Rappels d'algèbre

Tous les anneaux considérés sont commutatifs.

Exercice 1 Construction de corps à partir d'un anneau. Dans cet exercice, A est un anneau et I un idéal de A.

- 1. Montrer que A est un corps si et seulement si ses idéaux sont triviaux.
- 2. Montrer que les idéaux de A/I sont les J/I, avec J idéal de A contenant I.
- 3. En déduire une condition nécessaire et suffisante sur I pour que A/I soit un corps.
- 4. Quels sont les idéaux de $A = \mathbb{Z}$? Quels sont ceux qui vérifient la condition ci-dessus?
- 5. Même question pour l'anneau $A = \mathbb{K}[X]$ des polynômes sur un corps \mathbb{K} quelconque.

Exercice 2 Corps de rupture, corps de décomposition. Soit \mathbb{K} un corps, et P un polynôme sur \mathbb{K} .

- 1. On suppose dans un premier temps P irréductible. Construire une extension $\mathbb L$ de $\mathbb K$ vérifiant
 - (a) P admet une racine α sur \mathbb{L} ;
 - (b) L est minimale pour cette propriété, i.e. L est engendrée par α .

Une telle extension s'appelle un corps de rupture pour P sur \mathbb{K} .

- 2. Soit $\varphi \colon \mathbb{K} \to \mathbb{K}'$ un isomorphisme de corps, et soit \mathbb{L}' un corps de rupture pour $\varphi(P)$. Montrer que \mathbb{L}' est isomorphe à \mathbb{L} , et que l'isomorphisme peut même être choisi de manière à prolonger φ . Qu'obtient-on lorsque $\mathbb{K}' = \mathbb{K}$ et $\varphi = Id$?
- 3. On suppose désormais P quelconque. Montrer qu'il existe une extension $\mathbb L$ du corps $\mathbb K$, unique à $\mathbb K$ -isomorphisme près, vérifiant :
 - (a) P est scindé sur \mathbb{L} ;
 - (b) \mathbb{L} est minimale pour cette propriété, i.e. les racines de P sur \mathbb{L} engendrent \mathbb{L} . On l'appelle le corps de décomposition de P sur \mathbb{K} .

Exercice 3 Caractéristique, sous-corps premier, morphisme de Frobenius.

- 1. Soit $\varphi \colon A \to B$ un morphisme d'anneaux. Montrer que $\ker \varphi$ est un idéal de A, et que $A/\ker \varphi$ est isomorphe à $\operatorname{Im} \varphi$.
- 2. Que dit ce résultat lorsque $A=\mathbb{Z}$? Rappeler en particulier les notions de caractéristique (notée p) et de sous-corps premier d'un corps fini.

- 3. Montrer qu'un morphisme de corps est toujours injectif, et que les points fixes d'un automorphisme de corps forment un sous-corps.
- 4. Soit \mathbb{K} un corps fini de caractéristique p, et soit $\varphi \colon \mathbb{K} \to \mathbb{K}$ défini par $\varphi(x) = x^p$. Montrer que φ est un automorphisme de corps. Quel corps forment ses point fixes?

Exercice 4 Description d'un corps fini.

- 1. Soit $q=p^n$ avec p premier et $n\in\mathbb{N}^*$. On note \mathbb{F}_q le corps de décomposition de $P=X^q-X$ sur $\mathbb{K}=\mathbb{Z}/p\mathbb{Z}$. Montrer que \mathbb{F}_q a exactement q éléments.
- 2. Réciproquement, montrer que tout corps fini est isomorphe à un tel \mathbb{F}_q .
- 3. Montrer qu'il existe $\alpha \in \mathbb{F}_q$ tel que $\mathbb{F}_q = \{0\} \cup \{1, \alpha, \dots, \alpha^{q-2}\}$. Un tel α est appelé élement primitif de \mathbb{F}_q .