Algorithms for Networked Information
TD1

Thomas Nowak

September 21, 2015

Exercise 1 PageRank and Mixing Time

The total variation distance between two probability measures p and v on a set QO (which we assume to be
finite) is defined by

- = A)—v(A)|.
lp—viTv glgglu( )—v(A)l

1. Show that

1
3 2 @-vel= 3 (p@)-v).

x€Q H(x)=v(x)

2. Show that for B = {x, u(x) = v(x)} and all A c Q, we have:
WA)—v(A) < u(B)—v(B)

3. Deduce that

1
lu=vliry =5 ¥ I - v()l.
x€Q)

A coupling of u and v is a pair (X,Y) of random variables defined on Q such that the marginal distribution
of X is y, i.e., P(X = x) = u(x), and the marginal distribution of Y is v, i.e., P(Y = y) = v(y).
4. Show that

le—virv <inflP(X #Y): (X,Y) is a coupling of u and v}.

5. Show that

Y ) Avx) =1-[u—virv €[0,1].
xeQ)

6. Find a coupling (X,Y) such that |[u—v|rv=P(X #Y).

A Markov chain with state space (2 and transition matrix P is a sequence of random variables X, X1,Xo,...
such that

PX;r1 =yI1Xs =%,X; 1 =%¢-1,... X0 =x0) = P(Xy11 = y|X; =x) = P(x, y).

A chain is called irreducible if for all x,y € Q there exists a ¢ such that P!(x,y) > 0. Let T'(x) = {t = 1, P!(x,x) > 0}.
The period of x is the greatest common divisor of T'(x). A chain is called aperiodic if all its states have period 1.



7. Show that if a chain is irreducible, then all its states have the same period.

8. Show that a chain with matrix P is irreducible and aperiodic if and only if there is a positive integer ¢
such that P! is strictly positive.

9. Show that, in this case, there exists a unique stationary distribution 7 on Q satisfying 7 = zP.

We write Pi(x,-) for the distribution of the state X, at time ¢ with deterministic initial condition X¢ =x € Q
and pP? for the case that the distribution of the initial state X is u. We define

d(t)

max |PX(x,") - 7ll1v,
xeQ)

) max |P!(x,-) — P'(y, )llv.

x,y€Q

10. Show that

d(t) <d(t) < 2d(t).

11. Show that

da(t)

sup [|uP! - |y,
u

E(t) sup II,uPt —thIITV,

v

where u and v are distributions on Q.
12. Show that
luP = vP|rv < lpp—vllTv.

Deduce that d(t) and d(¢) are nonincreasing in ¢.
13. For a coupling (X, Y;) of P%(x,-) and P*(y,-), show that

1
1P (x, ) = PE5(y, iy = 3 Y |E[P'(Xs,w) - PYY5,w)]|.

14. Deduce that d sub-multiplicative: d(¢+s) < d(t)d(s).
The mixing time is defined by

tmix(€) =minft, d(t) <€} and #tpix = tmix(1/4).

15. Show that d(ktmiy) < 27% and tyix(e) < [logg €™t mix.
We define a coupling of Markov chains with transition matrix P as the random process (X;,Y;);2, having the
property that (X;) and (Y;) are Markov chains with transition matrix P. (The two chains can have different
initial states.) Every coupling can be modified in such a way that if X; =Yy, then X; =Y; for all ¢ =s. We then
define the coupling time by

Teouple = minft, X; =Yy},

16. As an example, consider the random walk on {0,1,...,n} that increments and decrements with proba-
bility 1/2 and stays on its current position with probability 1/2 on the edges 0 and n. By constructing a
coupling, show that P!(x,n) < Pi(y,n)if x < y.



17.

18.

Show that
”Pt(x,‘) _Pt(y, Nty < Py (Tcouple > t) .
Consider the Markov chain describing the PageRank algorithm (which chooses a random node with

probability 1 — a in every step). Show that its mixing time satisfies ¢mix < [@~1]. What can we deduce
on the convergence speed of PageRank?



