+1,

where we used the shorthand notation σ
(1⊗2)
n+1 = σ

(1)
n+1 ⊗ σ

(2)
n+1. In this case X (1)

n is the
departure time of the n-th customer from the first queue and X (2)

n from the second
queue. Hence Z is the stationary end-to-end delay of the network. Note that in this
case, we have

Sn = sup
n≤�≤0

�∑

i=n

σ
(1)

i +
0∑

j=�

σ
(2)

j . (6)
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Example 3 Consider the standard fork and join system as depicted (with Petri net
formalism) in Fig. 1. In this model, each time a packet (say k) finishes its service
σ

(1)

k in node 1, there is one packet sent up and one packet sent down simultaneously.
The ‘up’-packet (‘down’-packet) is then also the k-th packet for node 2 (for node 3
respectively). The k-th packet joins the queue of node 4 once both packets have left
node 2 and 3 respectively. Each node is a standard ·/G/1/∞ queue.

Let X (i)
n denote the departure time of the n-th packet from node i. We have the

following equations:

X (1)
n+1 = (

Tn+1 ⊕ X (1)
n

) ⊗ σ
(1)
n+1,

X (2)
n+1 = (

X (1)
n+1 ⊕ X (2)

n

) ⊗ σ
(2)
n+1,

X (3)
n+1 = (

X (1)
n+1 ⊕ X (3)

n

) ⊗ σ
(3)
n+1,

X (4)
n+1 = (

X (2)
n+1 ⊕ X (3)

n+1 ⊕ X (4)
n

) ⊗ 0.

This system is linear in the (max, plus) semi-ring Rmax, and we can write the recursion
1 with the following matrices:

An =

⎛

⎜
⎜
⎜
⎜
⎝

σ (1)
n −∞ −∞ −∞

σ (1⊗2)
n σ (2)

n −∞ −∞
σ (1⊗3)

n −∞ σ (3)
n −∞

σ (1⊗2⊕3)
n σ (2)

n σ (3)
n 0

⎞

⎟
⎟
⎟
⎟
⎠

, Bn =

⎛

⎜
⎜
⎜
⎜
⎝

σ (1)
n

σ (1⊗2)
n

σ (1⊗3)
n

σ (1⊗2⊕3)
n

⎞

⎟
⎟
⎟
⎟
⎠

,

where we used the shorthand notations, σ
(i⊗ j)
n = σ (i)

n ⊗ σ
( j)
n and σ

(i⊗ j⊕k)
n = σ (i)

n ⊗(
σ

( j)
n ⊕ σ (k)

n

)
. In this case Z is the stationary end-to-end delay of the network.

Fig. 1 Fork and join model

σ (1)

σ (3)

σ (2)
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We refer to Baccelli et al. (1992) for other examples of (max,plus)-linear networks
(see also Lelarge 2005 for an example showing how to model window control
mechanism).

2.2 Tail asymptotics for the stationary solution

First we need to give conditions that ensure the stability of the system, i.e. that the
limit 3 is finite. Hence we introduce the following assumption in order to apply first-
order Theorems of Section 7.3 of Baccelli et al. (1992):

Assumption (ST) (Structure of (An, Bn))
The random variables An, Bn have a fixed structure, i.e. each entry of An or Bn is

either a.s. equal to −∞ or non-negative for all n. And each diagonal entry of An is
non-negative.

Assumption (IA) (independence assumption)
We suppose that the sequences {(An, Bn)}n and {τn := Tn+1 − Tn}n are mutually

independent and each of them consists of i.i.d. random variables with finite means.

This assumption implies a law of large numbers for {S−n} as defined in Eq. 5,
namely,

S−n

n
→n→∞ γ both a.s. and in L1, (7)

where γ is a constant referred to as the top Lyapunov exponent of the sequence {An}
see Theorems 7.27 and 7.36 in Baccelli et al. (1992).

Assumption (S) (stability)
We assume that γ < E[τ1] = a.

We have that under (IA) and (S) the maximal dater Z defined in Eq. 3 is almost
surely finite.

We denote by 0 the vector with all its entries equal to 0.

Assumption (SP) (Separability)
We assume that we have for all n,

An ⊗ 0 = Bn ⊕ 0.

This assumption ensures that for a solution Xn of Eq. 1 with any initial condition:
if Xn ≤ 0 ⊗ Tn+1 then the process Xn+1,Xn+2, . . . does not depend on the past
Xn,Xn−1, . . . Note that this assumption is clearly satisfied in the examples described
above since we have An ⊗ 0 = Bn. We refer to Section 2.2.4 of Lelarge (2005) for
an example of network with An ⊗ 0 = Bn ⊕ 0 �= Bn. In fact, Propositions 3 and 4
of Lelarge (2005) show that any FIFO event graph with a single input fits into our
framework. However this condition allows also to deal with some type of networks
with (random) routing as described in Section 3.2. This property of separability can
be made precise in a larger framework than (max,plus)-linear networks: this is the
class of monotone separable networks introduced in Baccelli and Foss (1995).
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We now give the stochastic assumptions that ensure that the random variable Z
is light tailed:

Assumption (LT) (Light-tailed)
Let

η = sup

{

θ > 0,
⊕

i

E

[
eθ B(i)

1

]
< ∞

}

.

We assume that η > 0.

We will always assume that Assumptions (ST), (IA), (S), (SP), (LT) hold. We are
now in position to state our main result.

Theorem 1 The following limit exists as an extended real number:

�S(θ) = lim
n→∞

1

n
log E

[
eθ S−n

]
. (8)

We have

θ∗ = sup{θ > 0, �S(θ) + �T(−θ) < 0} > 0, (9)

where �T(θ) = log E
[
eθτ1

]
and the tail asymptotics of Z is given by,

lim
x→∞

1

x
log P(Z > x) = −θ∗.

In the case of the single server queue, we have clearly �S(θ) = log E[exp(θσ1)] and
Theorem 1 extends a standard result of queueing theory that goes back to the work
Cramér (1938) and in a queueing context to Iglehart (1972). Note that usually authors
assume in addition to our assumptions the so-called Cramér condition. This result
for the single server queue without this extra condition also follows from Lelarge
(2007b). We will give more comments about this theorem in Section 3.

2.3 More detailed results

In this section we give a more explicit form for θ∗. Without loss of generality, we may
assume that the matrices An have the following block structure:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

An(1, 1) | −∞ | −∞ | −∞
− − − − − − −

An(2, 1) | An(2, 2) | −∞ | −∞
− − − − − − −

...
...

...

− − − − − − −
An(d, 1) | An(d, 2) | | An(d, d)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where each An(�, �) is an irreducible matrix.
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Theorem 2 Associated to the irreducible matrices {An(�, �)}, we define the following
function:

��(θ) = lim
n→∞

1

n
log E

[
eθ(An(�,�)⊗···⊗A1(�,�))

(u,v)
]
,

where the limit exists in R ∪ {∞} and is independent of u, v. Then we have θ∗ =
min{η, θ�} where the θ�’s are defined as follows

θ� = sup{θ > 0, ��(θ) + �T(−θ) < 0}.
In the case of a single server queue with exponentially distributed service times,

we have η > θ∗ and this property remains valid for a large class of distributions.
However, we show in the next section that as soon as we consider a network (i.e.
with at least 2 nodes) then the parameter η can play a role even with exponentially
distributed service times.

We first give a framework where η cannot play any role. Given a vector v =
(v(1), . . . , v(K)), we call a (max, plus) expression P a polynomial in v of unit maximum
degree if it has the form

P =
⊕

j

⊗

k∈K j

v(k),

where K j ⊂ [1, K].

Corollary 1 If there exists a sequence of random variables {σn = (σ (1)
n , . . . , σ (K)

n )}n

such that

(1) The components of σn are independent of each other;
(2) For all i, there exists k such that A(k,k)

n = σ (i)
n ;

(3) Each entry of An that is not 0 or −∞ is a polynomial (in Rmax) in σn of unit
maximal degree.

Then we have θ∗ = min{θ�}.

In a queueing context, the sequence of matrices {An(�, �)} corresponds to a
specific “component” of the network. It is well-known that the stability of such a
network is constrained by the “slowest” component (Baccelli et al. 1992). Here we
see that in a large deviations regime, if each component is independent of each other,
then the “bad” behavior of the network is due to a “bottleneck” component (which
is not necessarily the same as the “slowest” component in average).

Remark 1 In the framework of last Corollary, the tail asymptotics for Z under
heavy-tailed (more precisely subexponential) assumptions [i.e. when Assumption
(LT) is not satisfied] has been derived in Baccelli et al. (2004). In this case, the
exact asymptotics (i.e. not in the logarithmic scale) are derived and the Lyapunov
exponents of the sub-matrices {An(�, �)} appear. These exponents are known to be
hard to compute (Blondel et al. 2000). Similarly in the light-tailed case we see that the
asymptotics in the logarithmic scale is given by the functions ��(θ). The computation
of these functions is not easy, in particular when the network has some feedback
mechanism. More formally, we will see that this function is convex and its right-
derivative at zero is exactly the Lyapunov exponent of the sub-matrices {An(�, �)},
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so that knowing the function ��(θ) allows to determine the Lyapunov exponent.
In particular, at the level of generality considered in this paper, our result cannot
be made in a more explicit form. We will see in the next section several examples
for which the value of θ∗ has a simple expression in terms of the parameters of the
problem. It is interesting to note that, as opposed to the heavy-tailed case, exact
tail asymptotics for Z under light-tailed assumptions seem to be out of reach in the
general framework of (max,plus)-linear networks.

Example 4 Going back to the fork and join system described in Example 3, we see
that the irreducible matrices are one-dimensional and we have for � = 1, 2, 3,

��(θ) = log E

[
eθσ

(�)
1

]
.

Hence if θ� denotes the exponential rate of decay for the single server queue fed
by {Tn, σ

(�)
n }, then we have θ∗ = min{θ�} in the case where each sequence of service

times at each station are independent of each other.

3 Queueing applications

3.1 The impact of dependence

In view of Eq. 4, Z is the supremum of a random process with negative drift and to
make the connection with the existing literature, we state the following result (for a
proof we refer to Lelarge 2007b Corollary 2):

Proposition 1 Under Assumptions (IA) and (S) and if

(1) The sequence {S−n/n} satisfies a large deviation principle (LDP) with a good rate
function I;

(2) There exists ε > 0 such that �S(θ
∗ + ε) < ∞,

where θ∗ is defined as in Eq. 9. Then we have

lim
x→∞

1

x
log P(Z > x) = −θ∗ = − inf

α>0

I(α)

α
. (10)

This kind of result has been extensively studied in the queueing literature and
follows directly from the work Duffy et al. (2003). However, we see that considering
the moment generating function instead of the rate function allows us to get a more
general result than Eq. 10 since we do not require the assumption on the tail (which is
essential for Eq. 10 to hold see Duffy et al. 2003). Indeed this assumption ensures that
the tail asymptotics of P(Z > x) ≥ P(Sn − (T0 − Tn) > nα), where we take x = nα,
cannot be dominated by P(Sn − (T0 − Tn) > nα) for a single n value. In this case,
Eq. 10 has a nice interpretation: the natural drift of the process Sn − (T0 − Tn) is
(γ − a)n, where γ − a < 0. The quantity I(α) can be seen as the cost for changing
the drift of this process to α > 0. Now in order to reach level x, this drift has to last
for a time x/α. Hence the total cost for reaching level x with drift α is xI(α)/α and
the process naturally chooses the drift with the minimal associated cost. This can be
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made precise in some cases by a conditional limit theorem that characterizes the most
likely path.

In this section we show that this interpretation might be misleading in a queueing
context. We consider a very simple example: a system of two queues in tandem.
We assume that the sequence {(σ (1)

n , σ (2)
n )}n is a sequence of i.i.d. random variables

with max{E[σ (1)
1 ], E[σ (2)

1 ]} < a and E[exp θ(σ
(1)
1 + σ

(2)
1 )] finite in a neighborhood of

the origin.
If the service times of station 1 and station 2 are independent of each other, then

the most likely cause of a given customer suffering a large delay is that a large number
of its immediate predecessors require service times in excess of their inter-arrival
times at one of the stations. However in the case where the service times are the
same at both stations, we show that depending on the intensity of the arrival process
λ, two situations may occur:

(1) If λ < λc, then the most likely reason that a given customer suffers a large delay
is that its own service time is large;

(2) If λ > λc, then the tail asymptotic of the end-to-end delay is the same as in the
independent case.

Let consider first the case where σ (1)
n and σ (2)

n are independent. We are in the
framework of Corollary 1. Hence if we denote by θ(i) the exponential rate of decay for
the tail asymptotics of the stationary workload of a single server queue with arrival
times Tn and service times σ (i)

n , then we have

lim
x→∞

1

x
log P(Z > x) = − min(θ(1), θ (2)).

This result has been obtained in Ganesh (1998). In words, we can say that the
large deviation of the end-to-end delay in a system of two queues in tandem with
independent service times is dominated by the “worst” one.

Consider now the case where σ (1)
n = σ (2)

n for all n and the sequence {σ (1)
n }n is a

sequence of i.i.d. random variables exponentially distributed with mean 1/μ. We
assume also that the arrival process is Poisson with rate λ < μ. Then a direct
application of Theorem 2 gives,

Proposition 2 In the previous framework, we have

lim
x→∞

1

x
log P(Z > x) = −θ∗,

with

λ ≤ μ/2 ⇒ θ∗ = μ/2,

λ > μ/2 ⇒ θ∗ = μ − λ.

This proposition completes the result in Ganesh (1998). For small values of λ, the
tail of the end-to-end delay is determined by the total service requirement of a single
customer whereas when λ > μ/2, it is the same as in the independent case.

This shows that the behavior of tandems differs from that of a single server queue.
In particular Anantharam (1989) shows that for GI/GI/1 queues, the build-up of
large delays can happen in one of two ways. If the service times have exponential
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tails, then it involves a large number of customers (whose inter-arrival and service
times differ from their mean values). This behavior is analogous to that of tandems
where the service times are independent at each station or if the arrival intensity is
sufficiently large. If the service times do not have exponential tails, then large delays
are caused by the arrival of a single customer with large service requirement. In
contrast, we see that a single customer can create large delays in tandems even under
the assumption of exponential service times, if the arrival intensity is sufficiently low.

3.2 A case study: queueing network with resequencing

The aim of this section is to show that the results of this paper are not restricted to the
class of event graphs and that our framework can deal with complex synchronization
problems encountered in applications.

In many distributed applications (e.g., remote computations, database manipula-
tions, or data transmission over a computer network), information integrity requires
that data exchanges between different nodes of a system be performed in a specific
order. However, due to random delays over different paths in a system, the packets or
updates may arrive at the receiver in a different order than their chronological order.
In such a case, a buffer (with infinite capacity) at the receiver has to store disordered
packets temporarily. There is an extensive literature on resequencing problems and
we refer the interested reader to the survey Baccelli and Makowski (1989), see also
the more recent work Jean-Marie and Gün (1993).

We consider a simple queueing model of disordering, namely a set of two parallel
single server queueing station .|GI|1 with renewal arrivals under probabilistic state-
independent routing. This model constitutes an ersatz of the very complex situation
appearing in communication networks. While the details of any protocol have been
eliminated, the essence of network behavior (i.e. disordering) is preserved. In the
sequel, we shall thus consider the model described in Fig. 2.

We assume that packets arrive in the first queue according to a renewal process
{Tn}. We will model the routing at node 1 by a Bernoulli routing: with probability p
[resp. (1 − p)] the packet is sent up to node 2 (resp. down to node 3). Once packet
k reaches the receiver, it leaves the system if all packets j with j < k have already
left the system. Otherwise it stays in the resequencing buffer, where it waits for the
packets with number less than k.

This model is similar to the standard fork and join system described in Example 3.
Even if the routing mechanism is not the same here, we now show how we can adapt
Example 3. In order to model the desired routing mechanism we will use the idea of

node 1 p

1–p

node 2

node 3

node 4

Fig. 2 Resequencing problem
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clones, i.e., packets that behave like real packets except that they never require any
service time: their service time is null. Suppose that the real route of packet k is up.
Then at the end of its service in the first node, a clone is sent to node 3. Since σ

(3)

k = 0,
the departure time of packet k from node 3 is X (3)

k = max(X (1)

k ,X (3)

k−1). Similarly, if the
real route of packet k is down, then a clone is sent up. In both cases the “real” packet
k joins the queue of node 4 once “real” packet k − 1 has joined it (and not before).
In particular packets are ordered when they leave node 4.

Let {ζn = (ζ (1)
n , . . . ζ (3)

n )}n be a sequence of i.i.d. mutually independent random

variables with finite mean and such that
⊕

i E

[
exp(θζ

(i)
1

]
< ∞ for θ in a neighbor-

hood of the origin. Let {rn}n∈Z be a sequence of i.i.d. random variables, independent
of everything else, with values in {2, 3}. We write P(rn = 2) = 1 − P(rn = 3) =: p,
and assume that 0 < p < 1. In order to apply our idea of clones, we consider the
(max,plus)-recursion defined in Example 3 and we define

σ (1)
n := ζ (1)

n , σ (2)
n := ζ (2)

n 11{rn=2}, σ (3)
n := ζ (3)

n 11{rn=3}, σ (4)
n := 0.

We see that our system satisfies the assumptions of Theorem 2. In this case Z
is the end-to-end sojourn time of a packet (taking into account the resequencing
delay). The following proposition is a direct application of Theorem 2. In particular,
note that η ≥ θ�, hence we have

Proposition 3 In the previous framework, we have

lim
x→∞

1

x
log P(Z > x) = −θ∗ < 0,

where θ∗ = min{θ�} and the θ�’s are defined as follows

θ� = sup{θ > 0, ��(θ) + �T(−θ) < 0},
with

�1(θ) = log E

[
eθζ

(1)
1

]
,

�2(θ) = log
(

pE

[
eθζ

(2)
1

]
+ 1 − p

)
,

�3(θ) = log
(
(1 − p)E

[
eθζ

(3)
1

]
+ p

)
.

Then it is possible to make some optimizations. Assume to simplify that ζ (1)
n = 0

for all n and that the sequence {ζ (2)
n } and {ζ (3)

n } are independent sequences of i.i.d.
random variables exponentially distributed with respective mean 1/μ2 and 1/μ3.
We assume also that the arrival process is Poisson with rate λ > max(μ2, μ3), i.e.
we cannot send all packets to one node. In this case, we have to load-balance
the traffic in order to have a stable system. We have to chose p such that λ <

min(μ2/p, μ3/(1 − p)}. In order to do so efficiently, we would like to maximize θ∗.
Here, we have θ2 = μ2 − λp and θ3 = μ3 − λ(1 − p), hence the optimal value of p is
given by

p = 1

2

(
μ2 − μ3

λ
+ 1

)

and then, θ∗ = μ2 + μ3 − λ

2
.
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In particular, in the symmetric case μ1 = μ2, we find p = 1/2 which is in accordance
with standard results of resequencing literature (Jean-Marie and Gün 1993). Also
under heavy-tailed assumptions on the distribution of the ζ (i)’s, results are available
in Lelarge (2007a) and optimal values for the routing probabilities are computed
when minimizing the resequencing delay or the size of the resequencing queue size.

This model is certainly an oversimplification of the reality but it is intended to be of
pedagogical interest. We should stress that it could incorporate more sophistication
to enable to take into account general distributions, more than 2 paths or window
control mechanism (where at any time, the number of packets in the network is upper
bounded by the window size). In these cases, computations are much more complex
and numerical approximations have to be made.

4 Proof of Theorem 1

We first prove the existence of the moment generating function �S given by the limit
8. Then we prove that θ∗ defined by Eq. 9 is positive and then we derive the tail
asymptotics for Z .

Note that under our assumptions we have for n ≥ 0,

Sn =d

⊕

1≤i≤s

(
D[1,n] ⊗ B0

)(i)
, (11)

where the equality is in distribution. Hence for the simplicity of notation, we will
“inverse time” and index the processes by non-negative indexes. Hence Sn is now
given by the right-hand term of Eq. 11 and more generally we define for u ≤ v,

S[u,v] =
⊕

1≤i≤s

(
D[u+1,v] ⊗ Bu

)(i)
.

4.1 Computation of the moment generating function

Note that thanks to Assumption (ST), we have with i∗ defined as the argument of the
maximum in Eq. 11: Sn = (

D[1,n] ⊗ B0
)(i∗), then

Sn+1 ≥ A(i∗,i∗)
n+1 + Sn ≥ Sn.

In particular the process {Sn} is non-decreasing and we have the following expression:

S[u,v] =
⊕

1≤i≤s

⊕

u≤k≤v

(
D[k+1,v] ⊗ Bk

)(i)
.

The following lemma shows that the process has a subadditive property.

Lemma 1 We have for n, m ≥ 0,

Sn+m ≤ Sn + S[n+1,n+m].
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Proof We have by definition,
⊕

0≤k≤n

D[k+1,n] ⊗ Bk ≤ 0 ⊗ Sn,

hence by monotonicity, we have

An+1 ⊗
⊕

0≤k≤n

D[k+1,n] ⊗ Bk ≤ An+1 ⊗ 0 ⊗ Sn,

⊕

0≤k≤n

D[k+1,n+1] ⊗ Bk ≤ (Bn+1 ⊕ 0) ⊗ Sn,

iterating we get:

⊕

0≤k≤n

D[k+1,n+m] ⊗ Bk ≤
⎛

⎝
⊕

n+1≤ j≤n+m

D[ j+1,n+m] ⊗ B j ⊕ 0

⎞

⎠ ⊗ Sn.

Hence we have

⊕

0≤k≤n+m

D[k+1,n+m] ⊗ Bk ≤
⎛

⎝
⊕

n+1≤ j≤n+m

D[ j+1,n+m] ⊗ B j ⊕ 0

⎞

⎠ ⊗ Sn,

from which the lemma follows since S[n+1,n+m] ≥ 0. ��

Lemma 2 The following limit

�S(θ) = lim
n→∞

1

n
log E

[
eθ Sn

]
,

exists in R ∪ {+∞} for all θ ≥ 0. �S(.) is a proper convex function which is finite on
the interval [0, η). Moreover for all n and for all θ < η, we have E[exp θ Sn] < ∞.

Proof In view of Lemma 1, we have clearly the following subadditive property, for
θ ≥ 0,

log E
[
eθ Sm+n

] ≤ log E
[
eθ Sn

] + log E
[
eθ Sm−1

]
,

and the existence of �S follows and moreover, we have

�S(θ) = inf
n≥1

1

n
log E

[
eθ Sn

]
. (12)

The last part of the lemma follows from

⊕

i

B(i)
0 ≤ Sn ≤

n∑

k=0

⊕

i

B(i)
k ,

thanks to Assumption (SP). Then we have
(
⊕

i

E

[
eθ B(i)

0

]
)

≤ E
[
eθ Sn

] ≤
(
⊗

i

E

[
eθ B(i)

0

]
)n+1

,
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hence we see that �S(θ) is finite for θ ∈ [0, η) and infinite for θ > η. Then the fact that
�S is a proper convex function follows from Lemma 2.3.9 of Dembo and Zeitouni
(1998). ��

4.2 Computation of θ∗

Lemma 3 We have θ∗ > 0 and

�S(θ) + �T(−θ) < 0 if θ ∈ (0, θ∗),

�S(θ) + �T(−θ) > 0 if θ > θ∗.

Proof In view of Assumption (S) and Eq. 7, we can choose n such that E[Sn] < na.
Then the function θ �→ log E[exp(θ Sn)] is convex, continuous and differentiable on
[0, η). Hence we have

1

n
log E[eθ Sn ] + log E

[
e−θτ1

] = θ

(
E[Sn]

n
− a

)

+ o(θ),

which is less than zero for sufficiently small θ > 0. By Eq. 12, we have for such θ ,

�S(θ) + �T(−θ) ≤ 1

n
log E[eθ Sn ] + log E

[
e−θτ1

]
< 0.

Hence θ∗ is positive and the last part of the lemma follows from the convexity of
�S(θ) + �T(−θ). ��

4.3 Tail asymptotics for Z

Lemma 4 We have,

lim sup
x→∞

1

x
log P(Z > x) ≤ −θ∗.

Proof First note that by Lemma 2, we have η ≥ θ∗ and for all θ < η, we have
E[exp(θ Sn)] < ∞. We denote Sτ

n = (T0 − T−n) for n ≥ 0. For any 0 < θ < θ∗, we
have thanks to Chernoff’s inequality,

P(Z > x) = P
(∪n{Sn − Sτ

n > x})

≤
∑

n

P(Sn − Sτ
n > x)

≤ e−θx
∑

n

E
[
eθ Sn

]
en�T (−θ),

where the last series converge because we proved in Lemma 3 that for θ < θ∗, we
have,

1

n
log E[eθ Sn ] + log E

[
e−θτ1

] → �S(θ) + �T(−θ) < 0. ��

Lemma 5 We have,

lim inf
x→∞

1

x
log P(Z > x) ≥ −θ∗.
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Proof We denote �(θ) = �S(θ) + �T(−θ) and Sτ
n = (T0 − T−n) as in the previous

proof. We only need to consider the case θ∗ < ∞. We consider first the case where
there exists θ > θ∗ such that �(θ) < ∞. First note that the function θ �→ �(θ)

is convex, hence the left-hand derivatives �′(θ−) and the right-hand derivatives
�′(θ+) exist for all θ > 0. Moreover, we have �′(θ−) ≤ �′(θ+) and the function
θ �→ 1

2 (�′(θ−) + �′(θ+)) is non-decreasing, hence �′(θ) = �′(θ−) = �′(θ+) except
for θ ∈ 
, where 
 is at most countable. Since �(θ) < ∞ for θ > θ∗, we have �(θ∗) =
0 and �′(θ∗+) > 0. To prove this, assume that �′(θ∗+) = 0. Take θ < θ∗, thanks
to Lemma 3, we have �(θ) < 0. Choose ε > 0 such that 0 < �(θ∗ + ε) < ε|�(θ)|.
We have

�(θ∗ + ε)

ε
<

−�(θ)

θ∗ − θ
,

which contradicts the convexity of �(θ). Hence, we can find t ≤ θ∗ + ε such that

0 < �(t), t /∈ 
.

Note that these conditions imply t > θ∗ and �′(t) ≥ �′(θ∗+) > 0.
Thanks to Gärtner–Ellis theorem (Theorem 2.3.6 in Dembo and Zeitouni 1998),

we have

lim inf
n→∞

1

n
log P(Sn − Sτ

n > nα) ≥ − inf
x∈F , x>α

�∗(x), (13)

where F is the set of exposed points of �∗ and �∗(x) = supθ≥0(θx − �(θ)). Note that
from the monotonicity of θx − �(θ) in x as θ is fixed, we deduce that �∗ is non-
decreasing. Moreover take α = �′(t), then �∗(α) = tα − �(t) and α ∈ F by Lemma
2.3.9 of Dembo and Zeitouni (1998).

Given x > 0, define n = �x/α�. We have

1

x
log P(Z > x) ≥ 1

nα
log P(Sn − Sτ

n ≥ nα),

taking the limit in x and n (while α = �′(t) is fixed) gives thanks to Eq. 13,

lim inf
x→∞

1

x
log P(Z > x) ≥ − tα − �(t)

α
≥ −t ≥ −θ∗ − ε.

We consider now the case where for all θ > θ∗, we have �(θ) = ∞, hence η = θ∗.
Take K > 0 and define S̃K

[n,m] = S[n,m]
∏m

i=n 11(⊕ jB
( j)
i ≤ K) and Z̃ K = supn≥0(S̃K

[−n,0] −
Sτ

n). We have clearly Z ≥ Z̃ K. It is easy to see that the proof of Lemma 2 is still valid
(note that the subadditive property carries over to S̃K

[n,m]) and the following limit
exists

�̃K
S (θ) = lim

n→∞
1

n
log E

[
eθ S̃K

[1,n]
]

= inf
n

1

n
log E

[
eθ S̃K

[1,n]
]
.
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Moreover thanks to the subadditive property of S (see Lemma 1), we have S̃K
[1,n] ≤

S̃K
[1,1] + · · · + S̃K

[n,n] = ⊕ jB
( j)
1 + · · · + ⊕ jB

( j)
n . Hence we have P(S̃K

[1,n] ≤ nK) = 1, so
that �̃K

S (θ) ≤ θ K. Hence by the first part of the proof, we have

lim inf
x→∞

1

x
log P(Z̃ K > x) ≥ −θ̃ K,

with θ̃ K = sup{θ > 0, �̃K
S (θ) + �T(−θ) < 0}. We now prove that θ̃ K → η as K tends

to infinity which will conclude the proof. Note that for any fixed θ ≥ 0, the function
�̃K

S (θ) is nondecreasing in K and limK→∞ �̃K
S (θ) = �̃S(θ) ≤ �S(θ). This directly

implies that θ̃ K ≥ η. Take θ > η, so that �S(θ) = ∞. If �̃S(θ) < ∞, then for all K, we

have �̃K
S (θ) ≤ �̃S(θ) < ∞. But, we have �̃K

S (θ) = infn
1
n log E

[
eθ S̃K

[1,n]
]
, so that there

exists n such that

E

[
eθ S[1,n] , max(⊕ jB

( j)
1 , . . . ,⊕ jB( j)

n ) ≤ K
]

≤ e�̃K
S (θ)+1 ≤ e�̃S(θ)+1,

but the left-hand side tends to infinity as K → ∞. Hence we proved that for all θ > η,
we have �̃K

S (θ) → ∞ as K → ∞. This implies that θ̃ K → η as K → ∞. ��

5 Proof of Theorem 2 and Corollary 1

We begin with a general result showing the existence of the function ��. Let {Mn} be
an i.i.d. sequence of irreducible aperiodic (max,plus)-matrices with fixed structure.
We denote

M(i, j)
[1,n] = (Mn ⊗ · · · ⊗ M1)

(i, j) .

Lemma 6 For θ ≥ 0, the following limit exists in R ∪ {+∞} and is independent of i
and j,

�M(θ) = lim
n→∞

1

n
log E

[
eθ M(i, j)

[1,n]
]
.

Proof We denote

�
(i, j)
M (θ, n) = log E

[
eθ M(i, j)

[1,n]
]
.

We have for θ ≥ 0,

�
(i, j)
M (θ, n + m) = log E

[
eθ M(i, j)

[1,n+m]
]

= log E

[

max
k

eθ M(i,k)
[n+1,n+m]eθ M(k, j)

[1,n]

]

≥ max
k

{
log E

[
eθ M(i,k)

[n+1,n+m]
]

+ log E

[
eθ M(k, j)

[1,n]
]}

= max
k

{
�

(i,k)

M (θ, m) + �
(k, j)
M (θ, n)

}
.
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In particular for j = i, we have

�
(i,i)
M (θ, n + m) ≥ �

(i,i)
M (θ, m) + �

(i,i)
M (θ, n).

Moreover thanks to the fixed structure assumption and the aperiodicity, there exists
N such that for n ≥ N, we have M(i, j)

[1,n] > −∞ for all i and j, hence �
(i, j)
M (θ, n) > −∞

and we have

lim
n→∞

1

n
�

(i,i)
M (θ, n) = sup

n≥N

1

n
�

(i,i)
M (θ, n) > −∞.

For arbitrary i and j, choose n, m ≥ N and note that

�
(i, j)
M (θ, n + m) ≥ �

(i,i)
M (θ, n) + �

(i, j)
M (θ, m),

�
(i,i)
M (θ, n + m) ≥ �

(i, j)
M (θ, n) + �

( j,i)
M (θ, m),

where all terms are in R ∪ {+∞}. Letting n → ∞ while keeping m fixed, it follows
that

lim
n→∞

1

n
�

(i, j)
M (θ, n) = lim

n→∞
1

n
�

(i,i)
M (θ, n). ��

Note that Assumption (ST) ensures that the matrices {An(�, �)} are irreducible
aperiodic with fixed structure. We now extend previous lemma to the sequence {An}
of reducible matrices. To do so, we first associate a graph G = (V, E) to An, as in
Section 2.3 of Baccelli et al. (1992). Set V := {1, . . . , s}, which we abbreviate as [1, s].
An edge (i, j) belongs to E if and only if A( j,i)

n ≥ 0. Two nodes of V are said to belong
to the same communication class if there is a directed path from the first to the second
and another one from the second to the first. Let C1, . . . , Cd be the communication
classes of G and � the associated partial order, namely C� � Cm if there is a path
from any vertex in C� to any vertex in Cm. Without loss of generality, we assume that
C� � Cm implies � ≤ m; this is a notationally convenient restriction on the numbering
of the communication classes.

We use the following notation:

• For any coordinate i ∈ V , its communication class is denoted by [i],
• For any coordinate i, the subset of coordinates j such that [ j] � [i] is denoted by

[≤ i];
• For any coordinate i, the subset of coordinates j such that [i] � [ j] is denoted by

[i ≤];
• For any coordinate i and j ∈ [i ≤], we write

[i ≤ j] := [i ≤] ∩ [≤ j].
We now extend previous lemma. We introduce first some notation.

��(θ) = �[i](θ) = lim
n→∞

1

n
log E

[
eθ D(i,i)

[1,n]
]
,

which does not depend on i ∈ C� as shown above.
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Lemma 7 For θ ∈ [0, η), we have

lim
n→∞

1

n
log E

[
eθ D(i, j)

[1,n]
]

= sup
k∈[i≤ j]

�[k](θ),

where the supremum over the empty set is −∞.

Proof If [i ≤ j] = ∅, the result is obvious and if j ∈ [i], the result follows from
previous lemma. Hence we consider only the case: [i ≤ j] ⊃ [i]. We denote

�(i, j)(θ, n) = log E

[
eθ D(i, j)

[1,n]
]
.

With the same argument as in previous lemma, we have for θ ≥ 0, and for any [i] �

C� � [ j], there exists k ∈ C� and u, v ≥ 1,

�(i, j)(θ, n + u + v) ≥�(i,k)(θ, u) + �(k,k)(θ, n) + �(k, j)(θ, v),

where each term is finite since θ < η. Hence we have by previous lemma:

lim inf
n→∞

�(i, j)(θ, n)

n
≥ sup

k∈[i≤ j]
�[k](θ).

For the upper bound, note that there exists u ≥ 1 such that D(i, j)
[1,u] > −∞ for all i ≤ j.

Consider first the case d = 2, i ∈ C1 and j ∈ C2, then we have

�(i, j)(θ, n) ≤ log E

[

max
a∈C2

eθ D(i,a)
[1,u] eθ D(a, j)

[u+1,n] + max
b∈C1

eθ D(i,b)
[1,n−u] eθ D(b , j)

[n−u+1,n]

]

,

≤ log

⎛

⎝
∑

a∈C2

e�(i,a)(θ,u)e�(a, j)(θ,n) +
∑

b∈C1

e�(i,b)(θ,n)e�(b , j)(θ,u)

⎞

⎠ ,

Hence by Lemma 1.2.15 of Dembo and Zeitouni (1998), we have

lim sup
n→∞

�(i, j)(θ, n)

n
≤ max (�1(θ),�2(θ)) .

We have clearly by induction that

lim sup
n→∞

�(i, j)(θ, n)

n
≤ sup

k∈[i≤ j]
�[k](θ),

which concludes the proof. ��

We now compute �S(θ) for a (max,plus)-linear system under the assumptions of
Theorem 2.

Lemma 8 We have for θ ∈ [0, η)

�S(θ) = sup
�

��(θ).
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Proof The lower bound follows directly from the following inequality: for all �, we
have for i ∈ C�,

E
[
eθ Sn

] ≥ E

[
eθ D(i,i)

[1,n]
]
.

We now derive the upper bound. Note that Ak ⊗ 0 = Bk ⊕ 0 ≥ Bk, hence we have

Sn =
⊕

1≤i≤s

⊕

0≤k≤n

(
D[k+1,n] ⊗ Bk

)(i)

≤
⊕

1≤i, j≤s

⊕

0≤k≤n

D(i, j)
[k,n].

Hence we have

E
[
eθ Sn

] ≤
∑

i, j

∑

k

E

[
eθ D(i, j)

[k,n]
]

≤ n
∑

i, j

E

[
eθ D(i, j)

[0,n]
]
,

and the lemma follows directly from Lemma 1.2.15 of Dembo and Zeitouni (1998).
��

Theorem 2 follows directly form the fact that �S(θ) = ∞ as soon as θ > η which
follows from the lower bound Sn ≥ B(i)

0 .
We now prove Corollary 1. The following lemma implies that �S(θ) = sup� ��(θ)

for all θ ≥ 0 and then Corollary 1 follows:

Lemma 9 Under assumptions of Corollary 1, there exists � ∈ [1, d] such that ��(θ) =
∞ for all θ > η.

Proof We only need to consider the case η < ∞. Take i such that
sup{θ, E[exp θ B(i)

0 ] < ∞} = η. By the condition on the entries of An, we have

B(i)
n ≤ ⊕ j A(i, j)

n ≤
K∑

k=1

σ (k)
n .

Hence there exists k such that E[exp(θσ (k)
n )] = ∞ for θ > η and there exist j such that

A( j, j)
n = σ (k)

n . Then � defined by C� = [ j] satisfies the property claimed in the lemma.
��

6 Conclusion

We have shown that the distribution of the stationary solution of a (max,plus)
recursion has an exponentially decaying tail and we gave an analytical formula to
compute the decay rate. We also analyzed a queueing network with multipath routing
and showed on a simple example how our analysis could help in the design of the
routing decision depending on the characteristic of the traffic.
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We are currently working on some possible extensions of our work. Of particular
interest would be a large deviations principle for the process {Sn/n} introduced in
Eq. 5. It would allow to give the most probable way for a large deviation of the
maximal dater. Also, it should be possible to use the distributional Little’s law (Haji
and Newell 1971) to get asymptotics for the number of packets in the networks.

In general, the characterization of the decay rate is given by the moment gener-
ating function which is not easy to compute, especially in the case of feedback. One
practical question of interest would be to find good ways to estimate this function
from the statistics made on the traffic.
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