
ACN 915: Algorithms for networked information
Homework 1

December 5, 2016

Exercise 1
We consider the Ford and Fulkerson’s augmenting path algorithm studied in class for flow networks with
integer capacities. As explained in class, the poor behavior of the algorithm can be blamed on poor choices for
the augmenting path. In this exercise, we consider the following rule: choose the augmenting path with the
smallest number of edges.

1. How much time is required to find such a path?
Let f i be the current flow after i augmentation steps, let G i be the corresponding residual graph. In particular,
f0 is zero and G0 =G. For each vertex v, let level i(v) denote the unweighted shortest path distance from s to
v in G i. We want to prove that level i+1(v)≥ level i(v) for all vertices v and integers i.

2. Prove the claim for v = s or if level i+1(v)=∞.
Choose now a vertex v 6= s and let s →···→ u → v be a shortest path in G i+1 so that level i+1(v)= level i+1(u)+1.

3. In the case where u → v is an edge of G i, show that level i(v)≤ level i(u)+1.
4. If u → v is not an edge in G i, show that level i(v)= level i(u)−1.
5. Conclude that level i+1(v)≥ level i(v) for all vertices v and integers i.

Whenever we augment the flow, the bottelneck edge in the augmenting path disappears from the residual
graph, and some other edge in the reversal of the augmenting path may (re-)appear (see example seen in
class). We will now prove that during the execution of the Edmonds-Karp algorithm where the augmenting
path with the smallest number of edges is selected, any edge u → v disappears from the residual graph G f at
most V /2 times.

Suppose u → v is in two resildual graphs G i and G j+1, but not in any of the intermediate residual graphs
G i+1, . . . ,G j, for some i < j.

6. Show that level i(v)= level i(u)+1 and level j(v)= level j(u)−1.
7. Show that level j(u)− level i(u)≥ 2 and conclude for the number of disappearances of a given edge.
8. Give an upper bound on the number of iterations and the overall time complexity of the algorithm.

Exercise 2
We consider the following algorithm for finding dense subgraphs:
Data: a graph G with n vertices and a subset of vertices X ⊂V
Result: a dense subgraph containing the vertices in X
Let Gn ←G;
for k = n downto |X |+1 do

Let v ∉ X be the lowest degree node in Gk\X ;
Let Gk−1 ←Gk\{v}.

end
Output the densest subgraph among Gn, . . . ,G|X |.

1

We now prove that this algorithm is a 1/2-approximation. Let S be the densest subgraph containing X .
If our algorithm outputs S, then it is clearly optimal. We now assume that at some point our algorithm has
deleted a node v ∈ S. Let Gk be the graph right before the first v ∈ S was removed.

1. Show that |e(S)|
|S| ≥ |e(S)|−dS(v)

|S|−1
.

2. Show that dGk (v)≥ dS(v)≥ |e(S)|
|S| .

3. Show that
|e(Gk)|
|Gk|

≥
∑

u∈S dS(u)+∑
u∈Gk\S

|e(S)|
|S|

2|Gk|
.

4. Deduce that |e(Gk)|
|Gk|

≥ |e(S)|
2|S| ,

and conclude.

2

