Théorie de l'information et du codage

TD n°7 – Mesures de Gibbs

L'évolution d'un système isolé est régie par les deux grandes lois de la physique : son énergie est conservée, et son entropie augmente. Comme nous allons le voir, cela détermine entièrement la distribution des états du système à l'équilibre.

1 Cas discret

Soit \mathcal{X} un ensemble fini d'états et $\mathcal{P}(\mathcal{X})$ l'ensemble des mesures de probabilité sur \mathcal{X} . À chaque état $x \in \mathcal{X}$ est associée une certaine énergie $\mathcal{E}(x) \in \mathbb{R}$. Étant donnée une distribution d'états $\mu \in \mathcal{P}(\mathcal{X})$, on peut définir

1. son énergie :
$$E(\mu) = \sum_{x \in \mathcal{X}} \mu(x)\mathcal{E}(x)$$
;

2. son entropie :
$$H(\mu) = \sum_{x \in \mathcal{X}} \mu(x) \log \frac{1}{\mu(x)}$$
.

Le but du jeu est de déterminer les distributions $\mu \in \mathcal{P}(\mathcal{X})$ dont l'entropie est maximale parmi toutes celles qui ont une énergie $E(\mu) = e$ donnée.

Question 1. Peut-on obtenir n'importe quelle énergie moyenne $e \in \mathbb{R}$? Déterminer l'ensemble $J = \{E(\mu); \mu \in \mathcal{P}(\mathcal{X})\}$ des valeurs possibles.

Question 2. Quelle est la réponse au problème posé dans les deux cas extrêmes suivants :

$$e = \min_{x \in \mathcal{X}} \mathcal{E}(x)$$
 et $e = \max_{x \in \mathcal{X}} \mathcal{E}(x)$.

Pour traiter le cas général, on introduit la fonction suivante, appelée fonction de partition en physique, et transformée de Laplace en mathématiques :

$$Z \colon \beta \in \mathbb{R} \mapsto \sum_{x \in \mathcal{X}} e^{-\beta \mathcal{E}(x)}.$$

Question 3. Montrer que la fonction $\Lambda = \log Z$ est convexe. Quel est l'ensemble $\Lambda'(\mathbb{R})$ des valeurs prises par sa dérivée ?

Question 4. Établir que pour tout $\mu \in \mathcal{P}(\mathcal{X})$ et tout $\beta \in \mathbb{R}$,

$$H(\mu) - \beta E(\mu) \le \Lambda(\beta).$$

À quelle condition y a-t'il égalité?

Pour tout $\beta \in \mathbb{R}$, on appelle mesure de Gibbs sous la température β la distribution $\mu_{\beta}^* \in \mathcal{P}(\mathcal{X})$ définie pour tout $x \in \mathcal{X}$ par :

$$\mu_{\beta}^*(x) = \frac{1}{Z(\beta)} e^{-\beta \mathcal{E}(x)}.$$

Question 5. Expliciter son entropie $H(\mu_{\beta}^*)$ et son énergie moyenne $E(\mu_{\beta}^*)$, en fonction de la température β .

Question 6. Résoudre finalement le problème posé, pour tout énergie moyenne $e \in J$.

2 Cas continu

L'espace d'états est à présent \mathbb{R} tout entier. On considère une fonction mesurable \mathcal{E} sur \mathbb{R} , appelée énergie. Si f est une densité de probabilité sur \mathbb{R} , son entropie H(f) et son énergie moyenne E(f) sont définies de la façon suivante (lorsque cela a du sens) :

$$H(f) = \int_{\mathbb{R}} f(x) \log \frac{1}{f(x)} dx$$
 et $E(f) = \int_{\mathbb{R}} f(x) \mathcal{E}(x) dx$.

Le but du jeu est de déterminer les densités de probabilités f dont l'entropie est maximale parmi toutes celles qui ont une énergie moyenne $e \in \mathbb{R}$ donnée.

Question 7. En s'inspirant du cas discret, résoudre le problème posé.

Question 8. On pose $\mathcal{E}(x) = x$ pour $x \in \mathbb{R}^+$. Expliciter l'ensemble des énergies possibles J, puis la densité dont l'entropie est maximale pour une énergie moyenne $e \in J$ donnée. En déduire une caractérisation importante des lois exponentielles $Exp(\mu)$, $\mu > 0$.

Question 9. Même question pour $\mathcal{E}(x) = x^2$. Quelle résultat remarquable retrouve-t'on?

3 Cas multi-dimensionnel

On se place finalement sur l'espace d'états $\mathcal{X} = \mathbb{R}^d, d \geq 1$.

Question 10. Comment les résultats précédents se généralisent-ils?

Question 11. Parmi tous les vecteurs aléatoires d-dimensionnels de moyenne $\mu \in \mathbb{R}^d$ et de matrice de covariance $K \in S^{++}(\mathbb{R}^d)$ données, quel est celui dont l'entropie est maximale?