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These lecture notes have been written for a course given at the summer school in advanced
probability organized at Novosibirsk State University, Sobolev Institute of Mathematics in Au-
gust 2016. They are self-contained and cover part of the material of [5, 7, 8]. These lecture notes
shows how ideas from statistical mechanics, graphical models and message passing algorithms
can be combined on a particular example: the monomer-dimer problem. During the lectures, I
also covered the sum-product algorithm and the Bethe free energy in a general context. These
sections will be added in a future version of these lecture notes...

1 Some definitions

We consider a connected multigraph G = (V,E). We denote by v(G) the cardinality of V :
v(G) = |V |. We denote by the same symbol ∂v the set of neighbors of node v ∈ V and the set
of edges incident to v. Also, ∂u\v is the set of neighbors of u in G from which we removed v. A
matching is encoded by a binary vector, called its incidence vector, b = (be, e ∈ E) ∈ {0, 1}E
defined by be = 1 if and only if the edge e belongs to the matching. We have for all v ∈ V ,∑

e∈∂v be ≤ 1. The size of the matching is given by
∑

e be. We will also use the following notation
e ∈ b to mean that be = 1, i.e. that the edge e is in the matching. For a finite graph G, we
define the matching number of G as ν(G) = max{

∑
e be} where the maximum is taken over

matchings of G.

The matching polytope M(G) of a graph G is defined as the convex hull of incidence vectors
of matchings in G. We define the fractional matching polytope as

FM(G) =

{
x ∈ RE | xe ≥ 0,

∑
e∈∂v

xe ≤ 1

}
. (1)

We also define the fractional matching number ν∗(G) = maxx∈FM(G)

∑
e xe ≥ ν(G). It is well-

known that: M(G) = FM(G) if and only ifG is bipartite and in this case, we have ν(G) = ν∗(G),
see [11].

For a given graph G, we denote by mk(G) the number of matchings of size k in G (m0(G) =
1). For a parameter z > 0, we define the matching generating function:

PG(z) =

ν(G)∑
k=0

mk(G)zk.

In statistical physics, the function PG(z) is called the partition function. We introduce the
family of probability distributions on the set of matchings parametrised by a parameter z > 0
and called the Gibbs measures:

µzG(B = b) =
z
∑

e be

PG(z)
. (2)

Conventions: to ligthen the notation, we will usually write µzG(b) instead of µzG(B = b). Also
for a subset S of the set of matchings, we use the standard notation in probability:

µzG(S) = µzG(B ∈ S) =
∑
b∈S

µzG(b).
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For example, if S = {b, be = 1} for a given e ∈ E, we write:

µzG(Be = 1) =
∑
b∈S

µzG(b).

Expectation with respect to µzG is denoted by 〈.〉 so that for a function f(b) from the set of
matchings to R, we have

〈f(B)〉 =
∑
b

f(b)µzG(b).

Also our original graph G is unoriented, we introduce the set
−→
E of directed edges of G

comprising two directed edges u→ v and v → u for each undirected edge uv ∈ E. For −→e ∈
−→
E ,

we denote by −−→e the edge with opposite direction. With a slight abuse of notation, we also
denote by ∂v the set of incident edges to v ∈ V directed towards v.

2 A (very) little bit of statistical physics and Markov random
fields

We define the internal energy UG(z) and the canonical entropy SG(z) as:

UG(z) = −
∑
e∈E

µzG(Be = 1),

SG(z) = −
∑
b

µzG(b) lnµzG(b).

Note that we have:

UG(z) = −〈
∑
e

Be〉,

SG(z) = 〈lnµzG(B)〉.

The free entropy ΦG(z) is then defined by

ΦG(z) = −UG(z) ln z + SG(z).

A more conventional notation in the statistical physics literature corresponds to an inverse
temperature β = ln z.

Lemma 1. We have ΦG(z) = lnPG(z) and Φ′G(z) = −UG(z)
z .

Proof left as an exercise.

Lemma 2. The function UG(z) is strictly decreasing and mapping [0,∞) to (−ν(G), 0].

Proof. We have −UG(z) =
∑

k kmk(G)zk/PG(z) so that taking the derivative and multiplying
by z, we get:

−z(UG)′(z) =

∑
k k

2mk(G)zk

PG(z)
−
(∑

k kmk(G)zk

PG(z)

)2

=
∑
k

(
k −

∑
` `m`(G)z`

PG(z)

)2
mk(G)zk

PG(z)
> 0.
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Lemma 3. For all z > 1, we have

−UG(z) ≤ ν(G) ≤ −UG(z) + |E| ln 2

ln z
.

In particular, we have limz→∞−UG(z) = ν(G).

Proof. For any z > 1, we have thanks to previous lemma∫ z

1

−UG(s)

s
ds ≤ −UG(z) ln z.

Hence by Lemma 1, we have

ln
PG(z)

PG(1)
≤ −UG(z) ln z.

We have PG(1) =
∑

kmk(G) ≤ 2|E| and PG(z) ≥ zν(G), so that we get

ν(G) ≤ −UG(z) + |E| ln 2

ln z
.

For a finite graph G = (V,E), we define: for v ∈ V and h ∈ N, let Gh(v) = (Vh(v), Eh(v)) be
the subgraph of G induced by vertices at distance at most h from v; ∂Vh(v) is the set of edges
of G connecting Vh(v) and V \Vh(v). For a vector b = (be, e ∈ E), and a set S ⊂ E, we define
bS = (be, e ∈ S).

Lemma 4. (Markov property) For any h ≥ 1 and v ∈ V , we have for any b ∈ {0, 1}E with∑
e∈∂u be ≤ 1 for all u ∈ V ,

µzG
(
BEh(v) = bEh(v)|BE\Eh(v) = bE\Eh(v)

)
= µzG

(
BEh(v) = bEh(v)|B∂Vh(v) = b∂Vh(v)

)
= µz

Gb
h(v)

(
BEh(v) = bEh(v)

)
,

with Gb
h(v) obtained from Gh(v) by removing all vertices u ∈ Vh(v) such that e = (uw) ∈ ∂Vh(v)

and be = 1.

Proof left as an exercise.

3 Local recursions on finite trees and finite graphs

We first consider the case where G is a tree, i.e. a connected graph without cycle. To make this
assumption clear, we denote it by T = (V,E) instead of G. For any directed edge u → v, we
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define Tu→v as the subtree containing u and v and obtained from T by removing all incident
edges to v except the edge uv. A simple computation shows that

µzTu→v
(Buv=1)

µzTu→v
(Buv=0)

=
z
∏
w′∈∂u\v µ

z
Tw′→u

(Bwu = 0)∏
w′∈∂u\v µ

z
Tw′→u

(Bwu = 0) +
∑

w∈∂u\v µ
z
Tw→u

(Bwu = 1)
∏
w′∈∂u\{v,w} µ

z
Tw′→u

(Bwu = 0)

=
z

1 +
∑

w∈∂u\v
µzTw→u

(Bwu=1)

µzTw→u
(Bwu=0)

.

We define:

Yu→v(z) =
µT z

u→v(Buv=1)

µT z
u→v(Buv=0)

,

so that for a finite tree, we have:

Yu→v(z) =
z

1 +
∑

w∈∂u\v Yw→u(z)
. (3)

Then a simple computation shows that

µzT (Buv=1)

µzT (Buv=0)
=

Yu→v(z)Yv→u(z)

z
. (4)

Also, we gave an interpretation for the local recursion (3) for trees, only, we can define it

for any graph G. Given a set of ’messages’ a ∈ [0,∞)
−→
E , we define a new set of ’messages’

b ∈ [0,∞)
−→
E by:

bu→v =
1

1 +
∑

w∈∂u\v aw→u
, (5)

with the convention that the sum over the empty set equals zero. We denote by RG the mapping

sending a ∈ [0,∞)
−→
E to b = RG(a). For −→e ∈

−→
E , we also denote by R−→e : [0,∞)

−→
E → [0,∞) the

local update rule (5): b−→e = R−→e (a). Note that Ru→v indeed depends only on messages on edges
in ∂u\v. We also denote by zRG the mapping multiplying by z each component of the output
of the mapping RG (making the notation consistent).

Proposition 5. (i) For any finite graph G and z > 0, the fixed point equation:

y = zRG(y) (6)

has a unique attractive solution denoted y(z) ∈ (0, z)
−→
E .

(ii) If in addition, G is a finite tree, then for all e ∈ E, the law of Be under µzG is a Bernoulli
distribution with

µzG (Be = 1) =
y−→e (z)y−−→e (z)

z + y−→e (z)y−−→e (z)
. (7)
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Comparisons between vectors are always componentwise. Note that the last point follows
directly from (4). Before proving this proposition, let define for all v ∈ V , the following function
of the messages (y−→e ,

−→e ∈ ∂v),

Dv(y) =
∑
−→e ∈∂v

y−→eR−−→e (y)

1 + y−→eR−−→e (y)
(8)

=

∑
−→e ∈∂v y−→e

1 +
∑
−→e ∈∂v y−→e

. (9)

Note that if the graph G is a tree, Dv(y(z)) is simply the probability for vertex v to be covered
by a matching distributed according to µzG.

Proof. For the first point, we follow the proof of Theorem 3 in [10]. Let z > 0 and define the
sequence of messages: x0(z) = 0 and for t ≥ 0,

xt+1
u→v(z) =

z

1 +
∑

w∈∂u\v x
t
w→u(z)

. (10)

The sequence x2t(z) (resp. x2t+1(z)) is non-decreasing (resp. non-increasing). We define
limt→∞ ↑ x2t(z) = x−(z) and limt→∞ ↓ x2t+1(z) = x+(z). For any y(z) fixed point of (6),
a simple induction shows that

0 ≤ x2t(z) ≤ x−(z) ≤ y(z) ≤ x+(z) ≤ x2t+1(z) ≤ z.

We now prove that x−(z) = x+(z) finishing the proof of the first point. Note that we have
x+(z) = zRG(x−(z)) and x−(z) = zRG(x+(z)). In particular for any z > 0, we have x+

−→e (z)R−−→e (x+(z)) =

x−−−→e (z)R−→e (x−(z)) so that in view of (8), we have∑
v∈V
Dv(x+(z)) =

∑
v∈V
Dv(x−(z)). (11)

We see from (9) that for each v ∈ V , Dv(x) is an increasing function of the
∑
−→e ∈∂v x−→e , so that

(11) together with x−(z) ≤ x+(z) imply the desired result.

For z > 0, let x(z) ∈ RE be defined by

xe(z) =
y−→e (z)y−−→e (z)

z + y−→e (z)y−−→e (z)
∈ (0, 1), (12)

where y = (y−→e ,
−→e ∈

−→
E ) is the solution defined above.

We now give a reparametrization of the Gibbs distribution. For any vector b ∈ {0, 1}E ,
we denote by b∂v ∈ {0, 1}∂v its restriction to components in ∂v. We first define the marginal
probabilities for b∂v such that

∑
e∈∂v be ≤ 1,

µ∂v(b∂v) =

(
1−

∑
e∈∂v

xe(z)

)1−
∑

e∈∂v be ∏
e∈∂v

xe(z)
be , (13)

and for be ∈ {0, 1},

µe(be) = xe(z)
be(1− xe(z))1−be , (14)

where xe(z) is defined by (12).
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Exercise 6. Show that if G is a tree, these correspond to the marginals of µzG.

Given a graph G = (V,E) and some set F ⊂ E, we define dF (v) as the degree of node v
in the subgraph induced by F . A generalized loop is any subset F such that dF (v) 6= 1 for all
v ∈ V . We define V (F ) as the number of vertices covered by F , i.e. vertices with dF (v) ≥ 1.

Theorem 7. For any graph G, we have for z > 0,

µzG(b) =
1

1 + L

∏
v∈V µ∂v(b∂v)∏
e∈E µe(be)

, (15)

with

L =
∑
∅6=F⊂E

(−1)V (F )
∏
v∈V

(dF (v)− 1)
∏
e∈F

xe(z)

1− xe(z)
, (16)

where only generalized loops F lead to a non-zero term L.

Note in particular that if G is a tree, then L = 0.

Proof. The fact that µzG can be written as (15) (called tree-based reparameterization in [13])
follows from a direct application of the definitions.

Lemma 8. For any v ∈ V , z > 0, we have

µ∂v(b∂v)∏
e∈∂v µe(be)

= 1−
∑
S⊂∂v

(−1)|S| (|S| − 1)
∏
e∈S

be − xe(z)
1− xe(z)

.

To simplify notation, we write in the proofs xe instead of xe(z).

Proof. Note that if bf = 1, the left-hand side is equal to
∏
e6=f (1− xe)−1, while if

∑
e∈∂v be = 0,

it is equal to
1−
∑

e∈∂v xe∏
e∈∂v(1−xe) . We need to check that the right-hand side agrees in these two cases

(which are the only possible ones due to the constraint of being a matching).

Let consider the case bf = 1, then the right-hand side (denoted R) equals:

R = 1−
∑

|S|≥1,f /∈S

(−1)|S| (|S| − 1)
∏
e∈S

−xe
1− xe

−
∑

|S|≥1,f∈S

(−1)|S| (|S| − 1)
∏

e∈S,e6=f

−xe
1− xe

= 1−
∑

|S|≥1,f /∈S

(−1)|S|+1
∏
e∈S

−xe
1− xe

= 1 +
∑

|S|≥1,f /∈S

∏
e∈S xe

∏
e′ /∈S,e′ 6=f (1− xe′)∏

e6=f (1− xe)

=
1∏

e6=f (1− xe)
.

A similar computation shows the second case.
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We now compute L. By definition, we have

1 + L =
∑
b

∏
e

µe(be)
∏
v

µ∂v(b∂v)∏
e∈∂v µe(be)

.

By Lemma 8, we have

P :=
∏
v

µ∂v(b∂v)∏
e∈∂v µe(be)

=
∏
v

(
1 +

∑
S⊂∂v

(−1)|S|−1 (|S| − 1)
∏
e∈S

be − xe
1− xe

)

1 + L can be seen as an expectation of P where the Be are independent Bernoulli random
variables with parameter xe. In particular expanding P , we see that only the terms (Be − xe)2

will contribute to its expectation so that we get

L =
∑
∅6=F⊂E

∏
v

(
(−1)dF (v)−1(dF (v)− 1)∏

e∈∂v∩F (1− xe)

)∏
e∈F

xe(1− xe)

=
∑
∅6=F⊂E

(−1)V (F )
∏
v

(dF (v)− 1)
∏
e∈F

xe
1− xe

,

where in the last claim, we used
∏
v(−1)dF (v) = 1.

Hence, summarizing our results so far, we have if G is a tree:

UG(z) = −
∑
e∈E

xe(z),

SG(z) = −
∑
b

µzG(b) lnµzG(b)

= −
∑
b

µzG(b)

(∑
v

lnµ∂v(b∂v)−
∑
e

lnµe(be)

)
= −

∑
v

∑
b∂v∈{0,1}∂v

µ∂v(b∂v) lnµ∂v(b∂v) +
∑
e

∑
be∈{0,1}

µe(be) lnµe(be)

=
1

2

∑
v∈V

{∑
e∈∂v

(−xe(z) lnxe(z) + (1− xe(z)) ln(1− xe(z)))

−2

(
1−

∑
e∈∂v

xe(z)

)
ln

(
1−

∑
e∈∂v

xe(z)

)}
.

Hence, we obtained an explicit formula for ΦG(z) = lnPG(z) = −Ug(z) ln z+SG(z) as a function
of the xe(z).
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4 A variational formulation

In view of the formula obtained for trees, we define for x ∈ FM(G):

UBG (x) = −
∑
e∈E

xe,

SBG (x) =
1

2

∑
v∈V

{∑
e∈∂v
−xe lnxe + (1− xe) ln(1− xe)

−2

(
1−

∑
e∈∂v

xe

)
ln

(
1−

∑
e∈∂v

xe

)}
,

ΦB
G(x, z) = −UBG (x) ln z + SBG (x),

with the standard convention 0 ln 0 = 0. ΦB
G(x, z) is called the Bethe free entropy.

Proposition 9. Recall that x(z) ∈ RE is defined by (12). Then we have, for a general graph G:

sup
x∈FM(G)

ΦB
G(x; z) = ΦB

G(x(z); z).

Moreover, the function SBG (x) is non-negative, concave on FM(G) and

dΦB
G(x(z); z)

dz
= −

UBG (x(z))

z
. (17)

Proof. We first prove the second point. For k ∈ N, we define ∆k = {x ∈ Rk, xi ≥ 0,
∑k

i=1 xi ≤
1}.

Lemma 10. Let g : ∆k → R be defined by

g(x) = −
∑
i

xi lnxi +
∑
i

(1− xi) ln(1− xi)

−2

(
1−

∑
i

xi

)
ln

(
1−

∑
i

xi

)
.

For k ≥ 1, g is concave. Moreover, we have

∂g

∂xi
= ln


(

1−
∑

j xj

)2

xi(1− xi)

 .

Proof. From Theorem 20 in [12], we know that the function

h(x) = −
∑
i

xi lnxi +
∑
i

(1− xi) ln(1− xi)

−

(
1−

∑
i

xi

)
ln

(
1−

∑
i

xi

)

+

(∑
i

xi

)
ln

(∑
i

xi

)
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is non-negative and concave on ∆k. We have

g(x) = h(x) +H

(∑
i

xi

)
,

where H(p) = −p ln p − (1 − p) ln(1 − p) is the entropy of a Bernoulli random variable and is
concave in p.

We now prove the proposition. For e = (uv) ∈ E and x ∈
◦

∆k (the interior of ∆k), we have

∂ΦB
G(x; z)

∂xe
= − ln z

+ ln


(

1−
∑

f∈∂v xf

)(
1−

∑
f∈∂u xf

)
xe(1− xe)

 .

Hence, we have
∂ΦB

G(x;z)
∂xe

= 0 if and only if

xe(1− xe) = z

1−
∑
f∈∂v

xf

1−
∑
f∈∂u

xf

 . (18)

We now show that this equality is valid when evaluated at x(z). Note that
∑

f∈∂v xf (z) =
Dv(y(z)), so that we have by (9)1−

∑
f∈∂v

xf (z)

 =

(
1−

∑
−→e ∈∂v Y−→e (z)

1 +
∑
−→e ∈∂v y−→e (z)

)

=

1 +
∑
−→e ∈∂v

y−→e (z)

−1

We have for e = (uv) ∈ E,

xe(z) =
yu→v(z)

z
yv→u(z) + yu→v(z)

,

and using the fact that y(z) = zRG(y(z)), we get

xe(z) =
yu→v(z)

1 +
∑

w∈∂v yw→v(z)
= yu→v(z)

1−
∑
f∈∂v

xf (z)


1− xe(z) =

1 +
∑

w∈∂u\v yw→u(z)

1 +
∑

w∈∂u yw→u(z)
=

z

yu→v(z)

1−
∑
f∈∂u

xf (z)

 ,

and we see that (18) is true when evaluated at xe(z). Hence we proved that
∂ΦB

G(x(z);z)
∂xe

= 0 and
the proposition follows.
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5 Gibbs measure on an infinite tree

Let T = (V,E) be an infinite tree with bounded degree. Clearly the definition (2) does not make

sense anymore. But we can still define the map RT : (0,∞)
−→
E → (0,∞)

−→
E by RT (a) = b with

bu→v =
1

1 +
∑

w∈∂u\v aw→u
,

with the convention that the sum over the empty set equals zero. We also denote by Ru→v :
(0,∞)∂u\v → (0,∞) the local mapping defined by: bu→v = Ru→v(a) (note that only the co-
ordinates of a in ∂u\v are taken as input of Ru→v). Comparisons between vectors are always
componentwise.

A crucial result for the monomer-dimer model is that Proposition 5 extends to infinite trees
with bounded degree.

Proposition 11. Let T = (V,E) be an infinite tree with bounded degree. For each z > 0, there

exists a unique attractive solution in (0,∞)
−→
E to the fixed point equation y(z) = zRT (y(z)), i.e.

such that

yu→v(z) =
z

1 +
∑

w∈∂u\v yw→u(z)
. (19)

Moreover the map z 7→ y(z) is non-decreasing (component-wise) and the map z 7→ y(z)
z is

non-increasing on (0,∞).

Proof. First note that any non-negative solution must satisfy yu→v(z) ≤ z for all (uv) ∈ E. The

compactness of [0, z]
−→
E (as a countable product of compact spaces) guarantees the existence of a

solution by Schauder fixed point theorem. Alternatively, as in the proof of Proposition 5, we can
define the sequence of messages xt(z) by (10) so that x2t(z)↗ x−(z) and x2t+1(z)↘ x+(z).

To prove the uniqueness, we follow the approach in [3]. First, we define the change of

variable: hu→v = − ln yu→v(z)
z so that (19) becomes:

hu→v = ln

1 + z
∑

w∈∂u\v

e−hw→u

 . (20)

We define the function f : [0,+∞)d 7→ [0,∞) as:

f(h) = ln

(
1 + z

k∑
i=1

1

1 + z
∑ki

j=1 e
−hij

)
,

where the parameters k, ki and z are fixed and d =
∑k

i=1 ki.

Iterating the recursion (20), we can rewrite it using such a function f so that uniqueness
would be implied if we show that f is contracting.

For any h and h′, we apply the mean value theorem to the function f(αh + (1 − α)h′) so
that there exists α ∈ [0, 1] such that for hα = αh + (1− α)h′,

|f(h)− f(h′)| = |∇f(hα)(h− h′)| ≤ ‖∇f(hα)‖L1‖h− h′‖∞.

11



A simple computation shows that:

‖∇f(h)‖L1 =

z
∑k

i=1

z
∑ki

j=1 e
−hij(

1+z
∑ki

j=1 e
−hi

j

)2

1 + z
∑k

i=1
1

1+z
∑ki

j=1 e
−hi

j

.

Let Ai =
(

1 + z
∑ki

j=1 e
−hij
)−1

, then we get

‖∇f(h)‖L1 =
z
∑k

i=1(Ai −A2
i )

1 + z
∑k

i=1Ai
= 1−

1 + z
∑k

i=1A
2
i

1 + z
∑k

i=1Ai
.

By taking the partial derivatives, we note that this last expression is maximized when all Ai
are equal. Then the solution for the optimal Ai reduces to a quadratic equation with solution

in [0,+∞) equals to Ai =
√

1+kz−1
kz . Substituting for the maximum value, we get for any real

vector h,

‖∇f(h)‖L1 ≤ 1− 2√
1 + kz + 1

.

We now prove that z 7→ xt(z)
z and z 7→ xt(z) are respectively non-increasing and non-

decreasing, this implies the last point. We prove it by induction on t: consider z ≤ z′ if

xt(z) ≤ xt(z′) then by (10) we have xt+1(z)
z ≥ xt+1(z′)

z′ and if xt(z)
z ≥ xt(z′)

z′ then again by (10),
we have xt+1(z) ≤ xt+1(z′).

We can now compute a Gibbs measure µzT on T by analogy with the finite case: first define
x(z) ∈ RE by (12) and the marginals µ∂v and µe for each v ∈ V and e ∈ E by (13) and (14)
respectively. We then define µzT as follows: for any finite vertex-induced subtree Tf = (Vf , Ef )
of T , we define:

µzT (be, e ∈ Tf ) =

∏
v∈Vf µ∂v(b∂v)∏
e∈Ef

µe(be)
. (21)

Theorem 12. For any z > 0 and infinite tree T = (V,E), the measure µzT defined by (21) is the
unique distribution over matchings in T satisfying the following property: for any e = (uv) ∈ E
and k ∈ N, let T ke be the subtree of T induced by all vertices at distance k from either u or v,
then

lim
k→∞

µzTk
e

(Be = 1) = µzT (Be = 1).

Moreover, we have for k ≥ 0

µzT 2k
e

(Be = 1) ≤ µzT (Be = 1) ≤ µz
T 2k+1
e

(Be = 1) (22)

Proof. The proof follows by checking the compatibility condition of the Kolmogorov extension
theorem. The inequality (22) follows by a simple induction on k following the same argument
as in the proof of Proposition 5. Taking the limit k → ∞ in (22), we obtain the last claim by
invoking Proposition 11.
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Example 13. The Monomer-Dimer model on the infinite line. In this case, since each vertex
has degree 2, we see that the solution to (19) must solve:

y(z) =
z

1 + y(z)
.

Hence, we have y(z) =
√

1+4z−1
2 , so that

xe(z) =
y(z)2

z + y(z)2
=

1 + 2z −
√

1 + 4z

1 + 4z −
√

1 + 4z
.

We can for example compute:

µ∂v

(∑
e∈∂v

Be = 0

)
= 1− 2xe(z) =

1√
1 + 4z

.

We can check that using (9):

Dv(y(z)) =
2y(z)

1 + 2y(z)
= 1− 1√

1 + 4z
.

6 Lifts of graph: definitions

If G is a graph and v ∈ V (G), the 1-neighbourhood of v is the subgraph consisting of all edges
incident upon v. A graph homomorphism π : G′ → G is a covering map if for each v′ ∈ V (G′),
π gives a bijection of the edges of the 1-neighbourhood of v′ with those of v = π(v′). G′ is a
cover or a lift of G.

Given a graph G with a distinguished vertex v ∈ V , we construct the (infinite) rooted tree
(T (G), v) of non-backtracking walks at v as follows: its vertices correspond to the finite non-
backtracking walks in G starting in v, and we connect two walks if one of them is a one-step
extension of the other. With a slight abuse of notation, we denote by v the root of the tree
of non-backtracking walks started at v. Note that also we constructed T (G) from a particular
vertex v, this choice is irrelevant. It is easy to see that T (G) is a cover of G, indeed it is the
(unique up to isomorphism) cover of G that is also a cover of every other cover of G. T (G) is
called the universal cover of G.

Definition 14. Let G be a graph with no loop. Then H is a 2-lift of G if V (H) = V (G)×{0, 1}
and for every (u, v) ∈ E(G), exactly one of the following two pairs are edges of H: ((u, 0), (v, 0))
and ((u, 1), (v, 1)) ∈ E(H) or ((u, 0), (v, 1)) and ((u, 1), (v, 0)) ∈ E(H). If (u, v) /∈ E(G), then
none of ((u, 0), (v, 0)),((u, 1), (v, 1)), ((u, 0), (v, 1)) and ((u, 1), (v, 0)) are edges in H.

Definition 15. Let G = (V,E) be a fixed connected multigraph with no loop. A n-lift of G is
a graph on vertex set V1 ∪ V2 ∪ · · · ∪ Vv(G), where each Vi is a set of n vertices and these sets
are pairwise disjoint, obtained by placing a perfect matching between Vi and Vj for each edge
e = (ij) of G.

The crucial property first proved by Csikvári [6] is:

13



Proposition 16. Let G be a bipartite graph and H be a 2-lift of G. Then PG(z)2 ≥ PH(z) for
z > 0.

Proof. Note that G ∪ G is a particular 2-lift of G with PG∪G(z) = PG(z)2. To prove the first
statement of the proposition, we need to show that for any 2-lift H of G, we have: mk(G∪G) ≥
mk(H). Consider the projection of a matching of a 2-lift of G to G. It will consist of disjoint
union of cycles of even lengths (since G is bipartite), paths and double-edges when two edges
project to the same edge. For such a projection R = R1 ∪ R2 ⊂ E where R2 is the set of
double edges. Now for such a projection, we count the number of possible matchings in G ∪G:
nR(G ∪G) = 2k(R), where k(R) is the number of connected components of R1. The number of
possible matchings in H is nR(H) ≤ 2k(R) since in each component if the inverse image of one
edge is fixed then the inverse images of all other edges is also determined. There is no equality as
in general not every cycle can be obtained as a projection of a matching of a 2-lift. For example,
if one considers a 8-cycle as a 2-lift of a 4-cycle, then no matching will project on the whole
4-cycle. Hence we proved that mk(G ∪G) ≥ mk(H) so that PG(z)2 ≥ PH(z) for z > 0.

7 Rooted unlabeled graphs

A rooted graph (G, o) is a graph G = (V,E) together with a distinguished vertex o ∈ V , called
the root. We let G? denote the set of all locally finite connected rooted graphs considered up to
rooted isomorphism, i.e. (G, o) ≡ (G′, o′) if there exists a bijection γ : V → V ′ that preserves
roots (γ(o) = o′) and adjacency ({i, j} ∈ E ⇐⇒ {γ(i), γ(j)} ∈ E′). We write [G, o]h for the
(finite) rooted subgraph induced by the vertices lying at graph-distance at most h ∈ N from o.
The distance

dist
(
(G, o), (G′, o′)

)
:=

1

1 + r
where r = sup

{
h ∈ N : [G, o]h ≡ [G′, o′]h

}
,

turns G? into a complete separable metric space, see [1]. We will also need edge-rooted graphs
and define G??: the space of locally finite connected graphs with a distinguished oriented edge,
taken up to the natural isomorphism relation and equipped with the natural distance, which
turns it into a complete separable metric space.

With a slight abuse of notation, (G, o) will denote an equivalence class of rooted graph also
called unlabeled rooted graph in graph theory terminology. Note that if two rooted graphs are
isomorphic, then their rooted trees of non-backtracking walks are also isomorphic. It thus makes
sense to define (T (G), o) for elements (G, o) ∈ G?.

Proposition 17. For any graph G = (V,E), there exists a graph sequence {Gn}n∈N such that
G0 = G, Gn is a 2-lift of Gn−1 for n ≥ 1. Hence Gn is a 2n-lift of G and we denote by
πn : Gn → G the corresponding covering. For any v ∈ V , we have:

sup
u∈π−1

n (v)

dist ((Gn, u), (T (G), v))→ 0,

in particular for any vn ∈ π−1
n (v), we have (Gn, vn)→ (T (G), v) in G?.

Proof. The proof follows from an argument of Nathan Linial [9], see also [6].
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A random 2-lift H of a base graph G is the random graph obtained by choosing between the
two pairs of edges ((u, 0), (v, 0)) and ((u, 1), (v, 1)) ∈ E(H) or ((u, 0), (v, 1)) and ((u, 1), (v, 0)) ∈
E(H) with probability 1/2 and each choice being made independently.

Let G be a graph with girth γ and let k be the number of cycles in G with size γ. Let X
be the number of γ-cycles in H a random 2-lift of G. The girth of H must be at least γ and
a γ-cycle in H must be a lift of a γ-cycle in G. A γ-cycle in G yields: a 2γ-cycle in H with
probability 1/2; or two γ-cycles in H with probability 1/2. Hence we have E[X] = k. But G∪G
(the trivial lift) has 2k γ-cycles. Hence there exists a 2-lift with strictly less than k γ-cycles. By
iterating this step, we see that there exists a sequence {Gn} of 2-lifts such that for any γ, there
exists a n(γ) such that for j ≥ n(γ), the graph Gj has no cycle of length at most γ. This implies
that for any v ∈ V and vj ∈ π−1

j (v), we have dist ((Gj , vj), (T (G), v)) ≤ 2
γ and the proposition

follows.

8 Thermodynamic limit (for lifts)

Proposition 18. Let T be a tree with bounded degree. If (Gn, en)→ (T, e) in G??, then for any
z > 0,

lim
n→∞

µzGn
(Ben = 1) = µzT (Be = 1)

Proof. By assumption, for any radius h ∈ N, there exists nh such that for all n ≥ nh, we have
[Gn, en]h ≡ [T, e]h. Clearly for any graph G = (V,E) and e ∈ E, µzG(Be = 1) depends only on
the isomorphism class of the edge-rooted graph (G, e). The claim then follows from the Markov
property (Lemma 4) and Theorem 12.

Applying this result together with Proposition 17, we obtain, for any v ∈ V ,

lim
n→∞

sup
u∈π−1

n (v)

(∑
e∈∂u

µzGn
(Be = 1)−

∑
e∈∂v

µzT (G)(Be = 1)

)
= 0. (23)

We now show that thanks to the particular structure of T (G), we are able to extend this
result to show the convergence of 1

|Vn|UGn(z), 1
|Vn|SGn(z), or 1

|Vn| lnPGn(z).

The crucial observation is the following. Since the local recursions are the same for both
RT (G) and RG and since there is a unique fixed point for both zRT (G) and zRG, the proposition
below follows:

Proposition 19. Let G be a finite graph and T (G) be its universal cover and associated cover
π : T (G)→ G. By Propositions 5 and 11, we can define:

ỹ(z) = zRT (G)(ỹ(z)) , and, y(z) = zRG(y(z)).

We have π(ỹ(z)) = y(z), i.e. ỹ−→e (z) = yπ(−→e )(z).

We are now ready to prove
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Theorem 20. Let G be a finite graph and (Gn)n≥1 be the sequence defined in Proposition 17
Then we have as n→∞, for z > 0,

lim
n→∞

1

|Vn|
lnPGn(z) =

1

v(G)
ΦB
G(x(z), z), (24)

lim
n→∞

1

|Vn|
UGn(z) =

1

v(G)
UBG (x(z)), (25)

lim
n→∞

ν(Gn)

|Vn|
=

ν∗(G)

v(G)
, (26)

lim
n→∞

1

|Vn|
SGn(z) =

1

v(G)
SBG (x(z)). (27)

Proof. We write:

1

|Vn|
UGn(z) =

−1

2|Vn|
∑
v∈Vn

∑
e∈∂v

µzGn
(Be = 1)

=
−1

2|V |
∑
v∈V

1

2n

∑
u∈π−1

n (v)

∑
e∈∂u

µzGn
(Be = 1).

Recall that |π−1
n (v)| = 2n for each v ∈ V so that by (23), we have

lim
n→∞

1

|Vn|
UGn(z) =

−1

2|V |
∑
v∈V

∑
e∈∂v

µzT (G)(Be = 1)

=
−1

2|V |
∑
v∈V

∑
e∈∂v

xe(z),

where the last equality follows from Proposition 19 and x(z) is defined by (12). Hence we proved
(25).

We now prove (26). By Lemma 3, we have

−UBG (x(z))

v(G)
≤ lim inf

n→∞

ν(Gn)

|Vn|
≤ lim sup

n→∞

ν(Gn)

|Vn|
≤
−UBG (x(z))

v(G)
+
|E| ln 2

|V | ln z

Since ΦB
G(x(z), z) = −UBG (x(z)) ln(z)+SBG (x(z)) and SBG (x) is bounded, we have limz→∞

ΦB
G(x(z),z)

ln z =
limz→∞−UBG (x(z)). By Proposition 9, we have

ΦB
G(x(z), z)

ln z
= sup

x∈FM(G)

∑
e∈E

xe +
SBG (x)

ln z

so that limz→∞
ΦB

G(x(z),z)
ln z = ν∗(G) and (26) follows.

We now prove (24). Recall that Φ′G(z) = −UG(z)
z so that the convergence of 1

|Vn| lnPGn(z)

follows from (25) and Lebesgue dominated convergence theorem. We first need to check that

the derivative with respect to z of the right-hand term in (24) is
UB
G (x(z))
z and this is exaclty

what we showed in Proposition 9, see (17). In order to conclude the proof of (24), we will show
that

lim
n→∞

lim
z→∞

1

|Vn|
lnPGn(z)

ln z
= lim

z→∞

1

v(G)

ΦB
G(x(z), z)

ln z
=
ν∗(G)

v(G)
.
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For the left-hand term, we have

1

|Vn|
lnPGn(z)

ln z
≥ −UGn(z),

and since the number of matching is upper bounded by 2|En|, we have

1

|Vn|
lnPGn(z)

ln z
≤ −UGn(z) +

|En| ln 2

|Vn| ln z
.

Hence, taking the limit z →∞, we have

lim
z→∞

1

|Vn|
lnPGn(z)

ln z
=
ν(Gn)

|Vn|
.

which together with (26) concludes the proof of (24). Finally (27) follows from (25) and (24).

9 Application: a lower bound for bipartite graphs

In the special case where G is a bipartite graph, we will prove the following lower bound:

Theorem 21. For any finite bipartite graph G, we have for z > 0,

lnPG(z) ≥ max
x∈M(G)

{(∑
e

xe

)
ln z + SBG (x)

}
. (28)

Proof. The crucial property first proved by Csikvári [6] is:

Proposition 22. Let G be a bipartite graph and H be a 2-lift of G. Then PG(z)2 ≥ PH(z) for
z > 0.

Proof. Note that G ∪ G is a particular 2-lift of G with PG∪G(z) = PG(z)2. To prove the first
statement of the proposition, we need to show that for any 2-lift H of G, we have: mk(G∪G) ≥
mk(H). Consider the projection of a matching of a 2-lift of G to G. It will consist of disjoint
union of cycles of even lengths (since G is bipartite), paths and double-edges when two edges
project to the same edge. For such a projection R = R1 ∪ R2 ⊂ E where R2 is the set of
double edges. Now for such a projection, we count the number of possible matchings in G ∪G:
nR(G ∪G) = 2k(R), where k(R) is the number of connected components of R1. The number of
possible matchings in H is nR(H) ≤ 2k(R) since in each component if the inverse image of one
edge is fixed then the inverse images of all other edges is also determined. There is no equality as
in general not every cycle can be obtained as a projection of a matching of a 2-lift. For example,
if one considers a 8-cycle as a 2-lift of a 4-cycle, then no matching will project on the whole
4-cycle. Hence we proved that mk(G ∪G) ≥ mk(H) so that PG(z)2 ≥ PH(z) for z > 0.

Hence, if we consider the sequence of 2-lifts constructed in Proposition 17, we have the
sequence { 1

|Vn|ΦGn(z)}n∈N is non-increasing in n and converges to 1
v(G)ΦB

G(x(z), z) by Theorem

20. The claim follows from Proposition 9 and the fact that FM(G) = M(G) for a bipartite
graph.
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10 The framework of local weak convergence

This section gives a brief account of the framework of local weak convergence. For more details,
we refer to the surveys [2, 1].

Let P(G?) denote the set of Borel probability measures on G?, equipped with the usual
topology of weak convergence (see e.g. [4]). Given a finite graph G = (V,E), we construct
a random element of G? by choosing uniformly at random a vertex o ∈ V to be the root, and
restricting G to the connected component of o. The resulting law is denoted by U(G). If {Gn}n≥1

is a sequence of finite graphs such that {U(Gn)}n≥1 admits a weak limit L ∈ P(G?), we call L
the local weak limit of {Gn}n≥1. If (G, o) denotes a random element of G? with law L, we shall
use the following slightly abusive notation : Gn  (G, o) and for f : G? → R:

E(G,o) [f(G, o)] =

∫
G?
f(G, o)dL(G, o).

Unimodularity. Recall that G?? denotes the space of locally finite connected graphs with a
distinguished oriented edge, taken up to the natural isomorphism relation and equipped with
the natural distance, which turns it into a complete separable metric space. With f : G?? → R,
we associate a function ∂f : G? → R, defined by:

∂f(G, o) =
∑
i∈∂o

f(G, o, i),

and also the reversal f∗ : G?? → R of f defined by:

f∗(G, o, i) = f(G, i, o).

It is shown in [1] that any (G, o) with law L arising as the local weak limit of some sequence of
finite graphs satisfies

E(G,o) [∂f(G, o)] = E(G,o) [∂f∗(G, o)] (29)

for any Borel f : G?? → [0,∞). A measure L ∈ P(G?) satisfying this invariance is called unimod-
ular, and the set of all unimodular probability measures on G? is denoted by Pu(G?). Note that
(29) can be expanded to:∫

G?

∑
i∈∂o

f(G, o, i) dL(G, o) =

∫
G?

∑
i∈∂o

f(G, i, o) dL(G, o).

11 Application to matchings

...
We define

Φo(x) =
ln z

2

∑
e∈∂o

xe +
1

2

∑
e∈∂o

(−xe lnxe + (1− xe) ln(1− xe))−

(
1−

∑
e∈∂o

xe

)
ln

(
1−

∑
e∈∂o

xe

)
.
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Lemma 23. We have

Φo(x(z)) =

(
1− |∂o|

2

)
ln

1 +
∑
−→e ∈∂o

y−→e (z)

+
1

2

∑
−→e ∈∂o

ln

1 +
∑

−→
f ∈∂o\−→e

y−→
f

(z)


= ln

1 +
∑
−→e ∈∂o

y−→e (z)

+
1

2

∑
−→e ∈∂o

ln

(
1− y−→e (z)

1 +
∑
−→
f ∈∂o y

−→
f

(z)

)
.

References

[1] D. Aldous and R. Lyons. Processes on unimodular random networks. Electronic Journal
of Probability, 12:1454–1508, 2007.

[2] D. Aldous and J. M. Steele. The objective method: probabilistic combinatorial optimization
and local weak convergence. In Probability on discrete structures, volume 110 of Encyclopae-
dia Math. Sci., pages 1–72. Springer, Berlin, 2004.

[3] M. Bayati, D. Gamarnik, D. Katz, C. Nair, and P. Tetali. Simple deterministic approxi-
mation algorithms for counting matchings. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, page 127. ACM, 2007.

[4] P. Billingsley. Convergence of probability measures. John Wiley & Sons, Inc., New York-
London-Sydney, 1968.

[5] C. Bordenave, M. Lelarge, and J. Salez. Matchings on infinite graphs. Probability Theory
and Related Fields, pages 1–26, 2012.
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