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Abstract

The spread of new ideas, behaviors or technologies has been extensively studied using
epidemic models. Here we consider a model of diffusion where the individuals’ behavior is
the result of a strategic choice. We study a simple coordination game with binary choice
and give a condition for a new action to become widespread in a random network. We also
analyze the possible equilibria of this game and identify conditions for the coexistence of
both strategies in large connected sets. Finally we look at how can firms use social networks
to promote their goals with limited information.

Our results differ strongly from the one derived with epidemic models. In particular, we
show that connectivity plays an ambiguous role: while it allows the diffusion to spread, when
the network is highly connected, the diffusion is also limited by high-degree nodes which are
very stable. In the case of a sparse random network of interacting agents, we compute the
contagion threshold for a general diffusion model and show the existence of (continuous and
discontinuous) phase transitions. We also compute the minimal size of a seed of new adopters
in order to trigger a global cascade if these new adopters can only be sampled without any
information on the graph. We show that this minimal size has a non-trivial behavior as a
function of the connectivity. Our analysis extends methods developed in the random graphs
literature based on the properties of empirical distributions of independent random variables,
and leads to simple proofs.

*INRIA - ENS, Marc.Lelarge@ens.fr



1 Introduction

There is a vast literature on epidemics on complex networks (see [34] for a review). Most of the
epidemic models consider a transmission mechanism which is independent of the local condition
faced by the agents concerned. However, if there is a factor of coordination or persuasion
involved, relative considerations tend to be important in understanding whether some new belief
or behavior is adopted [36]. To fix ideas, it may be useful to think of the diffusion process as
modeling the adoption of a new technology. In this case, when an agent is confronted with
the possibility of adoption, her decision depends on the persuasion effort exerted on her by
each of her neighbors in the social network. More formally, those neighborhood effects can be
captured as follows: the probability that an agent adopts the new technology when r out of her
d neighbors have already adopted can be modeled by a threshold function: the probability is
v € (0,1] if r/d > 0 and it is zero otherwise. For # = 1/2 and v = 1, this would correspond to a
local majority rule. More generally, some simple models for the diffusion of a new behavior have
been proposed in term of a basic underlying model of individual decision-making: as individuals
make decision based on the choices of their neighbors, a particular pattern of behavior can begin
to spread across the links of the network [36], [9].

To illustrate our purpose, consider the basic game-theoretic diffusion model proposed by
Morris [33]. Consider a graph G in which the nodes are the individuals in the population and
there is an edge (i, ) if ¢ and j can interact with each other. Each node has a choice between
two possible behaviors labeled A and B. On each edge (i, 7), there is an incentive for ¢ and j to
have their behaviors match, which is modeled as the following coordination game parameterized
by a real number ¢ € (0,1): if ¢ and j choose A (resp. B), they each receive a payoff of ¢ (resp.
(1—¢q)); if they choose opposite strategies, then they receive a payoff of 0. Then the total payoff
of a player is the sum of the payoffs with each of her neighbors. If the degree of node i is d; and
NP is her number of neighbors playing B, then the payoff to i from choosing A is ¢(d; — NP)
while the payoff from choosing B is (1 — ¢)NP. Hence i should adopt B if NP > ¢d; and A if
NP < qd;. A number of qualitative insights can be derived from this simple diffusion model.
Clearly, a network where all nodes play A is an equilibrium of the game as is the state where all
nodes play B. Consider a network where all nodes initially play A. If a small number of nodes
are forced to adopt strategy B (constituting the seed) and we apply best-response updates to
other nodes in the network, then these nodes will be repeatedly applying the following rule:
switch to B if enough of your neighbors have already adopted B. In this paper, we assume
that updates are made simultaneously for each players. There can be a cascading sequence of
nodes switching to B such that a network-wide equilibrium is reached in the limit. Most of
the results on this model are restricted to deterministic (possibly infinite) graphs [33], [24]. In
this work, we analyze the diffusion in the large population limit when the underlying graph is
a random network G(n,d) with n vertices and where d = (d;)7 is a given degree sequence (see
Section 3.1 for a detailed definition). Although random graphs are not considered to be highly
realistic models of most real-world networks, they are often used as first approximation and are
a natural first choice for a sparse interaction network in the absence of any known geometry
of the problem [15]. There is now a large literature on the study of complex networks across
different disciplines such as physics [34], mathematics [21], sociology [37], networking [27] or
economics [36]. There is also a large literature on local interaction and adoption externalities
[16], [31], [13], [38]. Similarly to these works, we study a game where players’ payoffs depend on
the actions taken by their neighbors in the network but not on the specific identities of these



neighbors. Our most general framework allows to deal with threshold games of complements,
i.e. player has an increasing incentive to take an action as more neighbors take the action.

The main contribution of our paper is a model which allows to study rigorously semi-
anonymous threshold games of complements with local interactions on a complex network. While
most of the literature following [10], [5] is concerned with stochastic versions of best response dy-
namics on fixed networks, we focused here on properties of deterministic best response dynamics
on random networks with given vertex degrees. Our analysis yields several insights into how the
diffusion propagates and as a consequence into how to design optimal firm strategies. The diffu-
sion of information has been an active research area recently [14], [29]. Empirical analysis of the
topological patterns of cascades in the context of a large product recommendation networks is
studied in [28] and [30]. Our results extend the previous analysis of global cascades made in [37]
using a threshold model. They differ greatly from the study of standard epidemics models used
for the analysis of the spread of viruses [3] where an entity begin as ’susceptible’ and may become
"infected” and infectious through contacts with her neighbors with a given probability. Already
in the simple model of Morris [33] presented above, we show that connectivity (i.e. the average
number of neighbors of a typical agent) plays an ambiguous role: while it allows the diffusion to
spread, when the network is highly connected, the diffusion is also limited by high-degree nodes
which are very stable. These nodes require a lot of their neighbors to switch to B in order to
play B themselves. In the case of a sparse random network of interacting agents, we compute
the contagion threshold in Section 2.1 and show the existence of (continuous and discontinuous)
phase transitions. In Section 2.2, we also compute the minimal size of a seed of new adopters in
order to trigger a global cascade if these adopters can only be sampled without any information
on the graph. We show that this minimal size has a non-trivial behavior as a function of the
connectivity. Our results allow also to explain why social networks can display a great stability
in the presence of continual small shocks that are as large as the shocks that ultimately generate
a global cascade. Cascades can therefore be regarded as a specific manifestation of the robust yet
fragile nature of many complex systems [7]: a system may appear stable for long periods of time
and withstand many external shocks (robustness), then suddenly and apparently inexplicably
exhibit a large scale cascade (fragility). In Section 2.3, we analyze the possible equilibria of the
game for low values of ¢q. In particular, we give conditions under which an equilibrium with
coexistence of large (i.e. containing a positive fraction of the total population) connected sets
of players A and B is possible. In Section 2.4, we give a heuristic argument allowing to recover
the technical results which gives some intuition behind our formulas.

Our paper is divided into two parts. The first part is contained in the next section. We
apply our technical results to the particular case of the model of Morris [33] presented above.
For Erdos-Rényi random graphs, we describe our main findings and provide heuristics and intu-
itions for them. These results are direct consequences of our main Theorems stated and proved
in the second part of the paper. This second part starts with Section 3, where we present in
details the most general model of diffusion that we are able to analyze. We also state our main
technical results: Theorem 9 and Theorem 11. Their proofs can be found in Sections 4 and 5
respectively.

Probability asymptotics: in this paper, we consider sequences of (random) graphs and asymp-
totics as the number of vertices n tends to infinity. For notational simplicity we will usually not
show the dependency on n explicitly. All unspecified limits and other asymptotics statement are
for n — oo. For example, w.h.p. (with high probability) means with probability tending to 1 as



n — oo and —P means convergence in probability as n — oo. Similarly, we use o, , 2, and O,
in a standard way. For example, if X(®) = X is a parameter of the random graph, X = op(n)
means that P(X > en) — 0 as n — oo for every € > 0, equivalently X/n —P 0, or for every
€ >0, |X| < en w.h.p.

2 Analysis of a simple model of cascades

2.1 Contagion threshold for random networks

An interesting perspective is to understand how different network structures are more or less
hospitable to cascades. Going back to previous model, we see that the lower ¢ is, the easiest the
diffusion spreads. In [33], the contagion threshold of a connected infinite network (called the
cascade capacity in [9]) is defined as the maximum threshold ¢. at which a finite set of initial
adopters can cause a complete cascade, i.e. the resulting cascade of adoptions of B eventually
causes every node to switch from A to B. There are two possible models to consider depending
whether the initial adopters changing from A to B apply or not best-response update. It is
shown in [33] that the same contagion threshold arises in both models. In this section, we
restrict ourselves to the model where the initial adopters are forced to play B forever. In this
case, the diffusion is monotone and the number of nodes playing B is non-decreasing. We say
that this case corresponds to the permanent adoption model: a player playing B will never play
A again. We will discuss the other model in Section 2.3.

We now compute the contagion threshold for a sequence of random networks. Since a random
network is finite and not necessarily connected, we first need to adapt the definition of contagion
threshold to our context. For a graph G = (V, E) and a parameter ¢, we consider the largest
connected component of the induced subgraph in which we keep only vertices of degree strictly
less than ¢~!. We call the vertices in this component pivotal players: if only one pivotal player
switches from A to B then the whole set of pivotal players will eventually switch to B in the
permanent adoption model. For a player v € V', we denote by C(v, ¢) the final number of players
B in the permanent adoption model with parameter ¢, when the initial state consists of only v
playing B, all other players playing A. Informally, we say that C(v, q) is the size of the cascade
induced by player v.

Proposition 1. Consider the random graph G(n,d) satisfying Conditions 8 and 10 below with
asymptotic degree distribution p = (pr)22, and define q. by:

e(P) =qc = supSq: Y, r(r—=D1p, > o (1)

2<r<g1 1<r

Let P be the set of pivotal players in G(n,d).

(i) For q < qc, there are constants 0 < v(q,p) < s(q,p) such that w.h.p. lim, —— = v(q,p)

and for any v € P, liminf, ) > s(¢,p)-

n

(i1) For q > qc, for an uniformly chosen player v, we have C(v,q) = o,(n).



Note that we can rewrite (1) as follows: let D be a random variable with distribution p, i.e.
P(D = r) = p,, then

ge = Sup {q - E [D(D - 1DH1(D < q_l)] > E[D]} .

We can restate Proposition 1 as follows: let C'(™ be the size of a cascade induced by switching
a random player from A to B. Proposition 1 implies that for ¢ > ¢, we have P(C(™) > en) — 0 as
n — oo for every € > 0 whereas for ¢ < q., there exists constants s(q, p) > v(¢, p) > 0 depending
only on ¢ and the parameters of the graph such that liminf, P(C™ > (s(q,p) — €)n) > v(¢, p)
for every € > 0. Informally, we will say that global cascades (i.e. reaching a positive fraction of
the population) occur when ¢ < ¢. and do not occur when ¢ > ¢.. We call ¢. defined by (1) the
contagion threshold for the sequence of random networks with degree distribution (p,). This
result is in accordance with the heuristic result of [37] (see in particular the cascade condition
Eq. 5 in [37]). Proposition 1 follows from Theorem 11 below which also gives estimates for
the parameters s(q,p) and (g, p) when ¢ < ¢.. Under additional technical conditions, we have

lim,, @ = s(q,p) in case (i).

Note that for ¢ > 1/3, we have, Er<q_1 r(r—=1)p, < 2py <> rpr, assoon as po+p1+p2 < 1.
Hence we have the following elementary corollary:

Corollary 2. For any random graph G(n,d) satisfying Conditions 8 and 10 below and with at
least a positive fraction of nodes of degree greater than 3, we have q. < 1/3.

Recall that for general graphs, it is shown in [33] that ¢. < 1/2. Note also that our bound in
Corollary 2 is tight: for a r-regular network chosen uniformly at random, Proposition 1 implies
that g. = r~1 corresponding to the contagion threshold of a r-regular tree (see [33]). For r > 3
and ¢ < r~!, an initial adopter will cause a complete cascade (i.e. reaching all players) in a
random r-regular graph w.h.p. In particular, in this case, the only possible equilibria of the
game are all players playing A or all players playing B. We will come back to the analysis of
equilibria of the game in Section 2.3.

We now consider some examples. First the case of Erdds-Rényi random graphs G(n,A/n)
where each of the (g) edges is present with probability \/n for a fixed parameter A. In this case,
we can apply our results with p, = e*)‘% for all » > 0. As shown in Figure 1 for the case of
Erdés-Rényi random graphs G(n,A\/n), ¢. is well below 1/3, indeed we have ¢. < 1/4 for any
value of A. As shown in Figure 2, we see that ¢. is a non-decreasing function of the average
degree in the graph A for A < 2. Clearly on Figure 1, ¢, is a non-increasing function of A, for
A >4

The second curve in Figure 1 corresponds to the contagion threshold for a scale-free random
network whose degree distribution p, = % (with {(y) = >_r77) is parameterized by the decay
parameter v > 1. We see that in this case we have ¢. < 1/9. In other words, in an Erdés-Rényi
random graph, in order to have a global cascade, the parameter ¢ must be such that any node
with no more than four neighbors must be able to adopt B even if it has a single adopting
neighbor. In the case of the scale free random network considered, the parameter ¢ must be
much lower and any node with no more than nine neighbors must be able to adopt B with a
single adopting neighbor. This simply reflects the intuitive idea that for widespread diffusion
to occur there must be a sufficient high frequency of nodes that are certain to propagate the
adoption.
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Figure 1: g.(A\) for Erdés-Rényi random graphs and for power law graphs (dashed curve) as a
function of A the average degree.

Figure 2: g.(\) for Erdés-Rényi random graphs as a function of A in the range A € [1;1.2].

We also observe that in both cases, for ¢ sufficiently low, there are two critical values for the
parameter A\, 1 < \;(¢q) < As(q) such that a global cascade for a fixed ¢ is only possible for A €
(XNi(@); As(q)). The heuristic reason for these two thresholds is that a cascade can be prematurely
stopped at high-degree nodes. For Erdds-Rényi random graphs, when 1 < A < A;(q), there exists
a “giant component”, i.e. a connected component containing a positive fraction of the nodes.
The high-degree nodes are quite infrequent so that the diffusion should spread easily. However,
for A close to one, the diffusion does not branch much and progresses along a very thin tree,
“almost a line”, so that its progression is stopped as soon as it encounters a high-degree node.
Due to the variability of the Poisson distribution, this happens before the diffusion becomes too
big for A < \;(¢). Nevertheless the condition A\ > \;(¢) is not sufficient for a global cascade.
Global diffusion also requires that the network not be too highly connected. This is reflected by
the existence of the second threshold A¢(q) where a further transition occurs, now in the opposite
direction. For A > A\s(q), the diffusion will not reach a positive fraction of the population. The
intuition here is clear: the frequency of high-degree nodes is so large that diffusion cannot avoid
them and typically stops there since it is unlikely that a high enough fraction of their many
neighbors eventually adopts. Following [37], we say that these nodes are locally stable.

The proof of our Theorem 11 makes this heuristic rigorous for a more general model of
diffusion and gives also more insights on the nature of the phase transitions. We describe it
now. The lower curve in Figure 3 represents the number of pivotal players in an Erddés-Rényi
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Figure 3: Size s(q,\) of the cascade (in percent of the total population) for Erdés-Rényi random
graphs as a function of A\ the average degree for a fixed ¢ = 0.15. The lower curve gives the
asymptotic fraction of pivotal players v(gq, ).

random graphs as a function of A the average connectivity for ¢~' = 6.666...: hence we keep
only the largest connected component of an Erd6s-Rényi random graph where we removed all
vertices of degree greater than 6. By the same heuristic argument as above, we expect two phase
transitions for the size of the set of pivotal players. In the proof of Theorem 11, we show that
it is indeed the case: the phase transitions occur at the same values \;(¢) and As(¢q) as can be
seen on Figure 3 where the normalized size (g, A) of the set of pivotal players is positive only
for A € (Ai(g), As(q)). Hence a cascade is possible if and only if there is a ’giant’ component
of pivotal players. Note also that both phase transitions for the pivotal players are continuous,
in the sense that the function A — (g, A) is continuous. This is not the case for the second
phase transition for the size of the cascade: the function A — s(g,A) is continuous in A;(q)
but not in A\s;(¢) as depicted on Figure 3. This has important consequences: around A;(q) the
propagation of cascades is limited by the connectivity of the network as in standard epidemic
models. But around A\s(q), the propagation of cascades is not limited by the connectivity but
by the high-degree nodes which are locally stable.
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Figure 4: Size s(q,\) of the cascade (in percent of the total population) for Erdés-Rényi random
graphs as a function of the frequency of the cascade.



To better understand this second phase transition, consider a dynamical model where at
each step a player is chosen at random and switch to B. Once the corresponding cascade is
triggered, we come back to the initial state where every node play A before going to the next
step. Then for A less than but very close to A\s(q), most cascades die out before spreading very
far. However, a set of pivotal players still exists, so very rarely a cascade will be triggered by
such a player in which case the high connectivity of the network ensures that it will be extremely
large. As \ approaches As(q) from below, global cascades become larger but increasingly rare
until they disappear implying a discontinuous phase transition as shown in Figure 4: for low
values of A, the cascades are infrequent and small. As A increases, their frequencies and sizes
also increase until a point where the cascade reaches almost all vertices of the giant component
of the graph. Then as A increases, their sizes remain almost constant but their frequencies are
decreasing.

2.2 Advertising with word of mouth communication

We consider now scenarios where A ¢ [A;(q), As(¢)] and the initial set of adopters grows linearly
with the total population n. More precisely, consider now a firm advertising to a group of
consumers, who share product information among themselves: potential buyers are not aware
of the existence of the product and the firm undertakes costly informative advertising. The firm
chooses the fraction of individuals who receive advertisements. Individuals are located in a social
network modeled by a random network G(n,d) with given vertex degrees as in previous section.
However contrary to most work on viral marketing [35], [23], we assume that the advertiser has
limited knowledge about the network: the firm only knows the proportions of individuals having
different degrees in the social network. One possibility for the firm is to sample individuals
randomly and to decide the costly advertising for this individual based on her degree (i.e. her
number of neighbors). The action of the firm is then encoded in a vector & = (ay), where
ag represents the fraction of individuals with degree d which are directly targeted by the firm.
These individuals will constitute the seed and we call them the early adopters. Note that the
case ag = « for all d corresponds to a case where the firm samples individuals uniformly. This
might be one possibility if it is unable to observe their degrees. In order to optimize its strategy,
the firm needs to compute the expected payoff of its marketing strategy as a function of . Our
results allows to estimate this function in terms of o and the degree distribution in the social
network.

We assume that a buyer might buy either if she receives advertisement from the firm or
if she receives information via word of mouth communication [11]. More precisely, following
[12], we consider the following general model for the diffusion of information: a buyer obtains
information as soon as one of her neighbors buys the product but she decides to buy the product
when Bi(k, ) > K(s) where s is her number of neighbors and & the number of neighbors having
the product, Bi(k,7) is a Binomial random variable with parameters k£ and 7 € [0,1] and
K(s) is a general random variable. In words, 7 is the probability that a particular neighbor
does influence the possible buyer. This possible buyer does actually buy when the number of
influential neighbors having bought the product exceeds a threshold K (s). Thus, the thresholds
K (s) represent the different propensity of nodes to buy the new product when their neighbors do.
The fact that these are possibly randomly selected is intended to model our lack of knowledge of
their values and a possibly heterogeneous population. Note that for K(s) = 0 and 7 € [0, 1], our
model of diffusion is exactly a contact process with probability of contagion between neighbors



equals to m. This model is also called the SI (susceptible-infected) model in mathematical
epidemiology [3]. Also for m = 1 and K (s) = ¢s, we recover the model of Morris [33] described
previously.

We now give the asymptotic for the final number of buyers for the case 7 € [0,1] and
K(s) = gs, with ¢ < 1 (the general case with a random threshold is given in Theorem 9).
We first need to introduce some notations. For integers s > 0 and 0 < r < s let by, denote
the binomial probabilities by (p) := P(Bi(s,p) = ) = (5)p"(1 — p)*". Given a distribution
P = (ps)sen, we define the functions:

h(z;a,p,m) = Z(l—as)ps Z rber (1 — 7w+ 72),

s r>s—|sq
g(z;a,p,w) = )\(p)z(l—w—i-ﬂz)—h(z,a,p,w),
hl(z;a’pvﬂ) = Z(l_as)ps Z bS'I‘(1 —7T—|—7I'Z),
s r>s—|sq|

where A(p) =), sps. We define
Z(a,p,m) :=max{z € [0,1] : g(z;a,p,m) =0}.

We refer to Section 2.4 for an intuition behind the definitions of the functions h, h1,g and 2 in
terms of a branching process approximation of the local structure of the graph.

Proposition 3. Consider the random graph G(n,d) for a sequence (d;)} satisfying Condition 8
below. If the strategy of the firm is given by a, then the final number of buyers is given by (1 —
hi(2, o, p, m))n+op(n) provided Z(o, p, ) =0, or Z(c, p, ) € (0,1], and further g(z; o, p, ) <
0 for any z in some interval (2 — €, 2).

To illustrate this result, we consider the simple case of Erdds-Rényi random graphs G(n, \/n)
with 7 = 1, ag = a for all d, and ¢ > ¢.(\) where ¢.()) is the contagion threshold for this network
(defined in previous section). Figure 5 gives a plot of the corresponding function z +— g¢(z, @)
for three different values of « (the parameter A is fixed). We see that a — Z(«) is discontinuous
at a value a.(\) =~ 6%.
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Figure 5: Function z — g¢(z) for three different values of a =~ 4;6;8% (A = 6 and ¢ = 0.3).

For a < a.(A), the value of Z(«) is close to one whereas for o > () , it is close to zero.
As a result for o < ac(\), the size of the diffusion is rather small whereas it becomes very large



(reaching more than 99% of the population) for & > a.(A). This is reflected in Figure 6, where
the asymptotic for the final fraction of buyers is plotted as a function of a.
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Figure 6: Function o — 1 — hi(2, ) (the green function is z — z, the size of the initial seed).

There is a phase transition in « and clearly the advertising firm has a high interest in
reaching the “critical mass” of a.(A)n early adopters. This phase transition is reminiscent of
the one described in previous section. Recall that we are now in a setting where ¢ > ¢.()\)
so that a global cascade triggered by a single (or a small number of) individual(s) uniformly
sampled is not possible. Hence, the firm will have to advertise to a positive fraction of individuals
constituting the seed for the diffusion. The intuition behind Figure 6 is the following: if the
seed is too small, then each early adopter starts a small cascade which is stopped by high-degree
nodes. When the seed reaches the critical mass, then the cascades “coalesce” and are able to
overcome barriers constituted by high-degree nodes so that a large fraction of the nodes in the
“giant component” of the graph adopt. Then increasing the size of the seed has very little
effect since most of the time, the new early adopters (chosen at random by the firm) are already
reached by the global diffusion. Our Theorem 9 makes this heuristic rigorous for the general
model of diffusion described above (with random thresholds).

We now give some more insights by exploring different scenarios for different values of gq.
Consider first a case where ¢ < 1/4, then thanks to the results of previous section, we know that
there exists 1 < A;(q) < As(q) such that for any A € (A\i(g), As(q)), a global cascade is possible
with positive probability if only one random player switches to B. In particular, if a fraction
a of individuals uniformly sampled are playing A, then for any « > 0, such a global cascade
will occur with high probability. For A > A\s(¢), we know that a single player cannot trigger a
global cascade. More precisely, if players are chosen at random without any information on the
underlying network, any set of initial adopters with size o(n) cannot trigger a global cascade, as
shown by Theorem 11. However the final size of the set of players playing B is a discontinuous
function of « the size of the initial seed. If a.(\) is defined as the point at which this function
is discontinuous, we have: for a < a.(\), the final set of players B will be only slightly larger
than « but if a > a.(\) the final set of players B will be very large.

Hence we will say that there is a global cascade when a > a.(\) and that there is no
global cascade when o < a.(A). As shown in Figure 7, for ¢ < 1/4, we have a.(\) = 0 for
A € [Ni(g),As(q)] and a.(A) > 0 for A > As(q). In Figure 7, we also see that our definition
of global cascade when A\ > A (q) is consistent with our previous definition since the function
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Figure 7: Case ¢ < 1/4. The green (upper) curve is the size of the final set of players B for
a = a.(A) given by A — 1—hy(Z, ac())) as a function of A. The brown (lower) curve corresponds
to the minimal size of the seed for a global cascade A — «.(A). The red curve corresponds to
the size of a global cascade when o = 0 similar as in Figure 3.

A—1—h1(2,a.(N)) giving the size of the final set of players B when the seed has normalized
size ac(\) is continuous in A and agrees with the previous curve for the size of the final set of
players B when A < As(q) and with only one early adopter.

We now consider the case where ¢ > 1/4. In this case, thanks to the results of previous
section, we know that for any value of A, a single initial player B (sampled uniformly) cannot
trigger a global cascade. But our definition of a.(A) still makes sense and we now have a.(\) > 0
for all A\. Figure 8 gives a plot of the function A — a.(\). We see that again there are two
regimes associated with the low/high connectivity of the graph. For low values of A, the function
A — a¢(\) is non-increasing in A. This situation corresponds to the intuition that is correct for
standard epidemic models according to which an increase in the connectivity makes the diffusion
easier and hence the size of the critical initial seed will decrease.
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Figure 8: Case ¢ > 1/4. Minimal size of the seed for a global cascade A — a.()\) as a function
of \.

Figure 9 shows the size 1 — hy(Z, «) of the final set of players B as a function of the size
of the initial seed a for small values of A. We see that for the smallest values of X, there is no
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Figure 9: Case ¢ > 1/4, low connectivity regime. Size of the final set of players B,
a — 1 — hy(2,a) as a function of the size of the initial seed a for different values of

A = 1.60,1.61,1.62,1.63,1.64.

discontinuity for the function o — 1—hy(Z, a). In this case a.(\) is not defined. We also see that
there is a natural monotonicity in A: as the connectivity increases, the diffusion also increases.
However Figure 8 shows that for A > 2, the function A — a.(\) becomes non-decreasing in .
Hence even if the connectivity increases, in order to trigger a global cascade the size of the initial
seed has to increase too. The intuition for this phenomenon is now clear: in order to trigger
a global cascade, the seed has to overcome the local stability of high-degree nodes which now
dominates the effect of the increase in connectivity.

Figure 10: Case ¢ > 1/4, high connectivity regime. Size of the final set of players B, a
1 — h1(2,«) as a function of the size of the initial seed « for different values of A = 2, 3,4 (red,

green, brown respectively).

Figure 10 shows the size 1 — hy(Z, ) of the final set of players B as a function of the size
of the initial seed « for various value of A\. Here we see that connectivity hurts the start of the
diffusion: for small value of «, an increase in A results in a lower size for the final set of players
B! However when « reaches the critical value a.(\), then a global cascade occurs and its size
is an increasing function of A. In other words, high connectivity inhibits the global cascade but
once it occurs, it facilitates its spread.
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2.3 Equilibria of the game and coexistence

We considered so far the permanent adoption model: the only possible transitions are from
playing A to B. There is another possible model in which the initial adopters playing B also
apply best-response update. We call this model the non-monotonic model. In this model, if
the dynamic converges, the final state will be an equilibrium of the game. An equilibrium of
the game is a fixed point of the best response dynamics. For example, the states in which all
players play A or all players play B are trivial equilibria of the game. Note that the permanent
adoption model does not necessarily yield to an equilibrium of the game as the initial seed does
not apply best response dynamics. To illustrate the differences between the two models consider
the graph of Figure 11 for a value of ¢ = 1/3: if the circled player switches to B, the whole
network will eventually switch to B in the permanent adoption model, whereas the dynamic for
the non-monotonic model will oscillate between the state where only the circled player plays B
and the state where only his two neighbors of degree two play B.

Figure 11: The circled player induces a global cascade in the permanent adoption model but
not in the non-monotonic model for ¢ = 1/3 (each triangle represents a long line of players).

Clearly if a player induces a global cascade for the non-monotonic model, it will also induce
a global cascade in the permanent adoption model. As illustrated by the case of Figure 11, the
converse is not true in general. Hence, a priori, a pivotal player as defined in previous section
might not induce a global cascade in the non-monotonic model. In [33], it is shown that if one
can find a finite set of initial adopters causing a complete cascade for the permanent adoption
model, it is also possible to find another, possibly larger but still finite, set of initial adopters
leading to a complete cascade for the non-monotonic model. Hence the contagion threshold as
defined in [33] is the same for both models. In our case, we see that if we switch from A to
B two pivotal players who are neighbors, then the whole set of pivotal players will eventually
switch to B in the non-monotonic model. In our case also, we say that the contagion threshold
is the same in both models. Moreover, both models will have exactly the same dynamics if
started with the set of pivotal players playing B and all other players playing A. In particular,
it shows that the dynamic converges and reaches an equilibrium of the game. Hence we have
the following corollary:

Corollary 4. Consider the random graph G(n,d) satisfying Conditions 8 and 10 below with
asymptotic degree distribution p = (p,)?,. For q < q., there exists w.h.p. an equilibrium of
the game in which the number of players B is more than s(q, p)n (defined in Proposition 1) and
it can be obtained from the trivial equilibrium with all players playing A by switching only two
neighboring pivotal players. We call this equilibrium the pivotal equilibrium.
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Hence for ¢ < q., the trivial equilibrium all A, is rather ’weak’ since two pivotal players
can induce a global cascade and there are ,(n) such players so that switching two neighbors
at random will after a finite number of trials (i.e. not increasing with n) induce such a global
cascade. Figure 12 shows the average number of trials required. It goes to infinity at both
extreme \;(q) and As(q). Moreover, we see that for most values of X inside this interval, the
average number of trials is less than 2. If ¢ > ¢., then by definition if there are pivotal players,
their number must be o,(n). Indeed, in the case of r-regular graphs, there are no pivotal players
for ¢ > q. = r~!. Hence, it is either impossible or very difficult (by sampling) to find a set of
players with cardinality bounded in n leading to a global cascade since in all cases, their number

is op(n).

Figure 12: Average number of trials required to trigger a global cascade for Erdés-Rényi random
graphs G(n, A\/n) as a function of \.

In the case ¢ < ¢, for values of A close to A\s(q), the global cascade reaches almost all nodes
of the giant component. However for A\ close to \;(¢), this is not the case as shown by the
following proposition:

Proposition 5. In an Erdds-Rényi random graph G(n, \/n), for ¢ < e, there exists Ao(q) €
(i), Xs (q)] such that:

o for A € (M\i(q),c(q)), in the pivotal equilibrium, there is coexistence of a giant component
of players A and a giant component of players B.

o for A\ > \.(q), in the pivotal equilibrium, there is no giant component of players A, although
there might be a positive fraction of players A.

Here a giant component is a subset of vertices containing a positive fraction (as n tends to
infinity) of the total size of the graph such that the corresponding induced graph is connected.
Figure 13 illustrates this proposition in the case of Erdés-Rényi random graphs G(n, A\/n). The
difference between the upper (red) and lower (green) curve is exactly the fractions of players A
in the pivotal equilibrium while the brown curve represent the size (in percentage of the total
population) of the largest connected component of players A in the pivotal equilibrium. This
curve reaches zero exactly at A.(¢). Hence for A > A.(q), we see that there is still a positive
fraction of the population playing A, but the set of players A is divided in small (i.e. of size
o(n)) connected components, like ’islands’ of players A in a ’sea’ of players B. Note also that
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Figure 13: Coexistence: the upper (red) curve is the fraction of players in the giant component
as a function of the average degree A\. The lower (green) curve is the fraction of players B in
the pivotal equilibrium as a function of A (for ¢ = 0.2). The last (brown) curve is the size of the
giant component of players A in the pivotal equilibrium as a function of A.

for Erdés-Rényi random graphs, the value of A.(q) is close to \;(¢). Proposition 5 follows from
the following proposition whose proof is given in Section 6.

We first introduce some notations: for D a random variable, we define for 0 < x < 1, D,
the thinning of D obtained by taking D points and then randomly and independently keeping
each of them with probability z, i.e. given D = d, D, ~ Bi(d, z).

We define g(z,p) = >, Ps D5 |sq) Thsr(2) (corresponding to the function g defined in
previous section for alpha =0 and 7 = 1), A(p) = ), sps and

& =sup {z <1, Mp)2* = g(z,p)} )

Proposition 6. Consider the random graph G(n,d) satisfying Conditions 8 and 10 below with
asymptotic degree distribution p = (py)22,. Let D be a random variable with distribution p.
If ¢ < qc, then & < 1. Assume moreover that there exists € > 0 such that g(z,p) < 0 for
z € (£ —€,&). There is coexistence of a giant component of players A and a giant component of
players B in the pivotal equilibrium if

E [D¢(Dg — 2)1(gD > D — Dg)] > 0.

2.4 Local Mean Field approximation

In this subsection, we say that a player A (or a non-buyer) is inactive and a player B (or a
buyer) is active. We describe an approximation to the local structure of the graph and present
a heuristic argument which leads quickly to a prediction for the asymptotic probability of being
active. This heuristic allows to recover the formulas for the functions h, g, k1, but results fron this
section are not needed for the rigorous proofs given in Sections 4 and 5. This branching process
approximation is standard in the random graphs literature [8] and is called Local Mean Field
(LMF) in [27, 26] for contact epidemics. In these particular cases, the LMF approximation was
turned into a rigorous argument. For our model of diffusion with threshold, this seems unlikely
to be straightforward and our proof will not use the LMF approximation.
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The LMF model is characterized by its connectivity distribution p = (p,). We now construct
a tree-indexed process. Let T' be a Galton-Watson branching process [2] with a root which has
offspring distribution p, and all other nodes have offspring distribution pj} given by pr_; = ™r
for all » > 1. Recall that p’_; corresponds to the probability that an edge points to a node
with degree 7, see [8]. The tree T' describes the local structure of the graph G (as n tends
to infinity): the exploration of the successive neighborhoods of a given vertex is approximated
by the branching process T' as long as the exploration is local (typically restricted to a finite

neighborhoods independent of n).

We denote by ¢ the root of the tree and for a node i, we denote by gen(i) € N the generation
of 7, i.e. the length of the minimal path from ¢ to i. Also we denote ¢ — j if i belongs to the
children of j, i.e. gen(i) = gen(j) 4+ 1 and j is on the minimal path from ¢ to i. For an edge
(4,7) with ¢ — j, we denote by T;_,; the sub-tree of T' with root i obtained by the deletion of
edge (i,j) from T.

We now consider the diffusion model described in Section 2.2 (with K (s) = ¢s and probability
for a neighbor to be inluential is 7) on the tree T', where the initial set of active nodes is given
by a vector o = (0;). In our model the o;’s are independent Bernoulli random variables with
parameter ag, where d; is the degree of node 7 in the tree. Thanks to the tree structure, it is
possible to compute the probability of being active recursively as follows: for any node i # g,
let Y; = 1 if node i is active on the sub-graph T;_; U {(¢,7)} with initial set of active nodes
given by the restriction of o to individuals in T;_,; and with individual j held fix in the inactive
state. Then for any node ¢ # ¢ of degree d;, ¢ becomes active if the number of active influential
children exceeds qd;. Hence, we get

YVi=1-(1-0y)1 (Z BuY, < qdi) ; (2)

{—1

where the By;’s are independent Bernoulli random variables with parameter m. Then the state
of the root is given by

Xg=1-(1-0y)1 (Z BipY; < qd¢> . (3)
1—g

In order to compute the distribution of X, we first solve the Recursive Distributional Equation

(RDE) associated to the Y;’s: thanks to the tree structure, the random variables Yy in (2) are

i.i.d. and have the same distribution as Y;. Hence their distribution solve the RDE given by

D
v £1-(1-o(D +1)1 (Z B;Y; < q(D* + 1)) , (4)

=1

where for a given d, the random variable o(d) is Bernoulli with parameter oy, B;’s are inde-
pendent Bernoulli with parameter 7w, D* has distribution p, Y and the Y; are ii.d. copies
(with unknown distribution). To solve the RDE (4), we need to compute only the mean of
the Bernoulli random variable Y. Hence taking expectation in (4) directly gives a fixed-point
equation for this mean and the following lemma follows (its proof is defered to Section 7.1):

Lemma 7. Let v = P[Y = 1|, where the distribution of Y solves the RDE (4), then we have
AM1=2)1 —2x7) = h(l — z;a,p,m). Moreover X, in (3) is a Bernoulli random variable with
parameter 1 — hi(1 — z; o, p, ).

16



By the change of variable z = 1—2x, we see that Lemma 7 is consistent with Proposition 3 and
allow to recover the functions h, g, hi. Clearly the crucial point allowing previous computation
is the fact that in recursion (2) the Y; can be computed “bottom-up” so that the ¥;’s of a given
generation (from the root) are independent. The Y¥;’s in (3) encode the information that i is
activated by a node in the subtree of 7' “below” i (and not by the root). If one considers a node
in the original graph and runs a directed contagion model on a local neighborhood of this node
where only ’directed’ contagion toward this node are allowed, then the state of the graph seen
from this node is well approximated by the Y;’s.

3 General model and main results

We first present the model for the underlying graph, then the model for the diffusion process
and finally our main results for the spread of the diffusion.

3.1 Graphs: the configuration model

Let n € Nand let d = (dz(n))? = (d;)} be a sequence of non-negative integers such that > | d;
is even. For notational simplicity we will usually not show the dependency on n explicitly.
We define a random multigraph with given degree sequence d, denoted by G*(n,d) by the
configuration model [6]: take a set of d; half-edges for each vertex i and combine the half-edges
into pairs by a uniformly random matching of the set of all half-edges. Conditioned on the
multigraph G*(n,d) being a simple graph, we obtain a uniformly distributed random graph
with the given degree sequence, which we denote by G(n,d) [18].

We will let n — oo and assume that we are given d = (d;)} satisfying the following regularity
conditions, cf Molloy and Reed [32]:

Condition 8. For each n, d = (dz(n))71Z is a sequence of non-negative integers such that > ;| d;
is even and, for some probability distribution p = (p,)?2, independent of n,

(i) {i: di =r}|/n— p, for everyr >0 as n — oo;
(ZZ) A= Zr rpr € (0,00),'
fiii) 2y d? = O(n).

The results of this work can be applied to some other random graphs models too by condi-
tioning on the vertex degrees (see [19, 20]). For example, for the Erdéds-Rényi graph G(n, A/n)

with A € (0, 00), the assumptions hold with the probability distribution p = (p,-) being a Poisson
random variable with mean .

3.2 Diffusion: percolated threshold model
In this section, we describe the diffusion for any given finite graph G with vertex set [1,n]. We

still denote by d; the degree of node i. From now on, a vertex ¢ is either active or inactive. In our
model, the initial set of active nodes S (the seed) will remain active during the whole process
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of the diffusion. We will consider single activation or degree based activation: randomly
activate vertex ¢ with probability ag,, where d; is the degree of the vertex. In other words, each
node 7 draws independently of each other a Bernoulli random variable o; with parameter oy, and
is considered as initially active if o; = 1 and not initially active otherwise. In the case of degree
based activation, we denote @ = (g) the parameters of this activation. In particular, if ag = «
for all d, then a fraction « chosen uniformly at random among the population is activated before
the diffusion takes place.

Symmetric threshold model: We first present the symmetric threshold model which
generalizes the bootstrap percolation [4]: anode becomes active when a certain threshold fraction
of neighbors are already active. We allow the threshold fraction to be a random variable with
distribution depending on the degree of the node and such that thresholds are independent
among nodes. Formally, we define for each node 7 a sequence of random variables in N denoted
by (K;(d))32,. The threshold associated to node i is k; = K;(d;) where d; is the degree of node 1.
We assume that for any two vertices ¢ and j, the sequences (K;(d)) and K;(d) are independent
and have the same law as a sequence denoted by (K (d)). For £ < s, we denote tg = P(K(s) = ¢)
the probability distribution of the threshold for a node of degree s. For example in the model
of Morris [33] described in the introduction, we take K (d) = |gd] so that ts = 1(|gs] = £). We
will use the notation (d, k) = (d;, k;)} and t = (ts¢) denotes the distribution of thresholds.

Now the progressive dynamic of the diffusion operates as follows: some set of nodes S starts
out being active; all other nodes are inactive. Time operates in discrete steps t = 1,2,3,.... At
a given time ¢, any inactive node ¢ becomes active if its number of active neighbors is at least
K;(d;) + 1. This in turn may cause other nodes to become active.

It is easy to see that the final set of active nodes (after n time steps if the network is of size n)
only depends on the initial set S (and not on the order of the activations) and can be obtained as
follows: set X; = 1(i € S) for all i. Then as long as there exists i such that »_,; ; X; > K;(d;),
set X; = 1, where j ~ ¢ means that ¢ and j share an edge in G. When this algorithm finishes,
the final state of node ¢ is represented by X;: X; = 1 if node ¢ is active and X; = 0 otherwise.

Note that we allow for the possibility d; = K;(d;) in which case, node i is never activated
unless it belongs to the initial set S. Note also that the condition K;(d;) > 0 is actually not
restrictive. If we wish to consider a model where K;(d;) < 0 is possible, we just need to modify
the initial seed S so as to put node i in S if K;(d;) < 0. Hence this model is equivalent to ours
if we increase a4, accordingly.

Percolated threshold model: this model depends on a parameter 7 € [0, 1] and a dis-
tribution of random thresholds (K (d))4en given by t = (ts¢)i<s as described above. Given any
graph G and initial set S, we now proceed in two phases.

e bond percolation: randomly delete each edge with probability 1 — 7 independently of all
other edges. We denote the resulting random graph by Gj;

e apply the symmetric threshold model with thresholds K (d): set X; = 1(i € S) and then
as long as there is ¢ such that ijﬂ' X; > K;(d;), set X; =1, where j ~, ¢ means that ¢
and j share an edge in G and d; is the degree of node 7 in the original graph G.

Clearly if 7 = 1, this is exactly the symmetric threshold model. If in addition K (d) = k, then
this model is known as bootstrap percolation [4]. On the other hand if 7 € (0,1) and K(d) =0
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for any d, then this is the contact process with probability of activation m on each edge. Note
that the percolated threshold model is not equivalent to the symmetric threshold model on the
(bond) percolated graph since threshold depends on the degree in the original graph.

3.3 Diffusion with degree based activation

Recall that for integers s > 0 and 0 < r < s, by, denotes the binomial probabilities bg,.(p) :=
P(Bi(s,p) =r) = (J)p" (1 —p)* "

For a graph G, let v(G) and e(G) denote the numbers of vertices and edges in G respectively.
The subgraph of G(n,d, k) induced by the activated (resp. inactive) nodes at the end of the
diffusion is denoted by H = H(n,d,k,a,m) (resp. I = I(n,d,k,a,7)). For r < s, we denote
by vsr(I) the number of vertices in I with degree s in G and r in I, i.e. the number of vertices
with degree s in G which are not activated and with r neighbors which are not activated either.
We denote by vs(H) the number of activated vertices of degree s in G (and with possibly lower
degree in H).

Given a distribution of degrees p = (ps) and of thresholds t = (ts)¢<s, we define the
functions:

Wz a,p, ) = Z(l—as)pSZtsg Z rbg (1 — 7+ 72),

s 1<s r>s—{
g(Z;aava() = )\(p)Z(l _7T+7TZ) _h‘(Z;a7p77T)7
hl(Z;a,p,Tf) = Z(l _as)psztsf Z bsr(1_7T+7TZ)7
s 1<s r>s—{
where A(p) =), sps. We define
s — 2o, p,m) = max{z € 0,1] : g(si0,p,7) = 0} (5)

We refer to Section 7.2 for a justification of the use of the max in (5).

Theorem 9. Consider the random graph G(n,d, k) for a sequence d = (d;)} satisfying Con-
dition 8 and let t be a distribution of thresholds as defined above. For the percolated threshold
diffusion on the graph G(n,d, k), we have: if 2 =0, or if 2 € (0,1], and further g(z; ¢, p, ) <0
for any z in some interval (2 — €, %), then

U(H)/n i 1- hl(éaaapvﬂ)v
N

Usr(I)/n Z (1 - as)pstsébsr(é)bs—r,i(l - 7T),
i+0>s—r
vs(H)/n 5 pe— > (1= ag)psterbsr(l — 7+ 72),
k>s—¢
e)n B (m ” 1)#@ (= 1)%) h(: o, p, ).

If we condition the induced graph I* = I*(n,d,k, o, ) of inactive nodes in G*(n,d, k) on its
degree sequence d” and let n'” be the number of its vertices, then I™ has the distribution of
G*(n!",d").

The proof of this theorem is given in Section 4. Note that Proposition 3 follows easily.
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3.4 Diffusion with a single activation

In this section, we look at the diffusion with one (or a small number o(n) of) initial active
node(s) in G(n,d, k). For simplicity, we make the following additional assumption:

Condition 10. (i) Y, d3 = O(n).

For v € [1,n], let C(u) (resp. C(1,...,k)) be the subgraph induced by the final active
nodes with initial active node w (resp. initial active nodes 1,...,k). We also define Z(u) as
the subgraph induced by the inactive nodes with initial active node u. The set of vertices of
C(u) and Z(u) is a partition of the vertices of the original graph. To ease notation, we denote
h(z) = h(z;0,p,m), g(2) = g(#;0,p, ) and hi(z) = hi(z;0,p, 7). We define

&:=sup{z€0,1): g(z) =0}. (6)

We also define

g(z) = (1—-7m+mz2) ()\z - Z sps(1 —ts0) — Z spstso(1 —m + 7TZ)S_1> ,
hl(Z) = Zpstso(l -7+ WZ)S + Zps(l - tsO)a

and € =sup{z € [0,1) : g(z) = 0}.

We call the following condition the cascade condition:
7r Z r(r — et > err, (7)

which can be rewritten as 7E[D(D — 1)1(K (D) = 0)] > E[D] where D is a random variable
with distribution p.

We denote by P = P(n,d, k) the largest connected component of the graph G(n,d, k) on
which we apply a bond percolation with parameter = (i.e. we remove each edge independently
with probability 1 — 7) and then apply a site percolation by removing all vertices with k; > 1.

The vertices of the connected graph P are called pivotal vertices: for any u € P, we have
P c C(u).

Theorem 11. Consider the random graph G(n,d, k) for a sequence d = (d;)} satisfying Con-
ditions 8 and 10 and let t be a distribution of thresholds as defined above.

(i) If the cascade condition (7) is satisfied, then

Moreover, for any uw € P, we have w.h.p.

n n

n

zl—hl(f) >O,
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where £ is defined by (6). Moreover if & = 0 or £ is such that there exists € > 0 with
9(z) <0 for z € (§ — €,£), then we have for any u € P:

v(C(u)/n H 1= h(©),
Usr(I(u))/n L Z pstsébsr(g)bs—r,i(l - 7T),
i+0>s—r
’US(C(U))/’H L Ps — Z pstsfbsk(l -7+ 775)7
k>s—4
13 o1
e(Z(u))/n (1(77 - 1)m +1(r = 1)5) h(€)

If we condition the induced graph T*(u) of inactive nodes in G*(n,d,k) on its degree
sequence d*” ) and let nT" ) be the number of its vertices, then Z*(u) has the distribution

of G* (nI*(u)’ dI*(u))

(it) If 7>, r(r — D)rptyg < >, 7Py, then for any k = o(n), v(C(1,...,k)) = op(n).

A proof of this theorem is given in Section 5. We end this section with some remarks: if
K (d) does not depend on d, then the cascade condition becomes with D a random variable with
distribution p:

E[D]

P(K =0) > BB -1

In particular, if K = 0, then we find the well-known condition for the existence of a ’giant
component’. This corresponds to existing results in the literature see in particular Theorem 3.9
in [17] which extend the standard result of Molloy and Reed [32]. More generally, in the case
m € [0,1] and K = 0 (corresponding to the contact process), a simple computation shows that

h(z;a,p,m) = (1—a)(1 =7+ m2)¢p(1 —7m+72)
hl(z;a,p,w) = (1_a)¢D(1_7T+7TZ)7

where ¢p(z) = E[zP] is the generating function of the asymptotic degree distribution. Applying
Theorems 9 and 11 allow to obtain results for the contact process. Similarly, the bootstrap
percolation has been studied in random regular graphs [4] and random graphs with given vertex
degrees [1]. The bootstrap percolation corresponds to the particular case of the percolated
threshold model with 7 = 1 and K(d) = 6 > 0 and our Theorems 9 and 11 allow to recover
results for the size of the diffusion. Finally, the case where K (d) = qd and 7 = 1 implies directly
Proposition 1.

4 Proof of Theorem 9

4.1 Sketch of the proof
It is well-known that it is often simpler to study the random multigraph G*(n,d) with given

vertex sequence d = (d;)} defined in Section 3.1. We consider asymptotics as the number of
vertices tends to infinity and thus assume throughout the paper that we are given, for each n, a
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sequence d = (dl(n))? with ), dl(-n) even. We may obtain G(n,d) by conditioning the multigraph
G*(n,d) on being a simple graph. By [18], we know that the condition Y, d? = O(n) implies
lim inf P(G*(n, d) is simple) > 0. In this case, many results transfer immediately from G*(n,d)
to G(n,d), for example, every result of the type P(£,) — 0 for some events &,, and thus
every result saying that some parameter converges in probability to some non-random value.
This includes every results in the present paper. Henceforth, we will in this paper study the
random multigraph G*(n, d) and in a last step (left to the reader) transfer the results to G(n, d)
by conditioning. More precisely, we define the graph G*(n,d, k), i.e. we add a label to each
vertex corresponding to its threshold and say that it is the configuration model associated to
the degree-threshold sequence (d, k) and asymptotic degree and threshold distributions p = (ps)
and € = (ts0)se-

We run the dynamic of the diffusion of Section 3.2 on a general graph G*(n,d, k) in order to
compute the final size of the diffusion in a similar way as in [19]. The main point here consists
in coupling the construction of the graph with the dynamic of the diffusion. This is done in
Section 4.3. The proof of Theorem 9 follows then easily. In order to prove Theorem 11, we use
the same idea of coupling (in a similar spirit as in [20] for the analysis of the giant component)
but we have to deal with an additional difficulty due to the following lack of symmetry: if C(u)
is the final set of the diffusion with only w as initial active node, then for any v € C(u), we do
not have in general C(u) = C(v). We take care of this difficulty in Section 5. In the next section,
we present a preliminary lemma that will be used in the proofs.

4.2 A Lemma for death processes

A pure death process with rate 1 is a process that starts with some number of balls whose lifetime
are i.i.d. rate 1 exponentials. Now consider n bins with independent rate 1 death processes.
To each bin, we attach a couple (d;, k;) where d; is the number of balls at time 0 in the bin
and k; = K;(d;) is the threshold corresponding to the bin. We now modify the death process
as follows: all balls are initially white. For any living ball, when it dies, with probability 1 — 7
and independently of everything else, we color it green instead of removing it from the bin. Let
Wj(n)(t) and ng) (t) denote the number of white and green balls respectively in bin j at time ¢,
where j=1,...,nand ¢t > 0.

Let Us(:i),z(t) be the number of bins that have s balls at time 0 and » white balls, ¢ green balls
at time ¢ and threshold /, i.e. Ug;{e(t) =|{j € 1,n], Wj(n)(t) =r, Gg.”)(t) =i, d;=s, kj =1L}

In what follows we suppress the superscripts to lighten the notation. The following lemma is an
extension of Lemma 4.4 in [19]:

Lemma 12. Consider the n independent processes defined above and assume that the sequence
(d;)} satisfies Condition 8 where (p,)22, can be a defective probability distribution: Y p, < 1.
We assume that the distribution of the thresholds is t = (tsp). Then, with the above notation, as
n — oo,

up > DD Ui/ = patatbar (sl = )] 20 ®
=7 s r=0 =0

Proof. Let nge = [{i : di = s,k; = £}[. In particular }__, Us(:fi)e(O) = Us(gge(O) = ngp. First
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fix integers s,£ and j with 0 < j < s. Consider the ng bins that start with s balls and with
threshold ¢. For k = 1,...,ng, let T} be the time of death or recoloring of the jth ball in the
kth such bin. Then |[{k : Ty < t}| = 2520 5257  Uypin(t). Moreover, for the kth bin, we have
P(T, <t)= Zi;é bsr(e7t). Multiplying by ng/n and using Glivenko-Cantelli theorem (see e.g.
Proposition 4.24 in [22]), we have

1 s—j s—r n 5—j

st —t p
sup EZZ smf str(e ) -0
20 r=0 i= r=0

Since ng/n —P pgtse (by Condition 8(i) and the law of large numbers), we see that

sup |— 20

t>0

Z Usm é pstsébsr(e_t)
n

The law of Gi(t) given d = s and Wy(t) = r < s is a Binomial distribution with parameters
s —r and 1 — 7. Hence by the law of large numbers, we have

Ugrio(t
sup sr,ﬁ()

n

2.

- pstsébsr(e_t)bs—r,i(l - 7T)

t>0

Hence each term in (8) tends to O in probability. Hence the same holds for any finite
partial sum. Let ¢ > 0 and S be such that > .2 ¢sps < e. By Condition 8(iii), we have

D s SNse/n =2 ds/n — X =73 sps. Hence, also Y o>, sns/n — D 2 gsps < €. So that
for sufficiently large n, we get Y .~ o> ,sns/n < € and

s ST

SUPZZZZ ‘Usmé )/ — psterbsy(e” )bs rz( _W)‘

t>os>S ¢ r=01i=0

< SUPZZZZ smf /n+ps sébs?“( )bS*Tﬂ'(l _ﬂ-))

t20 s>S £ r=0i=
< Zzs(nse/n +psts€) < 2e.
s>S ¢

Hence (8) holds. O

4.3 Proof of the diffusion spread

Our proof of Theorem 9 is an adaptation of the coupling argument in [19]. We start by analyzing
the symmetric threshold model. We can view the algorithm of Section 3.2 as follows: start with
the graph G and remove vertices from S. As a result, if vertex ¢ has not been removed, its degree
has been lowered. We denote by df‘ the degree of ¢ in the evolving graph. Then recursively
remove vertices ¢ such that df < d; — K;(d;). All removed vertices at the end of this procedure
are active and all vertices left are inactive. It is easily seen that we obtain the same result by
removing edges where one endpoint satisfy df < d; — K;(d;), until no such edge remains, and
finally removing all isolated vertices, which correspond to inactive nodes.

Regard each edge as consisting of two half-edges, each half-edge having one endpoint. We
introduce types of vertices. We set the type of vertices in the seed S to B. Say that a vertex (not
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in S) is of type A if df > d; — K;(d;) and of type B otherwise. In particular at the beginning of
the process, all vertices not in S are of type A since d{‘ = d; and all vertices in S are by definition
of type B. As the algorithm evolves, df decreases so that some type A vertices become of type
B during the execution of the algorithm. Similarly, say that a half-edge is of type A or B when
its endpoint is. As long as there is any half-edge of type B, choose one such half-edge uniformly
at random and remove the edge it belongs to. This may change the other endpoint from A to
B (by decreasing d) and thus create new half-edges of type B. When there are no half-edges
of type B left, we stop. Then the final set of active nodes is the set of vertices of type B (which
are all isolated).

As in [19], we regard vertices as bins and half-edges as balls. At each step, we remove first
one random ball from the set of balls in B-bins and then a random ball without restriction. We
stop when there are no non-empty B-bins. We thus alternately remove a random B-ball and a
random ball. We may just as well say that we first remove a random B-ball. We then remove
balls in pairs, first a random ball and then a random B-ball, and stop with the random ball,
leaving no B-ball to remove. We change the description a little by introducing colors. Initially
all balls are white, and we begin again by removing one random B-ball. Subsequently, in each
deletion step we first remove a random white ball and then recolor a random white B-ball red;
this is repeated until no more white B-balls remain.

We now run this deletion process in continuous time such that, if there are j white balls
remaining, then we wait an exponential time with mean 1/j until the next pair of deletions. In
other words, we make deletions at rate j. This means that each white ball is deleted with rate
1 and that, when we delete a white ball, we also color a random white B-ball red. Let A(t) and
B(t) denote the numbers of white A-balls and white B-balls at time ¢, respectively, and A;(t)
denotes the number of A-bins at time t. Since red balls are ignored, we may make a final change
of rules, and say that all balls are removed at rate 1 and that, when a white ball is removed, a
random white B-ball is colored red; we stop when we should recolor a white B-ball but there is
no such ball.

Let 7 be the stopping time of this process. First consider the white balls only. There are no
white B-balls left at 7, so B(7) has reached zero. However, let us consider the last deletion and
recoloring step as completed by redefining B(7) = —1; we then see that 7 is characterized by
B(1) = —1 and B(t) > 0 for 0 <t < 7. Moreover, the A-balls left at 7 (which are all white) are
exactly the half-edges in the induced subgraph I of inactive nodes. Hence, the number of edges
in this subgraph is 3 A(7), while the number of nodes not activated is A; ().

Moreover, if we consider only the total number A(t)+ B(t) of white balls in the bins, ignoring
the types, the process is as follows: each ball dies at rate 1 and upon its death another ball is also
sacrificed. The process A(t) + B(t) is a death process with rate 2 (up to time 7). Consequently,
by Lemma 4.3 of [19] (or Lemma 12 above), we have

sup |A(t) + B(t) — n)\e_%‘ = op(n), 9)
t<r
since Condition 8 (iii) implies > r|{i: di =7r}|/n — X .

Now if we consider the final version of the process restricted to A-bins, it corresponds exactly
to the death process studied in Section 4.2 above with 7 = 1. We need only to compute the initial
condition for this process. For a degree based activation, each vertex of degree s is activated (i.e.
the corresponding bin becomes a B-bin) with probability as. Hence by the law of large numbers,
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the number of A-bins with initially s balls and threshold ¢ is ng = (1 — a)pstsen + op(n). With
the notation of Lemma 12, we have

Aty = > rUgor(t), and, A(t)= D Usoult),

s>1,r>s—4 s>1,r>s—¢

with the defective probability distribution (1 — as)ps. Hence by Lemma 12 we get (recall that
m = 1 here):

sup @ - Z ?”(1 - O‘s)pstsfbsT(eit) = 0.
n

tsr s>1,r>s—4

It is then easy to finish the proof as in [19] for this model. In particular, it ends the proof of
Theorem 9 for the case m = 1.

We now consider the percolated threshold model with 7 < 1. We modify the process as
follows: for any white A-ball when it dies, with probability 1 — 7, we color it green instead of
removing it. A bin is of type A if r + 4 > s — £, where r is the number of withe balls in the bin,
i the number of green balls (which did not transmit the diffusion) and s and ¢ are the initial
degree and threshold. Let A(t) be the number of white A-balls. By Lemma 12, we now have:

A(t _
sup Alt) _ Z (1 — s )pstsebsr (€ Dbs_ri(1 =) 5 0,
t<r| 1 ;
= s,r+i>s—~L
Aq(t _
sup 1( ) - Z (1 - as)pstsfbsr(e t)bs—r,i(l - 7T) £> 0
t<rt n -
= s,r+i>s—L
In particular, we have thanks to Lemma 14 (in Section 7.1) for ¢t < 7,
—t
A(t)/n = #Wh(e_t; a,p,m) +op(n), Ai(t)/n=hi(e " a,p,m)+0y(n).  (10)

By looking at white balls (without taking types in consideration), we see that Equation (9) is
still valid. Hence, we have

B() e hapm)| 0. (11)

su -
tSIT) n 1—7r—|—7re*tg

Assume now that t; > 0 is a constant independent of n with t; < —In 2 so that 2 < 1 and
g(1;a,p,m) = g(1) > 0. Hence, we have g(z) > 0 for z € (2,1] and thus g(e™") > 0 for ¢ < ¢;.
We can find some ¢ > 0 such that g(e™?) > ¢ for t < t;. But B(r) = —1, so if 7 < t; then
#9(6*7) — B(1)/n > c% and from (11), we have P(7 < t;) — 0. In case 2 = 0,
we may take any finite ¢; and find 7 —P oo and (10) with ¢ — oo, yields that

lim A(t) = op(n), tlim Aq(t) = nhi(0; o, p, ) + 0p(n).

t—o00
In case 2 > 0, by the hypothesis we can find ¢ty € (—In 2, — In(Z —¢€)) such that g(e7?2) = —¢ < 0.

If 7 > to, then B(t2) > 0 and thus B(t3)/n — %g(e‘”) > cl_ﬂiﬁ. Hence by (11),
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we have P(7 > t3) — 0. Since we can choose t; and ty arbitrarily close to —In 2, we have
7 —P —In 2 and (10) with ¢ = 7 yields that

nz

A(r) = “h(%;0,p,m) +0p(n), Ai(T) =nhi(Z;a,p, )+ op(n).

l—n+4+7w2

Note that v(H) = n — A;(r) and e(I) = 1A(7). Hence we proved Theorem 9 for v(H)/n and
e(I)/n. The results for vg.(I)/n and vs(H)/n follows from the same argument, once we note
that

Usr Z Usmf and> US(H) = ‘{] : dj = 8}‘ - Z Usmé

r4+i>s—~0 r+i>s—40

Finally, the statement concerning the distribution of the induced subgraph I follows from the
fact that this subgraph has not been explored when previous algorithm stops.

5 Proof of Theorem 11

We start this section with some simple calculations. We define for z € [0, 1],

a(z) = Zpsztsf Z rbsr )

s <s r>s—{
h(z) = a(l —7+7z2),
hi(z) = Z Pstsebsr (1 — 7+ 72),
s,r>s—4
ho(z) = #h(z) if 7 <1 and hy(z) = h(z) otherwise,
l—7m+mz
9(z) = Xz(l—7m+mz)— h(z),
flz) = #g(z) if <1 and f(z) = g(z) otherwise.
l—7m+mz

For s > 1 and ¢ > 1, we have

LS ) = 2 Y r(r—sz)(j)zrl(l—z)srl

r>s—/{ s—1>r>s—¢

= g2yl Z r(sz — r);bs_lr(z),

s—1>r>s—¢ Z(S o T)

so that for z € [0,1], we have

d%Zrzs—e rbST(z)‘ < 52 + s3. Hence by Condition 10, a is
differentiable on [0, 1] and we have

! — t 2, s5-1 _ _ S\ _r—1 1— s—1-—r
z) ;psse 5%z Z r(sz—r) e (1-2)

s—1>r>s—¢

In particular, we have

d(1) = > pete (s =1 >1)s(s — 1))
EN4
= Zpstsos(s — 1)+ A,
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so that we have

Jg(1) = M1+7) —md(1)
— E[D] - E[D(D - D1(K(D) = 0)].

Note also that f(1) = g(1) =0 and f'(1) = ¢'(1).

Consider now the case (ii) where 7E [D(D — 1)1(K (D) = 0)] < E[D], so that ¢’(1) = f'(1) >
0. The proof for an upper bound on n=!v(C(1,...,k)) follows easily from Theorem 9. Take a
parameter a = (a)gen With oy = @ > 0 for all d. Clearly the final set of active nodes H («) will
be greater than for any seed with size op(n). Now when a goes to zero, the fact that f'(1) < 0
ensures that Z(a) — 1 in Theorem 9 so that lim,—.0 lim;,, . v(H («))/n = 0. Hence point (ii) in
Theorem 11 follows.

We now concentrate on the case where the cascade condition holds. In particular we have
g'(1) < 0 so that £ defined in (6) by £ = sup{z € [0,1),g(z) = 0} is strictly less than one and
we have

f(z) >0, Vze (1) (12)

Also as soon as there exists € > 0 such that g(z) < 0 for z € (£ —€,§), we can use the same
argument as above. Since, we have in this case Z(a) — £ as @ — 0, it gives an upper bound that
matches with the statement (i) of Theorem 11. In order to prove a lower bound, we follow the
general approach of [20]. We modify the algorithm defined in Section 4.3 as follows: the initial
set S now contains only one vertex. When there is no half-edge (or ball) of type B, we say that
we make an exception and we select a vertex (or a bin) of type A uniformly at random among
all vertices of type A. We declare its white half-edges of type B and remove its other half-edges,
i.e. remove the green balls contained in the corresponding bin if there are any. Exceptions are
done instantaneously.

For any set of nodes vy, ..., vk, let C(vy,...,vr) be the subgraph induced by the final active
nodes with initial active nodes vy,...,v;. If S = {v1}, then clearly when the algorithm has
exhausted the half-edges of type B, it removed the subgraph C(v1) from the graph and all edges
with one endpoint in C(v1). Then an exception is made by selecting a vertex say vy in G\C(v1).
Similarly when the algorithm exhausted the half-edges of type B, it removed the subgraph
C(v1,v2) and all edges with one endpoint in this set of vertices. More generally, if k exceptions
are made consisting of selecting nodes vy, ... vk, then before the k + 1-th exception is made (or
at termination of the algorithm if there is no more exception made), the algorithm removed the
subgraph C(v1,...,v;) and all edges with one endpoint in this set of vertices.

We use the same notation as in Section 4.3. In particular, we still have:

st1>1%)) |A(t) + B(t) — nxe | = o,(n). (13)

We now ignore the effect of the exceptions by letting fl(t) be the number of white A balls if no
exceptions were made, i.e. assuming B (t) > 0 for all t. If dypax = max; d; is the maximum degree
of G*(n, (d;)}), then we have A(0) = A(0) € [n — dmax, n]. By Condition 8 (iii), dmax = O(n'/?),
and thus n ldyax = 0,(n). Hence we can apply results of previous section:

At _
sup Al _ Z rpstseber (e bs_ri(1—7)| 5 0. (14)
t>0 n -
s,r+i>s—1L
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We now prove that:

0 < A(t) = A(t) < sup (A(s) — A(s) — B(s)) + dinax- (15)

0<s<t

The fact that A(t) > A(t) is clear. Furthermore, A(t) — A(t) increases only when exceptions are
made. If an exception is made at time ¢, then the process B reached zero and a vertex with j
white half-edges is selected so that B(t) = j — 1 < dpyax- Hence we have

A(t) — A(t) < A(t) — A(t) — B(t) + dmax.

Between exceptions, if A decreases by one then so does A, hence A(t) — A(t) does not increase.
Consequently if s was the last time before ¢ that an exception was performed, then A(t) — A(t) <
A(s) — A(s) and (15) follows.

Let B(t) = A(t) + B(t) — A(t), then we have

B(t)

sup |[——= — f(e7H)| & 0. (16)
>0 | M
Equation (15) can be written as
0<At)— A(t) < — igftf?(s) + diax (17)

We first assume that £ given by (6) is such that £ > 0 and there exists ¢ > 0 such that
g(2) < 0 and hence f(z) <0 for z € (€ —¢,&). Let 7 = —In&. Then by (12), we have f(e™!) > 0
for 0 < t < 7 so that inf;<, f(e™*) = f(1) = 0 and hence by (16),

inf n ' B(t) & 0. (18)

t<t

By Condition 8 (iii), n"'dmax = 0p(n). Consequently, (17) yields

supn Y B(t) — B()| = supn~|A(t) — A()] 20, (19)
t<t t<t
and thus by (16)
B
sup B _ fleH| & o. (20)
t<rt n

By assumption, there exists € > 0 sufficiently small for f(e=""¢) < 0. Since f(e™*) > 0 on
the interval [e,7 — €], (20) implies that w.h.p. B(t) remains positive on [e,7 — €], and thus no
exception is made during this interval.

On the other hand, f(e™7"¢) < 0 and (16) implies n~'B(7 +¢) = f(e"7~¢) + 0,(n), while
B(7+¢€) >0. Thus with 6 = —f(e”77¢)/2 > 0, w.h.p.

A(t+e)—A(t+¢€)=B(t+¢€) — B(t+€) > —B(1 +¢€) > nd, (21)

B(
while (19) yields A(7)— A(7) < nd w.h.p. Consequently, w.h.p. A(7+¢€)—A(r+€) > A(1)—A(7)
and an exception is performed between 7 and 7 + €.

Let T} be the last time an exception was performed before 7/2 and let T be the next time
it is performed. We have shown that for any ¢ > 0, wh.p. 0 <T)} <ecand 7 —e <Tp <7 +e€.
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Lemma 13. Let T and Ty be two random times when an exception is performed, with T < T,

and assume that T} ER t1 and Ty ER to, where 0 <ty <ty < 7. Ifv(T}) is the number of vertices
removed by the algorithm by time 13", then

o(T3) ~o(T7) 5

hi(e™™) — hi(e '), (22)
In particular, if t1 = to, then v(Ty) — v(T}) = op(n).

Proof. By definition, we have:
o(Ty) = v(T7) = ATy =) — A (T3 -).

Since T3 5ty < 7 and f is continuous, inficy fe™) L inficy, f(e7) = 0, and (16) and (17)

imply, in analogy with (18) and (19), ™! infy<ry B(t) 2 0 and

sup n Y A(t) — A®t)] 2 0. (23)
t<Ty

Let A;(t) be the number of bins if no exceptions were made. Then we clearly have Ay (t) —
A1 (t) < A(t) — A(t) since each time an exception is made A;(t) — A1(t) increases by one while
A(t) — A(t) increases by more than one. Hence (22) follows from results in previous section. [

Let C’ (resp. C") be the subgraph induced by the vertices removed by the algorithm between
0 and T (resp. T3). By Lemma 13, we have

v@)/n B 0 (24)
v(C)/n B hi(1) — hi(€) = 1— hy(€). (25)

Hence informally, the exception made at time T} triggers a large cascade.

Now consider the case £ = 0. Note in particular that we have h(0) = 0 and since hq(z) < h(z),
we also have h1(0) = 0. Then with the same argument as above, we have that B(¢) remains
positive on [¢, +00) and thus no exception is made after a last exception made at time 77 with
T; —P 0. Hence (24) and (25) follow with C” being the whole graph, h1(0) = 0.

We now finish the proof of Theorem 11 in the case where £ = 0 or there exists ¢ > 0 such
that g(z) < 0 for z € (£ —¢,£). First by [17] Theorems 3.5 and 3.9, the cascade condition implies
that v(P) = Qp(n). The result lim, @ = 1—h1(€) > 0 could be derived from [17]. We give an
alternative proof for this result at the end of this section. For now, we denote v = 1—hy(§) > 0.
Coming back to the diffusion process analyzed above, we clearly have C'N P = (). We now prove
that P C C”. This is clear in the case £ = 0. We now concentrate on the case £ > 0. First, let
T3 be the first time after T when an exception is made. Since A(t) — A(t) increases by at most

dmax = 0p(n) each time an exception is made, we obtain from (23):

sup (A(t) - A(t)) < sup (A(t) - A(t)) + dmax = Op(n)-
t<T; t<T>

Hence similarly as in (21), we have for every € > 0, w.h.p. 7+ € > T3. Since also T5 > Ty —? T,
it follows that T3 —P 7. If C" is the subgraph removed by the algorithm between T5 and

29



T3, then Lemma 13 implies that v(C"”) = o,(n). Assume now that C”" N P = (), then with
probability at least v > 0, the vertex chosen for the exception at 75 belongs to P and then we

have P(C""has more than yn vertices) > ~, in contradiction with v(C") = 0,(n). Hence we have
C" NP # () and then P C C” as claimed.

We clearly have for any u € P:

v(C(P)) = v(C(u)) = v(NuepC(w))-

Hence we only need to prove that v(C(P)) > 1 — hi(§)n + op(n). To see this, attach to each
vertex ¢ a random variable U; uniformly distributed over [0,1]. Each time an exception has to
be made, pick the vertex among the remaining ones with minimal U; so that we do not change
the algorithm described at the beginning of the section. From the analysis above, we see that
all exceptions made before T; are vertices not in P and the exception made at time 77 belongs
to P. Now consider the graph G obtained from the original graph where C’ has been removed
but all other variables are the same as in the original graph. Since v(C’) = op(n), this graph
satisfies Conditions 8 and 10. Hence previous analysis applies and we have in addition that the
first exception made by the algorithm belongs to P since a pivotal vertex in G is also pivotal in
G. Hence the subgraph of G removed between times 77 = 0 and T by the algorithm is exactly
C(P) in G. Since G is a subgraph of G, we have C(P) C C(P) in the original graph. And the first
claim in (i) follows from (25) applied to the graph G. The second claim in (i) follows exactly as
in the proof of Theorem 9 given in previous section.

Now consider the case where £ > 0 but for any € > 0, there exists z € (§ — ¢,&) such that
g(z) > 0 and hence f(z) > 0. The idea to get a lower bound is to let 7 vary. Since w > 0, for
any 0 < 7’ < 7, we see that by a standard coupling argument, for any given intial seed all active
nodes in the model with 7’ will also be active in the model with 7. Hence the model with 7/
provides a lower bound for the number of active nodes in the model with 7. Now consider the
function g(z,7) = Az(1 —7(1 —2)) —a(1 — (1 — 2)) as a function of 7. We have

9y

5 (2m) = (1= 2) [d(1—n(l - 2) = A

Since ¢ is a local minimum of z — g¢(z,7) and g is differentiable as a function of z, we have

)\(1 —7m(1=¢)) + A

s

W em) =00 d(1—n(1-6)
Hence we have g—g(&,ﬂ) %(1 — &1 —m(1—=¢)) > 0. In particular for 7 — e < 7 < 7, we
have g(&,7") < g(§,m) = 0. Let &(n’) = sup{z € [0,1), g(z,7") = 0}, then we have &(n’) > &
for any ' < 7w and g(z,7") < 0 for z € (£,&(n’)). Moreover, we have {(7') — &(w) as 7/ — 7
and previous argument is valid for the model with 7’ as close as desired from 7 showing that
1—hy(&(7") = 1= hy(§) is a lower bound for the fraction of active nodes in the model with 7.

We finish this proof by computing the asymptotic for the size of P using our previous
analysis but for a modified threshold as done in [25]. We add a bar for quantities associated
to this new model. Namely, consider a modification of the original diffusion with threshold
K;(d;) = (d; + 1)1(K;(d;) > 1). In words, a node i becomes active if one of its neighbor is
active and K;(d;) = 0 in the original diffusion. Clearly the nodes that become active in this
model need to have only one active neighbor in the original contagion model with parameter
K;(d;). We denote by C(u) the subgraph of final active nodes with initial active node u. Note
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that our algorithm is an exploration process of the components of the graph on which we apply
a bond percolation with parameter 7 and a site percolation by removing all vertices with k; > 1.
In particular, the largest component explored is exactly P. Note that the computations made
before are valid with the following functions:

g(z) = (1—-7m+mz) {/\z - Z sps(1 —tso) — Z spstso(l — 7 + Wz)s_l}

S S

h(z) = Y pa(l—tw)+ Y pstso(l -7+ m2)°.

Hence we have:

¢ =sup{z € [0,1], g(z) = 0}.
Note that if we denote ¢(z) = g(2)(1 — 7 + mz)~!, then we have

&z = A—m Z s(s — )pstso(1 — m + 71',2)872,
¢"(z) = —m*) s(s—1)(s — 2psteo(l — 7+ 72)* >,

S

In particular, ¢ is concave on (0, 1] and strictly concave unless ps = 0 for s > 3. Note also that
¢'(1) = A —m >, s(s — 1)pstso, so that under the cascade condition ¢'(1) < 0 and ¢ is strictly
concave. Hence, we have £ < 1 and ¢(z) > 0 for z € (£,1) and if £ > 0, then ¢(z) < 0 for z < €.

In particular, previous analysis allows to conclude that lim,, U(:) =1—hi(€) >0.

6 Proof of Proposition 6

By Theorem 11, when the cascade condition holds, the set of active vertices contain the set of
pivotal vertices and hence has a giant component. We denote Z the induced subgraph of inactive
vertices, in the pivotal equilibrium (i.e. in the final state when all pivotal nodes are initially
active). By Theorem 11, we have for v,.(Z), the number of vertices in Z with degree r in Z:

U2 ST pabur(), where, € =€) =max{ 2 <1 A2 =Y p Y rbu(2)

r>s—|gs] $ r>s—|gs]

We denote vy(2) = 3,545 Psbsr(2). Thanks to the result on the distribution of Z, there is a
giant component of inactive vertices if

Z (T - 1 Ur > err Zps Z r sr(g) = )\527
r r>s—|qs]
which can be rewritten as in Proposition 6.

Now we assume that p, = 2re™*, 7 = 1 and K (d) = |¢d]. The function 1)(\) = e~ P i‘r 21

is increasing for A < A* and then decreasing. We assume that ¢ is fixed suh that the cascade con-
dition holds. Then ¥(A*) > 1. Then \;(¢) = sup{¢(\) < 1,A < A*} while \s(¢) = inf{yp(N\) >

1, A > A*}. We denote ¢(\) = max {z <1, A2 =3.ps Zrzstqu r(r— 1)bsr(z)}. Then, there
is a giant component of inactive vertices if ((\) < £(A\). Both functions are non-increasing in
A € (Mi(g), As(q)) and are intersecting only once in (A;(q), As(q))-
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7 Appendix

7.1 Technical lemma

Lemma 14. For any z,m € [0,1], and k > 0 we have

T
17 tan Z rbs (1 —7m+am) = Z Tbsr(2)bs—ri(1 — ).
r>k r+i>k

Proof. This follows from the following observations for x > 0:

.
S bl = (s=1) Y b (1-w(l - 2))
r>k r>k—1

= (s—1) st 1r(m(l —2))

r<s—k

= (s—=1)P ZBY<5—

where the B;’s and Y;’s are independent Bernoulli random variables with parameter m and 1 —x
respectively. Now we also have:

r
Z ;bs,r(l‘)bsfr,i(l - 7T) = 5 - 1 Z bs 1 r s 17r,i(1 - 7T)
r+i>k r+i>k—1
s—1

= (s—1DPO _(1- +ZY (1—B;) >k—1).

1=1
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7.2 Properties of the functions h and ¢

We now justify the use of the max in (5). Let o(d) be a Bernoulli random variable with parameter
ag. Let for 0 < a <1, D, be the thinning of D obtained by taking D points and then randomly
and independently keeping each of them with probability . Thus given D = d, D, ~ Bi(d, ).
With these notations, we have

h(z;a,p,m) = E [Dl—ﬂ-f—ﬁz(l —o(D)1(D1—ryrz > D — K(D))]
hi(z;a,p,m) = P(o(D)=0, Di_nyrr > D — K(D)),

so that both A and h; are non-decreasing in z and non-increasing in 7.

Note that if a = 0, then h(1;0,p,7) = A so that ¢g(1;0,p,7) = 0 and 2 = 1. We now
consider the case a # 0, so that there exists d > 1 such that ag > 0. In this case, we have
9g(La,p,m) =X =3 s(1 —as)ps > agpgd > 0. The statement then follows from the fact that
the only possible jumps for z — g(z; o, p,m) are downards. More precisely, let 2 = sup{z €
[0,1],9(z; o, p, ™) = 0}. Since the function h is non-decreasing in z, its set of discontinuity points
is denumerable say {z;}icn and h admits a left and right limit at any point z denoted by h(z—)
and h(z+) respectively. If 2 € {z;}, then we have h(2—) < A2(1—7+nZ2) < h(2+). In particular,
we have g(z; o, p,m) < 0 for any z > Z which contradicts the fact that g(1; a, p,7) > 0. Hence
the functions h and g are continuous at Z and the sup is attained and can be replaced by a max.

7.3 Proof of Lemma 7

Taking expectation in (4), we get with z = E[Y],

l—z = ) pi(l—axq)P (Z BY; < K(s+ 1))

$>0 i=1
s+1
- (- 051)1;\1 + Z #(1 — Q1) ZtSJrngbsj(xw)
s>1 L <t
1
= 3 (1 —oa1)p1 + Z (1 — cg41)Pst1tst1e(s + 1)bg; (1 — zm)

s>1;5>s—4

Note that (s + 1)bs;(1 — zm) = %bs+1j+l(1 — zm) for s > 1, so that

1 41
1—2 = X (1 — al)pl + Z (j )(1 — a5+1)p5+1t5+1€bs+1j+1(1 _ 3371')
- —xm
s>1j>s—4
1 .
~ AI—am) Z J(1 = as)pstsebs;(1 — zm).
s>1;j>s—4

Hence, we get
(I—am)(l—2)A= Z J(1 = as)psebs;(1 — ).
s>1;5>s—4

This establishes the first part of the lemma thanks to Lemma 14. Taking expectation in (3)
gives: E[Xo] =13 .~ o(1 — as)pstsebsj(1 — am), and the second part of the lemma follows.
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