Diffusion and Cascading Behavior in Random Networks

Marc Lelarge (INRIA-ENS)

Columbia University Joint CS/EE Networking Seminar June 2, 2011.

(1) Diffusion Model

inspired from game theory and statistical physics.

(2) Results from a mathematical analysis.

(3) Heuristic

Crossing the Chasm (Moore 1991)

Malcolm Gladwell

(1) Diffusion Model

(2) Results

(3) Heuristic

(1) Coordination game...

• Both receive payoff q.

Both receive payoff
 1-q>q.

• Both receive nothing.

(1)...on a network.

- Everybody start with
 Since
 Everybody, everywhere
- Total payoff = sum of the payoffs with each neighbor.
- A seed of nodes switches to take

(Morris 2000)

(1) Threshold Model

- State of agent i is represented by
- $X_{i} = \begin{cases} 0 & \text{if } & \text{icq} \\ 1 & \text{if } & \text{take} \end{cases}$ • Switch from from icq to take if:

$$\sum_{j \sim i} X_j \ge qd_i$$

(1) Model for the network?

p == 0.04

p == 0.05

Statistical physics: bootstrap percolation.

(1) Model for the network?

(1) Random Graphs

- Random graphs with given degree sequence introduced by Molloy and Reed (1995).
- Examples:
 - Erdös-Réyni graphs, $G(n,\lambda/n)$.
 - Graphs with power law degree distribution.
- We are interested in large population asymptotics.
- Average degree is λ .

(1) Diffusion Model q = relative threshold $\lambda = average degree$

(2) Results

(3) Heuristic

(1) Diffusion Model q = relative threshold $\lambda = average degree$

(2) Results

(3) Heuristic

(2) Contagion (Morris 2000)

- Does there exist a finite groupe of players such that their action under best response dynamics spreads contagiously everywhere?
- Contagion threshold: q_c = largest q for which contagious dynamics are possible.

(2)Another example: d-regular trees

 $q_c = \frac{1}{d}$

Seed = one node, λ=3 and q=0.24 (source: the Technoverse blog)

Seed = one node, λ=3 and 1/q>4 (source: the Technoverse blog)

(2) Some experiments

Seed = one node, λ=3 and q=0.24 (or 1/q>4) (source: the Technoverse blog)

(2) Contagion threshold

(2) A new Phase Transition

(2) Pivotal players

Giant component of players requiring only one neighbor to switch.

(2) q above contagion threshold

- New parameter: size of the seed as a fraction of the total population $0 < \alpha < 1$.
- Monotone dynamic \rightarrow only one final state.

(2)Minimal size of the seed, q>1/4

(2) q>1/4, low connectivity

Connectivity helps the diffusion.

(2) q>1/4, high connectivity

Connectivity inhibits the global cascade, but once it occurs, it facilitates its diffusion.

(2) Equilibria for q<q_c

- Trivial equilibria: all A / all B
- Initial seed applies best-response, hence can switches back. If the dynamic converges, it is an equilibrium.
- Robustness of all A equilibrium?
- Initial seed = 2 pivotal neighbors

-> pivotal equilibrium

(2) Strength of Equilibria for $q < q_c$

(1) Diffusion Model

(2) Results

(3) Heuristic

(3) Locally tree-like

(3) Branching Process Approximation

- Local structure of G = random tree
- Recursive Distributional Equation (RDE) or:

 $Y_i = \begin{cases} 1 & \text{if infected from 'below'} \\ 0 & \text{otherwise.} \end{cases}$

$$Y_i = 1 - (1 - \sigma_i) \mathbb{1} \left(\sum_{\ell \to i} Y_\ell \le q d_i \right)$$

(3) Solving the RDE $Y \stackrel{d}{=} 1 - (1 - \sigma) \mathbb{1} \left(\sum_{\ell=1}^{D-1} Y_{\ell} \le q \widehat{D} \right)$ $z = \mathbb{P}(Y = 0)$ $\lambda z^2 = (1 - \alpha)h(z)$ $h(z) = \sum_{s,r \ge s - |qs|} rp_s {s \choose r} z^r (1-z)^{s-r}$

(3) Phase transition in one picture

 $z^* = \max\{z \in [0, 1], \lambda z^2 - (1 - \alpha)h(z) = 0\}$

Conclusion

- Simple tractable model:
 - Threshold rule introduces local dependencies
 - Random network : heterogeneity of population
- 2 regimes:
 - Low connectivity: tipping point
 - High connectivity: chasm
- More results in the paper:
 - heterogeneity of thresholds, active/inactive links, rigorous proof.

Thank you!

- Diffusion and Cascading Behavior in Random Networks. Available at http://www.di.ens.fr/~lelarge