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(1) Diffusion Model

inspired from game theory
and statistical physics.

(2) Results

from a mathematical analysis.

(3) Heuristic
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(1) Coordination game...

sicq ic
ety veer | &mq * Both receive payoff q.
—8
ta kQ ta kQ * Both receive payoff
1-g>q.
ic )
ﬁmq ta kg’ * Both receive nothing.




(1)...on a network.
e Everybody start with

icq

everybody, everywhere:

* Total payoff = sum of
the payoffs with each
neighbor.

A seed of nodes .
switches to talk>

(Morris 2000)




(1) Threshold Model

e State of agent i is represented by

v, = [0 if®lcq
— )1 if tak’
e Switch from ﬁlcq to ta kQ
Z X, 2 qd;



(1) Model for the network?

S e

Statistical physics: bootstrap percolation.
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(1) Random Graphs

Random graphs with given degree sequence
introduced by Molloy and Reed (1995).

Examples:
— Erdos-Réyni graphs, G(n,A/n).

— Graphs with power law degree distribution.

We are interested in large population
asymptotics.

Average degree is A.



(1) Diffusion Model

q = relative threshold
A = average degree

(2) Results
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(2) Contagion (Morris 2000)

* Does there exist a finite groupe of players such
that their action under best response
dynamics spreads contagiously everywhere?

* Contagion threshold: g¢ = largest g for which
contagious dynamics are possible.

* Example: interaction on the line 1
dc — 5
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(2)Another example: d-regular trees
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(2) Some experiments
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(2) Some experiments

Ml)
b0
o

< O
— O
1
nr
S
o

i O
< C
. C
S 9
8=
2
Q

c v
O o
n o
du
v O
O L
W



(2) Some experiments

Seed = one node, A=3 and q=0.24 (or 1/g>4)
(source: the Technoverse blog)



(2) Contagion threshold
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In accordance
with (Watts 2002)




(2) A new Phase Transition



(2) Pivotal players

* Giant component of players requiring only one
neighbor to switch.
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(2) g above contagion threshold

* New parameter: size of the seed as a fraction
of the total population 0 < a < 1.

* Monotone dynamic — only one final state.
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(2)Minimal size of the seed, g>1/4
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(2) g>1/4, low connectivity
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Connectivity helps the diffusion.



(2) g>1/4, high connectivity
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Connectivity inhibits the global cascade,
but once it occurs, it facilitates its diffusion.



(2) Equilibria for g<q_

Trivial equilibria: all A / all B

Initial seed applies best-response, hence can
switches back. If the dynamic converges, it is
an equilibrium.

Robustness of all A equilibrium?
Initial seed = 2 pivotal neighbors

—> pivotal equilibrium



(2) Strength of Equilibria for g<q_
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(2) Coexistence for g<q.
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(3) Locally tree-like

Independent
computations on
trees



(3) Branching Process Approximation

e Local structure of G = random tree
e Recursive Distributional Equation (RDE) or:

V. — 1 if infected from 'below’
71 0 otherwise.

Y, =1-(1-0;)1 (ZYE<Qdi)

V—1



(3) Solving the RDE

. D-1 .
Y=1-(1-0)1| » Y,<gD

/=1
z =P(Y = 0)
Az2 = (1 — a)h(z)
h(z) = > rps C)zr(l —z)° "

s,r>s—|qs|



(3) Phase transition in one picture
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z* = max{z € [0, 1], A2 — (1 —a)h(z) = 0}



Conclusion

* Simple tractable model:
— Threshold rule introduces local dependencies
— Random network : heterogeneity of population
* 2 regimes:
— Low connectivity: tipping point
— High connectivity: chasm
* More results in the paper:

— heterogeneity of thresholds, active/inactive links,
rigorous proof.



Thank you!

- Diffusion and Cascading Behavior in Random Networks.
Available at http://www.di.ens.fr/~lelarge



