
2508 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

Randomized Gossip Algorithms
Stephen Boyd, Fellow, IEEE, Arpita Ghosh, Student Member, IEEE, Balaji Prabhakar, Member, IEEE, and

Devavrat Shah

Abstract—Motivated by applications to sensor, peer-to-peer, and
ad hoc networks, we study distributed algorithms, also known as
gossip algorithms, for exchanging information and for computing
in an arbitrarily connected network of nodes. The topology of such
networks changes continuously as new nodes join and old nodes
leave the network. Algorithms for such networks need to be ro-
bust against changes in topology. Additionally, nodes in sensor net-
works operate under limited computational, communication, and
energy resources. These constraints have motivated the design of
“gossip” algorithms: schemes which distribute the computational
burden and in which a node communicates with a randomly chosen
neighbor.

We analyze the averaging problem under the gossip constraint
for an arbitrary network graph, and find that the averaging time
of a gossip algorithm depends on the second largest eigenvalue of a
doubly stochastic matrix characterizing the algorithm. Designing
the fastest gossip algorithm corresponds to minimizing this eigen-
value, which is a semidefinite program (SDP). In general, SDPs
cannot be solved in a distributed fashion; however, exploiting
problem structure, we propose a distributed subgradient method
that solves the optimization problem over the network.

The relation of averaging time to the second largest eigenvalue
naturally relates it to the mixing time of a random walk with tran-
sition probabilities derived from the gossip algorithm. We use this
connection to study the performance and scaling of gossip algo-
rithms on two popular networks: Wireless Sensor Networks, which
are modeled as Geometric Random Graphs, and the Internet graph
under the so-called Preferential Connectivity (PC) model.

Index Terms—Distributed averaging, gossip, random walk,
scaling laws, sensor networks, semidefinite programming.

I. INTRODUCTION

THE advent of sensor, wireless ad hoc and peer-to-peer
networks has necessitated the design of distributed and

fault-tolerant computation and information exchange algo-
rithms. This is mainly because such networks are constrained
by the following operational characteristics: i) they may not
have a centralized entity for facilitating computation, commu-
nication, and time-synchronization, ii) the network topology
may not be completely known to the nodes of the network,
iii) nodes may join or leave the network (even expire), so that
the network topology itself may change, and iv) in the case of

Manuscript received March 13, 2005; revised November 11, 2005. This
work is supported in part by a Stanford Graduate Fellowship, and by C2S2,
the MARCO Focus Center for Circuit and System Solution, under MARCO
Contract 2003-CT-888.

S. Boyd, A. Ghosh, and B. Prabhakar are with the Information Systems
Laboratory, Department of Electrical Engineering, Stanford University, Stan-
ford, CA 94305 USA (e-mail: fboyd@stanford.edu; arpitag@stanford.edu;
balajig@stanford.edu).

D. Shah is with the LIDS, Departments of Elecrtrical Engineering and Com-
puter Science, and ESD, the Massachusetts Institute of Technology, Cambridge,
MA 02138 USA (e-mail: devavrat@mit.edu).

Communicated by M. Méderad, Guest Editor.
Digital Object Identifier 10.1109/TIT.2006.874516

Fig. 1. Sensor nodes deployed to measure ambient temperature.

sensor networks, the computational power and energy resources
may be very limited. These constraints motivate the design of
simple decentralized algorithms for computation where each
node exchanges information with only a few of its immediate
neighbors in a time instance (or, a round). The goal in this set-
ting is to design algorithms so that the desired computation and
communication is done as quickly and efficiently as possible.

We study the problem of averaging as an instance of the dis-
tributed computation problem.1 A toy example to motivate the
averaging problem is sensing the temperature of some small
region of space using a network of sensors. For example, in
Fig. 1, sensors are deployed to measure the temperature of
a source. Sensor , , measures ,
where the are independent and identically distributed (i.i.d.),
zero-mean Gaussian sensor noise variables. The unbiased, min-
imum mean-squared error (MMSE) estimate is the average

. Thus, to combat minor fluctuations in the ambient tem-
perature and the noise in sensor readings, the nodes need to av-
erage their readings.

The problem of distributed averaging on a network comes
up in many applications such as coordination of autonomous
agents, estimation, and distributed data fusion on ad hoc net-
works, and decentralized optimization.2 For one of the earliest
references on distributed averaging on a network, see [45]. Fast
distributed averaging algorithms are also important in other con-
texts; see Kempe et al. [22], for example. For an extensive body
of related work, see [11], [16], [17], [20], [23], [25], [26], [29],
[34], [42], [44], [46].

This paper undertakes an in-depth study of the design and
analysis of gossip algorithms for averaging in an arbitrarily
connected network of nodes. (By a gossip algorithm, we mean
specifically an algorithm in which each node communicates

1Preliminary versions of this paper appeared in [2]–[4].
2The theoretical framework developed in this paper is not restricted merely

to averaging algorithms. It easily extends to the computation of other functions
which can be computed via pairwise operations; e.g., the maximum, minimum,
or product functions. It can also be extended for analyzing information exchange
algorithms, although this extension is not as direct. For concreteness and for
stating our results as precisely as possible, we shall consider averaging algo-
rithms in the rest of the paper.

0018-9448/$20.00 © 2006 IEEE

BOYD et al.: RANDOMIZED GOSSIP ALGORITHMS 2509

with no more than one neighbor in each time slot.) Given a
graph , we determine the averaging time , which is the
time taken for the value at each node to be close to the average
value (a more precise definition is given later). We find that
the averaging time depends on the second largest eigenvalue
of a doubly stochastic matrix characterizing the averaging
algorithm: the smaller this eigenvalue, the faster the averaging
algorithm. The fastest averaging algorithm is obtained by mini-
mizing this eigenvalue over the set of allowed gossip algorithms
on the graph. This minimization is shown to be a semidefinite
program (SDP), which is a convex problem, and therefore can
be solved efficiently to obtain the global optimum.

The averaging time is closely related to the mixing time
of the random walk defined by the matrix that charac-

terizes the algorithm. This means we can also study averaging
algorithms by studying the mixing time of the corresponding
random walk on the graph. The recent work of Boyd et al. [1]
shows that the ratio of the mixing times of the natural random
walk to the fastest mixing random walk can grow without bound
as the number of nodes increases; correspondingly, therefore,
the optimal averaging algorithm can perform arbitrarily better
than the one based on the natural random walk. Thus, computing
the optimal averaging algorithm is important: however, this in-
volves solving a SDP, which requires a knowledge of the com-
plete network topology. Surprisingly, we find that we can exploit
problem structure to devise a distributed subgradient method to
solve the SDP and obtain a near-optimal averaging algorithm,
with only local communication.

Finally, we study the performance of gossip algorithms on
two network graphs which are very important in practice: Geo-
metric Random Graphs, which are used to model wireless sensor
networks, and the Internet graph under the Preferential Connec-
tivity model. We find that for geometric random graphs, the av-
eraging time of the natural and the optimal averaging algorithms
are of the same order. As remarked earlier, this need not be the
case in a general graph.

We shall state our main results after setting out some notation
and definitions in Section I.

A. Problem Formulation and Definitions

Consider a connected graph , where the vertex set
contains nodes and is the edge set. The th component

of the vector represents the initial
value at node . Let be the average of the
entries of . Our goal is to compute in a distributed
manner.

• Asynchronous time model: Each node has a clock which
ticks at the times of a rate Poisson process. Thus, the
inter-tick times at each node are rate exponentials, in-
dependent across nodes and over time. Equivalently, this
corresponds to a single clock ticking according to a rate
Poisson process at times , , where
are i.i.d. exponentials of rate . Let
denote the node whose clock ticked at time . Clearly,
the are i.i.d. variables distributed uniformly over

. We discretize time according to clock ticks
since these are the only times at which the value of

changes. Therefore, the interval denotes the
th time-slot and, on average, there are clock ticks per

unit of absolute time. Lemma 1 states a precise translation
of clock ticks into absolute time.

• Synchronous time model: In the synchronous time
model, time is assumed to be slotted commonly across
nodes. In each time slot, each node contacts one of its
neighbors independently and (not necessarily uniformly)
at random. Note that in this model all nodes communicate
simultaneously, in contrast to the asynchronous model
where only one node communicates at a given time. On
the other hand, in both models each node contacts only
one other node at a time.

Previous work, notably that of [22], [29], considers the
synchronous time model. The qualitative and quantitative
conclusions are unaffected by the type of model; we start
with the asynchronous time model for convenience, and
then analyze the synchronous model and show that the
same kind of results hold in this case as well.

• Algorithm : We consider a particular class of time-
invariant gossip algorithms, denoted by . An algorithm
in this class is characterized by an matrix
of nonnegative entries with the condition that
only if . For technical reasons, we assume that

is a stochastic matrix with its largest eigenvalue equal
to , and all remaining eigenvalues strictly less than

in magnitude. (Such a matrix can always be found if the
underlying graph is connected and nonbipartite; we will
assume that the network graph satisfies these conditions
for the remainder of the paper.) Depending on the time
model, two types of algorithms arise: 1) asynchronous,
and 2) synchronous. Next, we describe the asynchronous
algorithm associated with to explain the role of the ma-
trix in the algorithm. As we shall see, asynchronous
algorithms are rather intuitive and easy to explain. We
defer the description of the synchronous algorithm to Sec-
tion III-C.

The asynchronous algorithm associated with , de-
noted by , is described as follows: In the th time
slot, let node ’s clock tick and let it contact some neigh-
boring node with probability . At this time, both
nodes set their values equal to the average of their cur-
rent values. Formally, let denote the vector of values
at the end of the time slot . Then

(1)

where with probability (the probability that the th
node’s clock ticks is , and the probability that it con-
tacts node is) the random matrix is

(2)

where is an unit vector
with the th component equal to .

2510 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

• Quantity of Interest: Our interest is in determining the
(absolute) time it takes for to converge to ,
where is the vector of all ones.

Definition 1: For any , the -averaging time
of an algorithm is denoted by , and is
defined as

(3)

where denotes the norm of the vector .

Thus, the -averaging time is the smallest time it takes
for to get within of with high probability,
regardless of the initial value .

The following lemma relates the number of clock ticks to
absolute time. This relation allows us to use clock ticks instead
of absolute time when we deal with asynchronous algorithms.

Lemma 1: For any , . Further, for any

(4)

Proof: By definition

Equation (4) follows directly from Cramer’s theorem (see [10,
pp. 30 and 35]).

As a consequence of Lemma 1, for

with high probability (i.e., probability at least). In this
paper, all -averaging times are at least . Hence, dividing the
quantities measured in terms of the number of clock ticks by
gives the corresponding quantities when measured in absolute
time (for an example, see Corollary 2).

B. Previous Results

A general lower bound for any graph and any averaging
algorithm was obtained in [29] in the synchronous setting. Their
result is as follows.

Theorem 1: For any gossip algorithm on any graph and
for , the -averaging time (in synchronous steps) is
lower-bounded by .

The recent work [22] studies the gossip-constrained aver-
aging problem for the special case of the complete graph. A
randomized gossiping algorithm is proposed which is shown to
converge to the vector of averages on the complete graph. For a
synchronous averaging algorithm, [22] obtain the following re-
sult.

Theorem 2: For a complete graph, there exists a gossip al-
gorithm such that the -averaging time of the algorithm is

.

In Section III-C, we obtain a synchronous averaging algo-
rithm which is simpler than the one described in [22], with -av-
eraging time for the complete graph (from Corollary
3).

The problem of fast distributed averaging without the gossip
constraint on an arbitrary graph is studied in [48]; here, the ma-
trices are constant, i.e., for all . It is shown
that the problem of finding the (constant) that converges
fastest to (where is the matrix of all ones) can be
written as a SDP (under a symmetry constraint), and can there-
fore be solved numerically.

Distributed averaging has also been studied in the context of
distributed load balancing ([43]), where nodes (processors) ex-
change tokens in order to uniformly distribute tokens over all the
processors in the network (the number of tokens is constrained
to be integral, so exact averaging is not possible). An analysis
based on Markov chains is used to obtain bounds on the time re-
quired to achieve averaging up to a certain accuracy. However,
each iteration is governed either by a constant stochastic ma-
trix, or a fixed sequence of matchings is considered. This differs
from our work (in addition to the integral constraint) in that we
consider an arbitrary sequence drawn i.i.d. from some dis-
tribution, and try to characterize the properties the distribution
must possess for convergence. Some other results on distributed
averaging can be found in [6], [21], [30], [36], [37].

An interesting result regarding products of random matrices
is found in [12]. The authors prove the following result on
a sequence of iterations , where the

belong to a finite set of paracontracting matrices (i.e.,
). If is the set of matrices

that appear infinitely often in the sequence , and for
, denotes the eigenspace of associated with

eigenvalue , then the sequence of vectors has a limit
in . This result can be used to find conditions for
convergence of distributed averaging algorithms.

Not much is known about good randomized gossip algorithms
for averaging on arbitrary graphs. The algorithm of [22] is quite
dependent on the fact that the underlying graph is a complete
graph, and the general result of [29] is a nonconstructive lower
bound.

C. Our Results

In this paper, we design and characterize the performance
of averaging algorithms for arbitrary graphs for both the asyn-
chronous and synchronous time models. The following result
characterizes the averaging time of asynchronous algorithms.

Theorem 3: The averaging time of the asyn-
chronous algorithm (in terms of number of clock ticks)
is bounded as follows:

and (5)

(6)

BOYD et al.: RANDOMIZED GOSSIP ALGORITHMS 2511

where

(7)

and is the diagonal matrix with entries

Theorem 3 is proved in Section III, using results on conver-
gence of moments that we derive in Section II.

For synchronous algorithms, the averaging time is charac-
terized by Theorems 4 and 5, which are stated and proved in
Section III-C. As the reader may notice, the statements of The-
orem 3 and Theorems 4–5 are qualitatively the same.

The above tight characterization of the averaging time leads
us to the formulation of the question of the fastest averaging
algorithm. In Section IV, we show that the problem of finding
the fastest averaging algorithm can be formulated as an SDP.
In general, it is not possible to solve an SDP in a distributed
fashion. However, we exploit the structure of the problem to
propose a completely distributed algorithm, based on a subgra-
dient method, that solves the optimization problem on the net-
work. The algorithm and proof of convergence are found in Sec-
tion IV-A.

Section V relates the averaging time of an algorithm on a
graph with the mixing time of an associated random walk
on . This is used in Section VI to study applications of our re-
sults in the context of two networks of practical interest: wire-
less networks and the Internet. The result for wireless networks
involves bounding the mixing times of the natural and optimal
random walks on the geometric random graph; these results are
derived in Section VI-A. Finally, we conclude in Section VII.

II. CONVERGENCE OF MOMENTS

In this section, we will study the convergence of randomized
gossip algorithms. We will not restrict ourselves here to any par-
ticular algorithm; but rather consider convergence of the itera-
tion governed by a product of random matrices, each of which
satisfies certain (gossip-based) constraints described below.

The vector of estimates is updated as

where each must satisfy the following constraints im-
posed by the gossip criterion and the graph topology.

If nodes and are not connected by an edge, then
must be zero. Further, since every node can communicate with
only one of its neighbors per time slot, each column of
can have only one nonzero entry other than the diagonal entry.

The iteration intends to compute the average, and therefore
must preserve sums: this means that , where
denotes the vector of all ones. Also, the vector of averages must
be a fixed point of the iteration, i.e., .

We will consider matrices drawn i.i.d. from some dis-
tribution on the set of nonnegative matrices satisfying the above
constraints, and investigate the behavior of the estimate

If must converge to the vector of averages for
every initial condition , we must have

(8)

A. Convergence in Expectation

Let the mean of the (i.i.d.) matrices be denoted by .
We have

(9)

so converges in expectation to if . The
conditions on for this to happen are stated in [48]; they are

(10)

(11)

(12)

where is the spectral radius of a matrix. The first two con-
ditions will be automatically satisfied by , since it is the ex-
pected value of matrices each of which satisfies this property.
Therefore, if we pick any distribution on the whose mean
satisfies (12), the sequence of estimates will converge in ex-
pected value to the vector of averages.

In fact, if is invertible, by considering the martingale
, we can obtain almost sure convergence of

to . However, neither result tells us the rate at which
converges to .

B. Convergence of Second Moment

To obtain the rate of convergence of to , we will in-
vestigate the rate at which the error converges
to . Consider the evolution of

(13)

Here follows from the fact that is an eigenvector for all
. Thus, evolves according to the same linear system

as . Therefore, we can write

(14)

2512 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

Since is doubly stochastic, so is , and there-
fore, is doubly stochastic. Since the matrices

are identically distributed we will shorten
to .

Since , and is the eigenvector corresponding to the
largest eigenvalue of

(15)
Repeatedly conditioning and using (15), we finally obtain the
bound

(16)

From this, we see that the second moment of the error
converges to at a rate governed by . This means
that any scheme of choosing the which corresponds to
a with second largest eigenvalue strictly less than
(and, of course, with less than) provably
converges in the second moment.

This condition is only a sufficient condition for the conver-
gence of the second moment. We can, in fact, obtain a necessary
and sufficient condition by considering the evolution of
rather than .

Since ,
. Let . Then

i.e., evolves according to a (random) linear system. Now

(17)

(18)

Collect the entries of the matrix into a vector ,
with entries drawn columnwise from . Then, using (18), we
see that

where stands for Kronecker product. Conditioning repeat-
edly, we see that

(19)

Since each has with corresponding eigenvector
, each also has , with eigenvector

. Also, each is orthogonal to , since

since .

Therefore, the convergence of is governed by
, where . If

then , and therefore converges to zero.
Note that converges to the zero matrix if and only if

converges to . If , then each ,
which means that

as well. Conversely, suppose . Then each
as well. From the Cauchy–Schwartz inequality

so that each entry in the matrix converges to .
Thus, a necessary and sufficient condition for second moment

convergence is that . However,
despite having an exact criterion for convergence of the second
moment, we will use in our analysis. This is be-
cause is much easier to evaluate for a given algorithm
than the expected value of the Kronecker product .

III. HIGH PROBABILITY BOUNDS ON AVERAGING TIME

We prove an upper bound (5) and a lower bound (6) in
Lemmas 2 and 3 on the discrete time (or equivalently, number
of clock ticks) required to get within of (analogous to
(5) and (6)) for the asynchronous averaging algorithm.

A. Upper Bound

Lemma 2: For algorithm , for any initial vector ,
for

where

(20)

Proof: Recall that under algorithm

(21)

where, with probability , the random matrix is

(22)

Note that are doubly stochastic matrices for all .
That is, for all

(23)

BOYD et al.: RANDOMIZED GOSSIP ALGORITHMS 2513

Given our assumptions on the matrix of transition probabilities
, we can conclude from the previous section that

. We want to find out how fast converges; in partic-
ular, we want to obtain probabilistic bounds on

. For this, we will use the second moment of to apply
Markov’s inequality as below.

Computing :
Let denote the expected value of (which is the same

as)

(24)

Then, the entries of are as follows:

1) for , and

2) .

This yields the defined in (7), that is,

(25)

where is the diagonal matrix with en-
tries

Note that if , then is doubly stochastic. This im-
plies that , which in turn means that

.

Computing the second moment :
With probability , the edge is chosen to average, that

is, . Then

(26)

(27)

(28)

It is not an accident that : each is
a projection matrix, which projects a vector onto the sub-
space . The entries of except the and th stay un-
changed, and and average their values. Since every pro-
jection matrix satisfies , and are symmetric, we
have .

Since (28) holds for each instance of the random matrix ,
we have

(29)

Note that this means that is symmetric3 positive-semidef-
inite (since) and hence it has nonnegative real
eigenvalues.

3The symmetry ofW does not depend on P being symmetric.

From (16) and (29)

(30)

Now,

(31)

Application of Markov’s inequality:
From (30), (31), and an application of Markov’s inequality,

we have

(32)

From (32), it follows that for

(33)

This proves the lemma, and gives us an upper bound on the
-averaging time.

B. A Lower Bound on the Averaging Time

Here, we will prove a lower bound for the -averaging time,
which is only a factor of away from the upper bound in the
previous section. We have the following result.

Lemma 3: For algorithm , there exists an initial vector
, such that for

where

(34)

Proof: Since , we obtain from (29)

(35)

By definition, is a symmetric positive-semidefinite doubly
stochastic matrix with nonnegative real eigenvalues

and corresponding orthonormal eigenvectors
. Select

For this choice of , . Now from (35)

(36)

2514 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

For this particular choice of , we will lower-bound the
-averaging time by lower-bounding , and using

Lemma 4 as stated below.
By Jensen’s inequality and (36)

(37)

Lemma 4: Let be a random variable such that
. Then, for any

Proof:

Rearranging terms gives us the lemma.

From (36), . Hence, Lemma 4 and
(37) imply that for

(38)

This completes the proof of Lemma 3.

Combining the results in the previous two lemmas, we have
the result of Theorem 3.

The following corollaries are immediate.

Corollary 1: For large and symmetric , is
bounded as follows:

and (39)

(40)

Proof: By definition, .
For large , is small, and hence,

This along with Theorem 3 completes the proof.

Corollary 2: For a symmetric , the absolute time
it takes for clock ticks to happen is given by

(41)

with probability at least .

Proof: For and and using
(39), the right-hand side of (4) evaluates to

Since for the nonnegative doubly sto-
chastic symmetric matrix , is larger than the above
choice of . This completes the proof.

Note that the proof of Lemma 3 uses only two features of the
algorithm :

• is symmetric, which allows us to choose
an orthonormal set of eigenvectors;

• is positive semidefinite, which means that the conver-
gence of to is governed by .

Consider any randomized gossip algorithm with symmetric
expectation matrix (and, of course, satisfying the gossip
constraints stated in Section II). For such an algorithm, the
rate of convergence of to is governed by ,
the second largest eigenvalue in absolute value, rather than

. Exactly the same proof can be used to derive a
lower bound for this gossip algorithm, with the only difference
being that is replaced by . Thus, we can
state the following lower bound for the performance of an
arbitrary randomized gossip algorithm with symmetric .

Lemma 5: For any randomized gossip algorithm with sym-
metric expectation , there exists an initial vector ,
such that for

where

(42)

The proof of the upper bound relies on more specific prop-
erties of the algorithm , and thus cannot be duplicated for an
arbitrary algorithm. Note also that while the expressions for the
lower bounds for our algorithm , and an arbitrary algorithm
with symmetric expectation are very similar, this does not mean
that has the same lower bound as any other randomized gossip
algorithm with symmetric expectation: the lower bound depends
on the value of , and the set of matrices that can be
for some instance of the algorithm is a subset of the set of all
doubly stochastic symmetric matrices.

C. Synchronous Averaging Algorithms

In this subsection, we consider the case of synchronous
averaging algorithms. Unlike the asynchronous case, in the
synchronous setting, multiple node pairs communicate at
exactly the same time. Gossip constraints require that these
simultaneously active node pairs are disjoint. That is, the edges
of the network graph corresponding to the pair-wise operations
form a (not necessarily complete) matching. This makes the

BOYD et al.: RANDOMIZED GOSSIP ALGORITHMS 2515

synchronous case harder to deal with, as it requires the algo-
rithm to form a matching in a distributed manner.

We first present a centralized synchronous gossip algo-
rithm that achieves the same performance as the asynchronous
algorithm. This algorithm requires a centralized entity to
choose matchings of the nodes each time. Then, we present
a completely distributed synchronous gossip algorithm that
finds matchings in a distributed manner without any additional
computational burden. We show that this algorithm performs
as well as the centralized gossip algorithm for any graph with
bounded degree. We extend this result for unbounded degree
regular graphs, for example, the complete graph.

1) Centralized Synchronous Algorithm: Let be any
doubly-stochastic symmetric matrix corresponding to the prob-
ability matrix of the algorithm, as before. By Birkhoff–Von Neu-
mann’s theorem [18], a nonnegative doubly-stochastic matrix

can be decomposed into permutation matrices (equivalently
matchings) as

Define a (matrix) random variable with distribution
, .

The centralized synchronous algorithm corresponding to is
as follows: in each time step, choose one of the permutations
(matchings) in an i.i.d. fashion with distribution identical to .
Note that the permutation need not be symmetric. The update
corresponding to a permutation is as follows: if ,
then node averages its current value with the value it receives
from node . Now, we state the theorem that characterizes the
averaging time of this algorithm.

Theorem 4: The averaging time of the centralized syn-
chronous algorithm described above is given by

where .
Proof: The proof of Theorem 4 is based on the proofs of

Lemmas 2 and 3 presented in Section III. Let denote the
random permutation matrix chosen by the algorithm at time

. The linear iteration corresponding to this update is
, where is given by

(43)

Now

(44)

Now since

since (is a permutation matrix). Therefore,

(45)

(46)

Using the arguments of Lemmas 2 and 3, exactly as in the asyn-
chronous case, it can be easily shown that for any averaging al-
gorithm

(47)

From (44) and (46)

Further, all eigenvalues of are nonnegative.
Hence,

(48)

From (47) and (48), the statement of Theorem 4 follows.

2) Distributed Synchronous Algorithm: The centralized
synchronous algorithm needs a centralized entity to select a
permutation matrix (or matching) at each time step, corre-
sponding to the matrix . Here we describe a way to obtain
such a permutation matrix in a distributed manner for bounded
degree network graphs. Later we extend this result for un-
bounded degree regular graphs for a particular class of
(corresponding to the natural random walk).

Given a network graph , let be the maximum node de-
gree. We assume that all nodes know (a justification for this
assumption is given at the end of the proof of Theorem 5). Now
we describe the algorithm based on as follows.

In each time step, every node becomes active with probability
independently. Consider an active node . Let be its de-

gree (i.e., the number of its neighbors). Active node contacts
at most one of its neighbors to average, as follows. With proba-
bility , node does nothing, i.e., it does not contact any
neighbor. With equal probabilities , it chooses one of its
neighbors to contact.

All active nodes ignore the nodes that contact them. An inac-
tive node, say , ignores the requests of active nodes if contacted
by more than one active node. If active node contacts inactive
node but no other active node contacts , then and average
their values with probability , where

We state the following result for this algorithm.

Theorem 5: The averaging time of the distributed syn-
chronous algorithm described above is given by

2516 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

where , with

and a diagonal matrix with .

Before we prove Theorem 5, note that for bounded , is a
constant away from . Hence,

Thus, the averaging time of the distributed synchronous algo-
rithm is of the same order as that of the centralized synchronous
algorithm for any bounded degree graph.

Proof of Theorem 5: The proof follows using Theorem 4.
We first note that the algorithm, as described above, only allows
pair-wise averaging for distinct node pairs. Let be the
random matrix corresponding to the algorithm at time , that is,

Since averages values of distinct node pairs, it is a sym-
metric projection matrix, projecting onto the intersection of the
subspaces where is an averaging pair. Therefore,

for all , and therefore
. Using this property, as argued in Theorem 4, the aver-

aging time is bounded as

(49)

Next, we evaluate . First we compute the prob-
ability that node pair average. Denote this probability .
We claim that

where . The reason is as follows:
average when a) is active, is inactive, contacts but no
other node contacts , and they decide to average; b) is active,

is inactive, contacts but no other node contacts , and they
decide to average.

We compute the probability of a): is active and is inactive
with probability ; contacts with probability ; no
other node contacts with probability ; after
which average with probability . Since all these
events are independent, the probability of a) turns out to be

. Similarly, the probability of event b) is . Since events
a) and b) are disjoint, the net probability of averaging is
as claimed.

Now, it is easy to see that

(50)

where is the diagonal matrix defined in the statement of
the theorem. From the argument preceding (49), we have that

, so that all eigenvalues of are nonnega-
tive. Hence from (50), the statement of Theorem 5 follows.

Note. The assumption of nodes knowing is not restrictive
for the following reason: all nodes can compute the maximum
node degree via a gossip algorithm in which each node con-
tacts its neighbors in a round-robin fashion, and informs them
of its current estimate of the maximum degree (its initial esti-
mate is its own degree). Since the order of pair-wise compar-
isons to compute the maximum of many numbers is not impor-
tant, each node can compute the maximum of the received infor-
mation from other nodes in any order to update its own estimate.
It is not hard to see that such an algorithm requires time
for all nodes to know maximum degree, where is the diam-
eter of the graph. Now, consider a node pair such that the
shortest path between them is . Now consider such that

and for all . Then, under any averaging
algorithm, for , . Hence,
for , the -averaging time is at least . Since
we are considering bounded degree graphs, .
Hence, we can ignore the pre-processing time for in
order notation. For clean presentation of our results, we ignore
this pre-processing time in general.

Consider a -regular graph, where each node degree is exactly
. Now, modify the above algorithm as follows: when an active

node contacts an inactive node and is not contacted by
any other node, then always average. The following result
follows using arguments of Theorem 5.

Corollary 3: The averaging time of the algorithm described
above for a -regular graph is bounded as

(51)

where

and is defined as

if and are neighbors
otherwise.

Note that

As a consequence, for the complete graph,
. Thus, the averaging time .

For , this implies the main results of [29] and [22].

IV. OPTIMAL AVERAGING ALGORITHM

We saw in Theorem 3 that the averaging time is a mono-
tonically increasing function of the second largest eigenvalue

BOYD et al.: RANDOMIZED GOSSIP ALGORITHMS 2517

of . Thus, finding the fastest aver-
aging algorithm corresponds to finding such that is
the smallest, while satisfying constraints on . Thus, we have
the optimization problem

minimize

subject to

if

(52)

The objective function, which is the second largest eigenvalue
of a doubly stochastic matrix, is a convex function on the set of
symmetric matrices. Therefore, (52) is a convex optimization
problem. This problem can be reformulated as the following
SDP:

minimize

subject to

if

(53)

where denotes inequality with respect to the cone of sym-
metric positive semidefinite matrices. For general background
on SDPs, eigenvalue optimization, and associated interior-point
methods for solving these problems, see, for example, [7], [33],
[38], [47], and references therein. Interior point methods can
be used to solve problems with a thousand edges or so; sub-
gradient methods can be used to solve the problem for larger
graphs that have up to a hundred thousand edges. The disadvan-
tage of a subgradient method compared to a primal-dual interior
point method is that the algorithm is relatively slow (in terms of
number of iterations), and has no simple stopping criterion that
can guarantee a certain level of suboptimality.

In summary, given a graph topology, we can solve the SDP
(53) to find the for the fastest averaging algorithm.

A. Distributed Optimization

We have seen that finding the fastest averaging algorithm is
a convex optimization problem, and can therefore be solved ef-
ficiently to obtain the optimal distribution . Unfortunately, a

computed in a centralized fashion is not useful in our set-
ting. It is natural to ask if in this setting, the optimization (like
the averaging itself), can also be performed in a decentralized
fashion. That is, is it possible for the nodes on the graph, pos-
sessing only local information, and with only local communi-
cation, to compute the probabilities that lead to the fastest
averaging algorithm?

In this subsection, we describe a completely distributed al-
gorithm based on an approximate subgradient method which
converges to a neighborhood of the optimal; alternately put,
each iteration of the algorithm moves closer to the globally
optimal , as stated in this theorem.

Theorem 6: Let be the number of edges in . Let the
subgradient at iteration in lie within the -subdifferential,
and define . Then, the sequence of iterates in

converges to a distribution for which is within
of the globally optimal value .

The required background and notation will be provided as
necessary during the proof, which comprises the remainder of
this section.

Notation: It will be easier to analyze the subgradient method
if we collect the entries of the matrix into a vector, which
we will call . Since there is no symmetry requirement on the
matrix , the vector will need to have entries corresponding
to as well as (this corresponds to replacing each edge
in the undirected graph by two directed edges, one in each
direction).

The vector corresponds to the matrix as follows. Let the
total number of (non-self-loop) edges in be . Assign num-
bers to the undirected edges from through : if edge ,

, is assigned number , we denote this as . If
, then define the variable , and .

We will also introduce the notation corresponding to the
nonzero entries in the th row of (we do this to make concise
the constraint that the sum of elements in each row should be

). That is, we define for

(54)

Define also the matrices , , with entries
, , and zeros everywhere else.

Then

Finally, denote the degree of node by .
1) Subgradient Method: We will describe the subgradient

method for the optimization problem restated in terms of the
variable . We can state (53) in terms of the variables

as follows:

minimize

subject to

(55)

where is as defined in (54).
We will use the subgradient method to obtain a distributed

solution to this problem. The use of the subgradient method to
solve eigenvalue problems is well known; see, for example, [1],
[31], [32], [39] for material on nonsmooth analysis of spectral
functions, and [8], [5], [19] for more general background on
nonsmooth optimization.

Recall that a subgradient of at is a symmetric matrix
that satisfies the inequality

for any feasible, i.e., symmetric stochastic matrix (here
denotes the matrix inner product, and denotes the trace of
a matrix). Let be a unit eigenvector associated with ,
then the matrix is a subgradient of (see, for
example, [1]). For completeness, we include the proof here. First

2518 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

note that . By the variational characterization of the
second eigenvalue of and , we have

Subtracting the two sides of the above equality from that of the
inequality, we have

So is a subgradient.
Using

in terms of the probability vector , we obtain

(56)
so that the subgradient is given by

(57)

with components

where . Observe that if each node knows its own
component of the unit eigenvector, then this subgradient can
be computed locally, using only local information.

The following is the projected subgradient method for (55).

• Initialization: Initialize to some feasible vector, for ex-
ample, corresponding to the natural random walk. Set

.
• Repeat for

— Subgradient step. Compute a subgradient at
, and set

— Projection onto feasible set. At each node ,
project obtained from the subgradient step onto

, . This is achieved as follows:
1) If

then set , stop.
2) If not, then use bisection to find such

that

then set , stop.

In this algorithm, Step 1 moves in the direction of the sub-
gradient with stepsize . Step 2 projects the vector onto the
feasible set. Since the constraints at each node are separable, the
variables corresponding to nodes are projected onto the fea-
sible set separately.

The projection method is derived from the optimality condi-
tions of the projection problem

minimize

subject to (58)

as shown.
Introduce Lagrange multipliers for the inequality

, and for . The Karush–Kuhn–Tucker
(KKT) conditions for optimal primal and dual variables , ,

are

Eliminating the slack variables , we get the equivalent opti-
mality conditions

(59)

(60)

(61)

(62)

If , then from the last condition, necessarily .
From (61), this gives us . If on the other hand,

, then as well since , and so
to satisfy (61), we must have . Combining these gives us
that

(63)

The must satisfy , i.e.,
. However, we must also satisfy the complementary slackness

condition . These two conditions combined
together lead to a unique solution for , obtained either at

, or at the solution of ; from the
can be found from (63).
2) Decentralization: Now consider the issue of decentral-

ization. Observe that in the above algorithm, can be computed
locally at each node if , the unit eigenvector corresponding to

, is known; more precisely, if each node is aware of its
own component of and that of its immediate neighbors. The
projection step can be carried out exactly at each node using
local information alone. The rest of the subsection proceeds as
follows: first we will discuss approximate distributed computa-
tion of the eigenvector of , and then show that the subgra-
dient method converges to a certain neighborhood of the optimal
value in spite of the error incurred during the distributed com-
putation of at each iteration.

BOYD et al.: RANDOMIZED GOSSIP ALGORITHMS 2519

The problem of distributed computation of the top- eigen-
vectors of a matrix on a graph is discussed in [28]. By distributed
computation of an eigenvector of a matrix , we mean that
each node is aware of the th row of , and can only com-
municate with its immediate neighbors. Given these constraints,
the distributed computation must ensure that each node holds its
value in the unit eigenvector . In [28], the authors present
a distributed implementation of orthogonal iterations, referred
to as DECENTRALOI (for decentralized orthogonal iterations),
along with an error analysis.

Since the matrix is symmetric and stochastic (it is a convex
combination of symmetric stochastic matrices), we know that
the first eigenvector is . Therefore, orthogonal iterations takes
a particularly simple form (in particular, we do not need any
Cholesky factorization type of computations at the nodes). We
describe orthogonal iterations for this problem as follows.

• DECENTRALOI: Initialize the process with some randomly
chosen vector ; for , repeat

— Set
— (Orthogonalize)
— (Scale to unit norm)

Here, the multiplication by is distributed, since respects
the graph structure, i.e., only if is an edge. So
entry of can be found using only values of corre-
sponding to neighbors of node , i.e., the computation is dis-
tributed. The orthogonalize and scale steps can be carried out in
a distributed fashion using the gossip algorithm outlined in this
paper, or just by distributed averaging as described in [48] and
used in [28]. Observe that the very matrix can be used for
the distributed averaging step, since it is also a probability ma-
trix. We state the following result (applied to our special case)
from [28], which basically states that it is possible to compute
the eigenvector up to an arbitrary accuracy.

Lemma 6: If DECENTRALOI is run for
iterations, producing orthogonal vector , then

(64)

where is the distance between and the eigenspace
of ; is the vector in the eigenspace achieving this distance;
and is the mixing time of the doubly stochastic matrix used
in the averaging step in DECENTRALOI.

For the algorithm to be completely decentralized, a decentral-
ized criterion for stopping when the eigenvector has been com-
puted up to an accuracy is necessary. This is discussed in detail
in [28]; we merely use the fact that it is possible for the nodes to
compute the eigenvector, in a distributed fashion, up to a desired
accuracy. Note also that the very matrix being optimized is a
doubly stochastic matrix, and can be used in the averaging step
in DECENTRALOI. If this is done, as the iterations proceed, the
averaging step becomes faster.

From the above discussion, it is clear we have a distributed
algorithm that computes an approximate eigenvector, and there-
fore an approximate subgradient.

3) Convergence Analysis: It now remains to show that the
subgradient method converges despite approximation errors in
computation of the eigenvector, which spill over into computa-
tion of the subgradient. To show this, we will use a result from
[24] on the convergence of approximate subgradient methods.

Given an optimization problem with objective function and
feasible set , the approximate subgradient method generates a
sequence such that

(65)

where is a projection onto the feasible set, is a step
size, and

(66)
is the -subdifferential of the objective function at .

Let and . Then we have the
following theorem from [24],

Lemma 7: If , then

where , and is the optimal value of the objec-
tive function.

Consider the th iteration of the subgradient method, with
current iterate , and let be the error in the (approximate)
eigenvector corresponding to . (By error in the
eigenvector, we mean the distance between and the (actual)
eigenspace corresponding to). Again, denote by the vector
in the eigenspace minimizing the distance to , and denote the
exact subgradient computed from by .

We have . First, we find in terms of as
follows:

Therefore,

where is a scaling constant.
Next, we will find in terms of as follows:

The th component of is

Combining the facts that

2520 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

and (since)

we get

Summing over all edges gives us ,
i.e., .

Now choose . From (57), it can be seen that is
bounded above by , and so in Theorem 7 converges to

. Therefore, if in each iteration , the eigenvector is computed
to within an error of , and , we have the claimed
result.

Remark: The fact that each constraint in (55) is local is cru-
cial to the existence of a distributed algorithm using the sub-
gradient method. The proof of convergence of the subgradient
method relies on the fact that the distance to the optimal set de-
creases at each iteration. This means that an exact projection
needs to be computed at each step: if only an approximate pro-
jection can be computed, this crucial property of decreasing the
distance to the optimal set cannot be verified.

Thus, for example, if the algorithm were formulated in terms
of picking one of all possible edges at random at each step, the
constraint would be , which is not a local con-
straint. Although this algorithm has a larger feasible set than the
optimization problem for the algorithm , it does not allow for
a distributed computation of the optimal algorithm: though the
projection can be computed approximately by distributed aver-
aging, an exact projection cannot be computed, and the conver-
gence of the subgradient method is not guaranteed.

V. AVERAGING TIME AND MIXING TIME

In this section, we explore the relation between the averaging
time of an algorithm with a symmetric probability matrix

, and the mixing time of the Markov chain with transition ma-
trix . Since we assume that is symmetric, the Markov chain
with transition matrix has a uniform equilibrium distribution.

Definition 2 (Mixing Time): For a Markov chain with tran-
sition matrix , let . Then, the
-mixing time is defined as

(67)

Recall also the following well-known bounds on the -mixing
time for a Markov chain (see, for example, the survey [15]).

Lemma 8: The -mixing time of a Markov chain with doubly
stochastic transition matrix is bounded as

(68)

For , (68) becomes

(69)

In the rest of the paper, if we do not specify , we mean
; the corresponding mixing time is denoted

simply as .
We use Lemma 8 and Theorem 3 to prove the following the-

orem.

Theorem 7: The averaging time of the gossip algorithm
in absolute time is related to the mixing time of the

Markov chain with transition matrix as

Proof: Let . It is shown in [29] that
for . Since is symmetric, we can use the

result in Corollary 1, so that in absolute time, for

We will first show that .
Using the result of [29] and Corollary 1, we already have that

(70)

Note that the eigenvalues of are all positive, so that
. There are two cases to consider.

• : 4 In this case, by Lemma 8,
. Further, . It follows that

.
• : From Lemma 8, we get

(71)

(72)

Combining this with (70), we see that
.

Now we will show that ,
which will give us our result. Again we consider the same two
cases.

• If , then by (1) and Lemma 8

(73)

(74)

(75)

(76)

• If , then using Lemma 8, and

(77)

so that

4The specific value is not crucial; we could have chosen any a > 0 instead.

BOYD et al.: RANDOMIZED GOSSIP ALGORITHMS 2521

Fig. 2. Graphical interpretation of Theorem 7.

Combining the two results gives us the theorem.

Fig. 2 is a pictorial description of Theorem 7. The -axis de-
notes mixing time and the -axis denotes averaging time. The
scale on the axis is in order notation. As shown in the figure,
for such that , ;
for such that , .
Thus, the mixing time of the random walk essentially charac-
terizes the averaging time of the corresponding averaging algo-
rithm on the graph.

VI. APPLICATIONS

In this section, we briefly discuss applications of our results
in the context of wireless ad hoc networks and the Internet.

A. Wireless Networks

The Geometric Random Graph, introduced by Gupta and
Kumar [13], has been used successfully to model ad hoc wire-
less networks. A -dimensional Geometric Random Graph on

nodes, denoted , models a wireless ad hoc network
of nodes with wireless transmission radius . It is obtained as
follows: place nodes on a –dimensional unit cube uniformly
at random and connect any two nodes that are within distance

of each other. An example of a two-dimensional graph,
is shown in Fig. 3. The following is a well-known

result about the connectivity of (for a proof, see [13],
[14], [40]).

Lemma 9: For , the is connected with
probability at least .

We have the following results for averaging algorithms on
a wireless sensor network, which are stated at the end of this
section as Theorem 9. (We will prove these by evaluating the
mixing times for the natural and optimal random walks on geo-
metric random graphs, and then using Theorem 7, which relates
averaging times and mixing times.)

• On the Geometric Random Graph, , the absolute
-averaging time of the optimal averaging

algorithm is .
Thus, in wireless sensor networks with a small radius of com-

munication, distributed computing is necessarily slow, since the
fastest averaging algorithm is itself slow. However, consider the
natural averaging algorithm, based on the natural random walk,
which can be described as follows: each node, when it becomes

Fig. 3. An example of a Geometric Random Graph in two dimensions. A node
is connected to all other nodes that are within the distance r of itself.

active, chooses one of its neighbors uniformly at random and
averages its value with the chosen neighbor.

We have noted before that, in general, the performance of
such an algorithm can be far worse than the optimal algorithm.
Interestingly, in the case of , the performances of the
natural averaging algorithm and the optimal averaging algo-
rithm are comparable (i.e., they have averaging times of the
same order). We will show the following result for the natural
averaging algorithm on geometric random graphs.

• In the Geometric Random Graph, , the absolute
-averaging time of the natural averaging al-

gorithm is of the same order as the optimal averaging al-
gorithm, i.e., .

We now prove the following theorem about the mixing times
of the optimal and natural random walks on .

Theorem 8: For with , with high
probability

a) the mixing time of the optimal reversible random walk
with uniform stationary distribution is ; and

b) the mixing time of the modified natural random walk,
where a node jumps to any of its neighbors (other than
itself) with equal probability, and has a self-loop of prob-
ability , is also .

The outline of the proof is as follows. To prove a), we will start
by showing that with high probability, the geometric random
graph is a regular graph. We bound the mixing rate of the op-
timal random walk on the corresponding regular graph, and then
relate the mixing times of the optimal random walks on this
regular graph and the graph. The proof of b) uses a
modification of the path counting argument of Diaconis and
Stroock to upper-bound the second largest eigenvalue of the nat-
ural random walk on the graph.

We start with evaluating the mixing time of the optimal
random walk on .

1) Regularity of : In this subsection, we prove a
regularity property of , which allows a simpler anal-
ysis of the mixing time of random walks.

Lemma 10: For with , the degree of
every node is with high probability, where

.
Proof: Let nodes be numbered . Consider a

particular node, say . Let random variable be if node is
within distance of node and otherwise. The ’s are i.i.d.

2522 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

Bernoulli with probability of success (the volume
of a -dimensional sphere with radius is). The degree of
node is

(78)

By application of the Chernoff bound we obtain

(79)

If we choose , then the right-hand side in (79)

becomes . So, for ,
node has degree

w.p. (80)

Using the union bound, we see that

any node has degree

(81)

So for large , w.h.p. (with high probability), all nodes in the
-dimensional have degree .

2) Proof of Theorem 8 a): Optimal Random Walk on
: In this subsection, we characterize the scaling of the

optimal random walk on . We first consider the case
of , i.e., . This is much easier than the higher
dimensional with . We completely characterize

with the help of one-dimensional regular graphs.
For with , we obtain a lower bound on the
fastes mixing reversible random walk. Note that since we are
interested in reversible random walks with uniform stationary
distribution, the transition matrix corresponding to the random
walk must be symmetric. (An upper bound of the same order is
implied by the natural random walk as in Theorem 8 b).) The
remainder of the section is a proof of Theorem 8 a).

Optimal random walk on
Let denote the regular graph on nodes with every node

of degree ; it is constructed by placing the nodes on the cir-
cumference of a circle, and connecting every node to neigh-
bors on the left, and on the right. From the regularity lemma,
we have that w.h.p., every node in has degree

. Also, observe that the same technique can be used to show

that w.h.p. the number of neighbors to the right (ditto left) is
.

In this one-dimensional case, it is clear that w.h.p., the
is a subgraph of for , since for any mapping of
the nodes of to , an edge between nodes and in

is also present in . Similarly, also contains
, for . Given this, we can now study the problem

of finding the optimal random walk on with uniform sta-
tionary distribution. We have the following lemma.

Lemma 11: For , such that , the mixing rate
of the fastest mixing symmetric random walk on cannot be
smaller than .

Proof: It can be shown using symmetry arguments [41]
that the fastest mixing Markov chain on with uniform sta-
tionary distribution will have a symmetric and circulant transi-
tion matrix. (For this simple graph, this can be easily seen using
convexity of the second eigenvalue). So we can restrict our at-
tention to the (circulant symmetric) transition matrices given in
(82) at the bottom of the page. The eigenvalues of this matrix
are

For , , which is the largest eigenvalue. Let
. We are interested in the smallest

possible second largest eigenvalue in absolute value, i.e., in

minimize

subject to

(83)

We can obtain a lower bound for the optimal value of (83). Now

(84)

The right-hand side is the solution of the following linear pro-
gram with a single total sum constraint:

minimize

subject to

(85)

For such that each of the coefficients is positive,
i.e., for , the smallest coefficient is , and so
for all such and , the minimum value is , obtained

...
...

...
...

(82)

BOYD et al.: RANDOMIZED GOSSIP ALGORITHMS 2523

at , for all other .5 So the fastest mixing
random walk on this graph cannot have a mixing rate smaller
than .

The preceding result was proved for all ; however,
we will be interested only in those cases where , i.e.,
the graph is not too well connected. For such , the following
lemma allows us to find a “nearly optimal” transition matrix.

Lemma 12: For , there is a random walk on for
which the mixing rate is .

Proof: For simplicity, let us assume that divides ; it is
not difficult to obtain the same results when this is not the case.

Consider the Markov chain with transition probabilities
, , . We will

show that for a certain , small enough, is indeed , and
is away from by .

For the transition matrix corresponding to these probabil-
ities, the eigenvalues are, for

(86)

(87)

We want to find the smallest positive such that is (this
is not true, for example, for). However, we need to be
small enough so that the residual term,

, is small compared to .
Since and we hope that is small , we

see that the values of for which is comparable to
are those values of for which . This
happens for . (We only need consider
values of until , since .) At all odd multi-
ples of , , and for the even multiples,

. For to satisfy , we must have
for an even multiple of

(88)

and for an odd multiple of

5Note that this is only a lower bound: for this ppp, if k divides n, the second
largest eigenvalue is also 1, attained at m = n=k.

that is,

(89)

From (88), we see that must be greater or equal to

(90)
for an odd multiple of , and from (89), must be less or
equal to

(91)
for a multiple of . So can be only as small as the max-
imum over the specified of all of these right-hand sides.

Note that the only term dependent on in each of these ex-
pressions is . For , odd

(92)

since for odd , and if is
even, also. For

(93)

since (sum of real parts of the th roots
of unity).

So , and returning to (86), we see that the
residual term in is of order , i.e., , while

. So the difference between
and is .

Optimal walk on
We present the lower bound on the fastest mixing reversible

random walk on in this section. The same method can
be easily extended to . First we characterize the fastest
mixing reversible random walk on a two-dimensional regular
graph defined as follows: form a lattice on the unit torus,
where lattice points are located at ,

, and place the nodes at these points. An edge
between two vertices exists if the distance between them is
at most . For such the fastest mixing time scales as
follows.

Lemma 13: The mixing rate of the optimal reversible random
walk on is no smaller than .

Proof: As in the one-dimensional case, by symmetry, the
optimal transition probability between nodes and will depend
only on the distance between these nodes. Using this, we can
write the transition matrix corresponding to such a symmetric
random walk on as the Kronecker (or tensor) product

2524 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

, where is as in (82). This is not difficult to
visualize: for ,

(94)

Now the eigenvalues of are all products of eigenvalues
of and , so that for ,

The eigenvalue is obtained by setting ; all other
eigenvalues will have absolute value less (or ?) equal (to ?) .
We want to find a lower bound for the second largest eigenvalue
in absolute value, call it .

As before, choose . Then

so that is a lower bound for . Making the as-
sumption again that , the minimizing is the one
with and (which corresponds to tran-
sition probabilities of for each of the four farthest diagonal
nodes, and everywhere else). The value of corresponding
to this distribution is . This is of order ,
since6

The graph was constructed using the distance be-
tween vertices. Therefore, the graph formed by placing edges
between vertices based on distance measured in any norm
(for the same) is a subgraph of , and has a mixing time
lower-bounded by the mixing time of . Thus, our bounds
will be valid for the graph constructed according to any

norm.
Now we will use the bound on the fastest mixing walk on

to obtain a bound for . First, we create a new graph
as follows: place a square grid with squares of side

on the unit torus. By Lemma 10, each square of area contains
nodes. For each such square, connect every node

in this square to all the nodes in the neighboring squares, as well
as the nodes in the same square. Thus, each node is connected
to nodes in . By definition, all edges
in are present in and therefore, the fastest
mixing random walk on is at least as fast as that of

. Thus, lower-bounding the mixing time of the fastest
mixing random walk on is sufficient.

Construct a graph of nodes as follows: corresponding
to each square in the square grid used in , create a node
in . Thus, has nodes. Two nodes are connected in if
the corresponding squares in the grid are adjacent. Thus, each

6It is easy to see that a result similar to Lemma 12 can be obtained for d � 2

using the same method.

node is connected to eight other nodes. Thus, is a regular
graph with nodes. In order to use this bound as a lower
bound on , we need to show that the fastest mixing sym-
metric random walk on induces a time-homogeneous
reversible random walk on . This will be implied by the fol-
lowing lemma.

Lemma 14: There exists a fastest mixing symmetric random
walk on , whose transition matrix has the following
property: for any two nodes and belonging to the same
square, for , and .

Proof: We prove this by contradiction. Suppose the
claimed statement is not true, i.e., there is no transition matrix
achieving the smallest with the above property. Since the
optimal value of must be attained ([1]), consider such an
optimizing , and let and be two nodes in the same square
for which the above property is not true.

Let be the permutation matrix with ,
, and all other diagonal entries and all other

nondiagonal entries . Note that is a symmetric permutation
matrix, and therefore . Consider the matrix

; since , and are similar, and so
have the same eigenvalues. Note that since and belong to the
same square in , they have exactly the same neighbors, and
therefore also respects the graph structure (i.e.,
only if and have an edge between them).

Now, is a convex function of for symmetric sto-
chastic ([1]), so

(95)

But has the property claimed in the lemma
for nodes and : for all ,

, and . We can apply the
above procedure recursively (even for multiple rows) to con-
struct a matrix with smallest and the property claimed
in the lemma. This contradicts our assumption and completes
the proof.

From Lemma 14, we see that under the fastest mixing random
walk, the probability of transiting from a node in a square, say

, to some neighboring square, say , is the same for all nodes
in and . Thus, essentially we can view the random walk
as evolving over squares. That is, the fastest random walk on

induces a random walk on the graph . By defini-
tion of mixing time, the mixing time for this induced random
walk on (with the induced equilibrium distribution) certainly
lower-bounds the mixing time for the random walk on .
Further, the induced random walk is reversible as the random
walk was symmetric on . Therefore, we see that the
lower bound on mixing time for the fastest mixing random walk
on implies a lower bound on the mixing time for the fastest
mixing random walk on . From Lemma 13, we have a
lower bound of on the mixing time of the fastest
mixing symmetric random walk (i.e., with uniform stationary
distribution). From Lemma 15, given below, this in turn implies
a lower bound of on the mixing time of the fastest

BOYD et al.: RANDOMIZED GOSSIP ALGORITHMS 2525

mixing reversible random walk on . This completes the
proof of 2 a) (please define “2 a)”) for . It is easy to
see that the arguments presented above can readily be extended
to the case of .

Lemma 15: Consider a connected graph

with diameter . Let be the mixing time of the
fastest mixing reversible random walk on with stationary dis-
tribution . Let ,
where is a constant. Then

(96)

i.e., the fastest mixing time for is no faster than that of the
uniform distribution.

Proof: Consider a reversible random walk with stationary
distribution on and let its transition matrix be . We will
prove the following claim, which in turn implies the statement
of the lemma.

Claim I: There exists a symmetric random walk on graph
with transition matrix such that

Proof of Claim I: For a reversible matrix , by definition

Define matrix , where for

if
if

and .
By definition and reversibility of , is a symmetric doubly

stochastic matrix. Further, for , if and only if
. Hence, can be viewed as a transition matrix of a

symmetric random walk on , whose stationary distribution is
uniform. Define , where

Similarly, define . Let be a
nonconstant function. Define two quadratic forms, and ,
of , as

Let the variance of with respect to these two random walks be

Let and denote the second largest eigenvalue of
matrices and , respectively. The minimax characterization
of eigenvalues ([18, p. 176]), gives a bound on the second largest
eigenvalue of a reversible matrix as

a nonconstant (97)

For any , , hence, and
. Further, by the property of

Hence, for any

and

Thus, for any

This implies that

Hence, from (97) we obtain

Since the diameter of is , it is easy to see that
the mixing time of all random walks on is lower-bounded
by . Hence, from Lemma 8

By definition, . Hence,

It is easy to see that the random walk on with symmetric
transition matrix has mixing time given by

Thus, . This completes the proof of
Claim I and the proof of Lemma 15.

Remark: In fact, a stronger result can be proved, which is

One part of this has already been proved in the lemma. The
reverse direction is obtained similarly, as follows. Consider
any symmetric random walk with transition matrix , and
suppose a stationary distribution is specified, satisfying

, where is some constant. Then
there is a reversible random walk with stationary distribution

2526 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

, such that . is obtained as follows.
Construct a matrix from as

if
if

for , and . is a stochastic
reversible matrix, with stationary distribution , since

. Following the same steps as
above, we can conclude that

The matrix has the same eigenvectors as and,
therefore, the same stationary distribution . The eigenvalues
are . Therefore, since the diameter of the graph
is

As before

Therefore, , and we have the stronger
result claimed in the Remark.

3) Proof of Theorem 8 b): Natural Random Walk on
: In this subsection, we study the mixing properties

of the natural random walk on . Recall that under
the natural random walk, the next node is equally likely to
be any of the neighboring nodes. It is well known that under
the stationary distribution, the probability of the walk being
at node is proportional to the degree of node . By Lemma
10, all nodes have almost equal degree. Hence, the stationary
distribution is almost uniform (it is uniform asymptotically).
The rest of this section is the proof of Theorem 8 b).

We use a modification of a method developed by Dia-
conis–Stroock [9] to obtain bounds on the second largest
eigenvalue using the geometry of the .

Note that for , the proof is rather straightforward. The
difficulty arises in the case of . For ease of exposition in
the rest of the section, we consider . Exactly the same
argument can be used for . We begin with some initial
setup and notation.

Square Grid: Divide the unit torus into a square grid where
each square is of area , i.e., of side length . Consider a
node in a square. By definition of , this node is connected
to all nodes in the same square and all neighboring squares.

Paths and Distribution: A path between two nodes and
, denoted by , is a sequence of nodes ,

, such that are edges in .
Let denote a collection of paths for all
node pairs. Let be the collection of all possible . Consider the
probability distribution induced on by selecting paths between
all node pairs as described below.

• Paths are chosen independently for different node pairs.

• Consider a particular node pair . Let belong to
square and belong to square .

— If or and are in neighboring cells then
the path between and is .

— Else, let , be other squares lying
on the straight line joining and . Select a node

, uniformly at random.
Then the path between and is .

Under the above setup, we claim the following lemma.

Lemma 16: Under the probability distribution on as de-
scribed above, the average number of paths passing through an
edge is w.h.p., where .

Proof: We will compute the average load in order nota-
tion. Similar to the arguments of Lemma 10, it can be shown
that each of the squares contains nodes and
each node has degree w.h.p. We restrict our con-
sideration to such instances of .

Now the total number of paths are since there are
node pairs. Each path contains edges, as

squares can be lying on a straight line joining two nodes. The
total number of squares is . Hence, by symmetry and
regularity, the number of paths passing through each square is

. Consider a particular square . For , at least
fraction of paths passing through it have endpoints

lying in squares other than . That is, most of the paths passing
through have as an intermediate square, and not an orig-
inating square. Such paths are equally likely to select any of
the nodes in . Hence, the average number of paths containing
a node, say , in , is . The number
of edges between and neighboring squares is . By
symmetry, the average load on an edge incident on will be

. This is true for all nodes. Hence, the average load on
an edge is at most .

Next we will use this setup and Lemma 16 to obtain a bound
on the second largest eigenvalue using a modified version of
Poincare’s inequality stated as follows.

Lemma 17: Consider the natural random walk on a graph
with the set of all possible paths on

all node pairs. Let be the maximum path length (among all
paths and over all node pairs), be the maximum node degree,
and be the total number of edges. Let, according to some
probability distribution on , the maximum average load on any
of the edges be , i.e., on average no edge belongs to more than
paths. Then, the second largest eigenvalue, , is bounded above
as

(98)

Proof: The proof follows from a modification of
Poincare’s inequality ([9, Proposition 1]). Before proceeding
to the proof, we introduce some notation.

Let be a real-valued function on the
nodes. Let denote the equilibrium distribu-
tion of the random walk. Let be the degree of node , then it
is well known that . For node pair , let

BOYD et al.: RANDOMIZED GOSSIP ALGORITHMS 2527

Define the quadratic form of as

Let the variance of with respect to be

For a directed edge from , define
and . First, consider one collection of paths

. Define

Then, under the natural random walk

(99)

where is the length of the path

(100)

where denotes the number of paths passing through edge
under . follows by using for all , and

adding and subtracting values of on nodes of the path for
all node pairs for a given path-set . follows
from the Cauchy–Schwartz inequality. follows from (99),
and follows from the fact that all path lengths are smaller
than .

Note that in (100), is the only path-dependent term.
So under a probability distribution on (the set of all paths) in
(100), can be replaced by where

Let . Then

(101)

(102)

The minimax characterization of eigenvalues [18, p. 176] gives
a bound on the second largest eigenvalue as

a nonconstant (103)

From (102) and (103), the statement of the lemma follows.

From Lemmas 10, 16, and 17, and the fact that all paths are of
length at most , we obtain that the second largest eigen-
value corresponding to the natural random walk on is
bounded above as

(104)

We would like to note that, for mixing time, we need to
show that the smallest eigenvalue (which can be negative),
is also away from . One well-known way to avoid
this difficulty is the following: modify transition probabilities
as . and have the same stationary dis-
tribution. By definition, has all nonnegative eigenvalues,
and . Thus, the mixing time of the
random walk corresponding to is governed by , and is
therefore . This random walk is the modified
natural random walk in Theorem 8 b).

Thus, from Lemma 8 and (104), the proof of Theorem 8 b) for
follows. In general, the above argument can be carried

out similarly for completing the proof of Theorem 8 b).
Averaging in : The natural averaging algorithm,

based on the natural random walk, can be described as follows:
when a node becomes active, it chooses one of its neighbors
uniformly at random and averages with this neighbor. As noted
before, in general, the performance of such an algorithm can
be far worse than the optimal algorithm. Interestingly, in the
case of , the performances of the natural averaging
algorithm and the optimal averaging algorithm are comparable
(i.e., they have averaging time of the same order). We state the
following theorem.

Theorem 9: On the Geometric Random Graph , the
absolute -averaging time, , of the natural averaging
algorithm as well as of the optimal averaging algorithm is of
order .

Proof: We showed in Theorem 8 that for
, the -mixing times for the fastest mixing random walk and the

natural random walk on are of order . Using
this in Theorem 7, we have our result.

Implication. In a wireless sensor network, Theorem 9 sug-
gests that for a small radius of transmission, even the fastest
averaging algorithm converges slowly, i.e., computing in a dis-
tributed fashion is slow. However, the good news is that the
natural averaging algorithm, based only on local information,
scales just as well as the fastest averaging algorithm. Thus, at
least in the order sense, it is not necessary to optimize for the
fastest averaging algorithm in a wireless sensor network.

2528 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

B. Expander Graphs

An expander graph can be characterized as follows: let the
transition matrix corresponding to the natural random walk on
the graph be . Then, there exists such that

(105)

where is the second largest eigenvalue of in mag-
nitude, i.e., the spectral gap is bounded away from zero by a
constant.

Let be the transition matrix corresponding to the fastest
mixing random walk on an expander. The random walk corre-
sponding to must mix at least as fast as the natural one, and
therefore,

(106)

It is easy to argue that there exists an optimal that is sym-
metric: given any optimal , the matrix is sym-
metric, and leads to the same as , since

(107)

and the are symmetric matrices.
Therefore, we are able to use the result relating the mixing

time for and the averaging time for for a symmetric .
From (105), (106), Theorem 3, and Corollary 2, we see that the
optimal averaging algorithm on any expander graph has -aver-
aging time .

The Preferential Connectivity (PC) model [35] is one of the
popular models for the Internet. In [35], it is shown that the In-
ternet is an expander under the PC model. Using the conclusion
above, we obtain the following result for averaging on the In-
ternet.

Theorem 10: Under the PC model, the optimal averaging
algorithm on the Internet has an absolute -averaging time

.

Implication. The absolute time for distributed computation
on any expander graph is independent of the size of the network,
and depends only on the desired accuracy of the computation.
Assuming that the PC model is a good model for Internet, then
this immediately suggests that the absolute computation time
depends only on the desired accuracy.7 One implication is that
exchanging information on the Internet via peer-to-peer network
built on top of it is extremely fast!

Remark: Let be the maximum node degree of the graph
. For any family of graphs of bounded degree, the averaging

time of the maximum-degree random walk (if
), and the fastest mixing random walk are of

the same order.8 This follows from an observation in [1], which

7Although that the asymmetry of the P matrix for the natural random walk on
the Internet prevents us from exactly quantifying the averaging time, we believe
that averaging will be fast even under the natural random walk, since the spectral
gap for this random walk is bounded away from 1 by a constant.

8The reason for using the maximum degree chain rather than the natural
random walk is because the natural random walk need not be symmetric for an
arbitrary graph. (Note that for a regular graph, the maximum degree chain and
the natural random walk are exactly the same.) An alternative symmetric random
walk with locally computable weights is the Metropolis–Hastings random walk
with P = minf1=d ; 1=d g for (i; j) 2 E; i 6= j, for which a similar
result holds.

says that the spectral gap for the fastest mixing Markov chain
on a graph can be at most a factor smaller than the max-
imum-degree chain. Thus, if is the optimal transition matrix,
i.e., the one with the smallest possible , and is the
transition matrix for the maximum-degree chain, then

(108)

Thus, the averaging times for both random walks are of the same
order, and differ by a factor of atmost .

For example, the social network [27] is a regular graph with
, which is the degree of each node in the graph. For

the social network, therefore, the natural random walk (which is
the same as the maximum degree chain) leads to an averaging
time of the same order as the optimal; and in fact, the averaging
times differ by a factor of at most .

C. Information Exchange

Define to be the smallest time at which each node
has information from all the other nodes with a probability
greater than or equal to . The averaging time provides
an upper bound for the information exchange time, as made
precise in the following theorem.

Theorem 11: For a gossip algorithm specified by a matrix
and

Proof: Consider first a single node , and set
and for all . By the definition of averaging
time, for all , the probability that is
greater than or equal to , since by the definition of ,
for all

(109)

Note that

and

If any (each must be positive), then that term con-
tributes to the sum, and thus the sum cannot be less that
for .

Thus, for all , the probability that all of the
are greater (or ?) equal (to ?) . But this is exactly the prob-
ability that all nodes receive the message from node . Using
the union bound and summing for nodes, we conclude that
the probability of all nodes receiving information from all other
nodes is greater (or ?) equal (to ?) , and so

.

VII. CONCLUSION

We presented a framework for the design and analysis of a
randomized distributed averaging algorithm on an arbitrary con-
nected network. We characterized the performance of the algo-
rithm precisely in the terms of second largest eigenvalue of an
appropriate doubly stochastic matrix. This allowed us to find the

BOYD et al.: RANDOMIZED GOSSIP ALGORITHMS 2529

fastest averaging algorithm of this class of algorithms, by estab-
lishing the corresponding optimization problem to be convex.
We established a tight relation between the averaging time of
the algorithm and the mixing time of an associated random walk,
and utilized this connection to design fast averaging algorithms
for two popular and well-studied networks: Wireless Sensor
Networks (modeled as Geometric Random Graphs), and the
Internet graph (under the so-called Preferential Connectivity
Model).

In general, solving SDPs in a distributed manner is not pos-
sible. However, we utilized the structure of the problem in order
to solve the SDP (corresponding to determining the optimal av-
eraging algorithm) in a distributed fashion using the subgradient
method. This allows for self-tuning weights: that is, the network
can start out with some arbitrary averaging matrix, say, one de-
rived from the natural random walk, and then locally, without
any central coordination, converge to the optimal weights cor-
responding to the fastest averaging algorithm.

The framework developed in this paper is general and can
be utilized for the purpose of design and analysis of distributed
algorithms in many other settings.

ACKNOWLEDGMENT

Devavrat Shah wishes to thank Robert Gallager for a careful
reading and suggestions that led to an improvement in the read-
ability of the final paper. The authors would also like to thank
an anonymous reviewer for several useful suggestions regarding
the presentation of this paper.

REFERENCES

[1] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a
graph,” SIAM Rev., Problems and Techniques Section, vol. 46, no. 4, pp.
667–689, 2004.

[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Analysis and optimiza-
tion of randomized gossip algorithms,” in Proc. IEEE Conf. Decision
and Control, Nassau, Bahamas, Dec. 2004, pp. 5310–5315.

[3] , “Gossip algorithms: Design, analysis, and applications,” in Proc.
IEEE INFOCOM, Miami, FL, Mar. 2005.

[4] , “Mixing times of random walks on geometric random graphs,” in
Proc. SIAM ANALCO, Vancouver, BC, Canada, Jan. 2005.

[5] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Op-
timization, Theory and Examples. New York: Springer-Verlag, 2000,
Canadian Mathematical Society Books in Mathematics.

[6] R. W. Beard and V. Stepanyan, “Synchronization of information in dis-
tributed multiple vehicle coordinated control,” in Proc. IEEE Conf. De-
cision and Control, Dec. 2003, pp. 2029–2034.

[7] S. Boyd and L. Vandenberghe, Convex Optimization. New York:
Cambridge Univ. Press, 2004. Available [Online] at http://www.stan-
ford.edu/~boyd/cvxbook.html.

[8] F. H. Clarke, Optimization and Nonsmooth Analysis. Philadelphia, PA:
SIAM, 1990.

[9] P. Diaconis and D. Stroock, “Geometric bounds for eigenvalues of
Markov chains,” Ann. Appl. Probab., vol. 1, no. 1, pp. 36–61, 1991.

[10] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applica-
tions. New York: Springer-Verlag, 1999.

[11] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” in Proc. 5th Int.
Conf. Mobile Computing and Networking, 1999, pp. 263–270.

[12] L. Elsner, I. Koltracht, and M. Neumann, “On the convergence of asyn-
chronous paracontractions with applications to tomographic reconstruc-
tion from incomplete data,” Linear Algebra Appl., vol. 130, pp. 65–82,
1990.

[13] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[14] A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah, “Throughput-
delay trade-off in wireless networks,” in Proc. IEEE INFOCOM, 2004.

[15] V. Guruswami. (2000) Rapidly Mixing Markov Chains: A Comparison
of Techniques. [Online]. Available: cs.washington.edu/homes/venkat/
pubs/papers.html

[16] I. Gupta, R. van Renesse, and K. Birman, “Scalable fault-tolerant aggre-
gation in large process groups,” in Proc. Conf. Dependable Systems and
Networks, 2001, pp. 442–433.

[17] S. Hedetniemi, S. Hedetniemi, and A. Liestman, “A survey of gossiping
and broadcasting in communication networks,” Networks, vol. 18, pp.
319–349, 1988.

[18] R. Horn and C. Johnson, Matrix Analysis. Cambridge, U.K.: Cam-
bridge Univ. Press, 1985.

[19] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimiza-
tion Algorithms. Berlin, Germany: Springer-Verlag, 1993.

[20] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact
of network density on data aggregation in wireless sensor networks,” in
Proc. Int. Conf. Distributed Computing Systems, Jul. 2002.

[21] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[22] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of ag-
gregate information,” in Proc. Conf. Foundations of Computer Science,
2003, pp. 482–491.

[23] B. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data ag-
gregation in wireless sensor networks,” in Proc. Int. Workshop of Dis-
tributed Event Based Systems, Jul. 2002.

[24] K. Kiwiel, “Convergence of approximate and incremental subgradient
methods for convex optimization,” SIAM J. Optimization, vol. 14, no. 3,
pp. 807–840, 2004.

[25] D. Kempe and J. Kleinberg, “Protocols and impossibility results for
gossip-based communication mechanisms,” in Proc. 43st IEEE Symp.
Foundations of Computer Science, 2002, pp. 471–480.

[26] D. Kempe, J. Kleinberg, and A. Demers, “Spatial gossip and resource
location protocols,” in Proc. 33rd ACM Symp. Theory of Computing,
2001, pp. 163–172.

[27] J. Kleinberg, “The small-world phenomenon: An algorithmic perspec-
tive,” in Proc. Symp. Theory of Computing, 2000, pp. 163–170.

[28] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analysis,” in Proc. Symp. Theory of Computing, 2004, pp. 561–568.

[29] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking, “Randomized
rumor spreading,” in Proc. Symp. Foundations of Computer Science,
2000, pp. 564–574.

[30] Z. Lin, M. Brouke, and B. Francis, “Local control strategies for groups
of mobile autonomous agents,” IEEE Trans. Autom. Control, vol. 49, no.
4, pp. 622–629, Apr. 2004.

[31] A. S. Lewis, “Convex analysis on the Hermitian matrices,” SIAM J. Op-
timization, vol. 6, pp. 164–177, 1996.

[32] , “Nonsmooth analysis of eigenvalues,” Math. Programming, vol.
84, pp. 1–24, 1999.

[33] A. S. Lewis and M. L. Overton, “Eigenvalue optimization,” Acta Numer.,
vol. 5, pp. 149–190, 1996.

[34] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “Tag: A tiny ag-
gregation service for ad-hoc sensor networks,” ACM SIGOPS Oper. Syst.
Rev., vol. 36, pp. 131–146, 2002.

[35] M. Mihail, C. Papadimitriou, and A. Saberi, “On certain connectivity
properties of the internet topology,” in Proc. Conf. on Foundations of
Computer Science, 2003, pp. 28–35.

[36] L. Mureau, “Leaderless coordination via bidirectional and unidirec-
tional time-dependent communication,” in Proc. IEEE Conf. Decision
and Control, Dec. 2003.

[37] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[38] M. L. Overton, “Large-scale optimization of eigenvalues,” SIAM J. Op-
timiz., vol. 2, pp. 88–120, 1992.

[39] M. L. Overton and R. S. Womersley, “Optimality conditions and duality
theory for minimizing sums of the largest eigenvalues of symmetric ma-
trices,” Math. Programming, vol. 62, pp. 321–357, 1993.

[40] M. Penrose, “Random geometric graphs,” in Oxford Studies in Proba-
bility. Oxford, U.K.: Oxford Univ. Press, 2003.

[41] P. A. Parrilo, L. Xiao, S. Boyd, and P. Diaconis, “Symmetry analysis of
reversible Markov chains,” Internet Math., vol. 2, no. 1, pp. 31–71, 2003.

[42] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proc. ACM SIGCOMM Conf.,
2001.

[43] Y. Rabani, A. Sinclair, and R. Wanka, “Local divergence of Markov
chains and the analysis of iterative load-balancing schemes,” in Proc.
Conf. Foundations of Computer Science, 1998, pp. 694–703.

2530 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

[44] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in Proc. ACM SIGCOMM Conf., 2001, pp. 149–160.

[45] J. Tsitsiklis, “Problems in decentralized decision making and computa-
tion,” Ph.D. dissertation, Lab. Information and Decision Systems, MIT,
Cambridge, MA, 1984.

[46] R. van Renesse, “Scalable and secure resource location,” in Proc. 33rd
Hawaii Int. Conf. System Sciences, vol. 4, 2000, pp. 4012–4012.

[47] H. Wolkowicz, R. Saigal, and L. Vengerghe, Eds., Handbook of Semidef-
inite Programming, Theory, Algorithms, and Applications. Norwell,
MA: Kluwer Academic, 2000.

[48] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
in Proc. 2003 Conf. Decision and Control, Dec. 2003, pp. 4997–5002.

	toc
	Randomized Gossip Algorithms
	Stephen Boyd, Fellow, IEEE, Arpita Ghosh, Student Member, IEEE,
	I. I NTRODUCTION

	Fig. 1. Sensor nodes deployed to measure ambient temperature.
	A. Problem Formulation and Definitions
	Lemma 1: For any $k \ge 1$, $E[Z_{k}] = k/n$. Further, for any
	Proof: By definition $$E[Z_{k}] = \sum _{j=1}^{k} E[Z_{j} - Z_{j

	B. Previous Results
	Theorem 1: For any gossip algorithm on any graph G and for $0
	Theorem 2: For a complete graph, there exists a gossip algorithm

	C. Our Results
	Theorem 3: The averaging time $T_{\rm ave}(\epsilon, P)$ of the

	II. C ONVERGENCE OF M OMENTS
	A. Convergence in Expectation
	B. Convergence of Second Moment

	III. H IGH P ROBABILITY B OUNDS O N A VERAGING T IME
	A. Upper Bound
	Lemma 2: For algorithm ${\cal A}(P)$, for any initial vector $x(
	Proof: Recall that under algorithm ${\cal A}(P)$ $$x(k+1) = W(k+

	B. A Lower Bound on the Averaging Time
	Lemma 3: For algorithm ${\cal A}(P)$, there exists an initial ve
	Proof: Since $y(k+1) = W(k)y(k)$, we obtain from (29) $$E[y(k)]

	Lemma 4: Let X be a random variable such that $0 \le X \le B$
	Proof: $$\eqalignno{E[X] \le &\, \epsilon \Pr (X < \epsilon) + B

	Corollary 1: For large n and symmetric P, $T_{\rm ave}(\epsi
	Proof: By definition, $\lambda _{2}(W) = \left(1- {{1}\over {n}}

	Corollary 2: For a symmetric P, the absolute time $Z_{T^{\cdot
	Proof: For $\delta = {{\sqrt {2(1-\lambda _{2}(P))}}\over {\sqrt

	Lemma 5: For any randomized gossip algorithm with symmetric expe

	C. Synchronous Averaging Algorithms
	1) Centralized Synchronous Algorithm: Let P be any $n\times n$
	Theorem 4: The averaging time of the centralized synchronous alg
	Proof: The proof of Theorem 4 is based on the proofs of Lemmas 2

	2) Distributed Synchronous Algorithm: The centralized synchronou
	Theorem 5: The averaging time of the distributed synchronous alg
	Proof of Theorem 5: The proof follows using Theorem 4. We first

	Corollary 3: The averaging time of the algorithm described above

	IV. O PTIMAL A VERAGING A LGORITHM
	A. Distributed Optimization
	Theorem 6: Let m be the number of edges in G . Let the subgr
	1) Subgradient Method: We will describe the subgradient method f
	2) Decentralization: Now consider the issue of decentralization.
	Lemma 6: If D ECENTRAL OI is run for $\Omega \left(t\tau _{\rm m
	3) Convergence Analysis: It now remains to show that the subgrad
	Lemma 7: If $\sum \nu _{k} = \infty$, then $$\liminf_{k} f(x^{k}
	Remark: The fact that each constraint in (55) is local is crucia

	V. A VERAGING T IME AND M IXING T IME
	Definition 2 (Mixing Time): For a Markov chain with transition m
	Lemma 8: The ϵ -mixing time of a Markov chain with doub
	Theorem 7: The averaging time of the gossip algorithm ${\cal A}(
	Proof: Let $\epsilon = 1/n^{\delta}$. It is shown in [29] tha

	Fig. 2. Graphical interpretation of Theorem 7.
	VI. A PPLICATIONS
	A. Wireless Networks
	Lemma 9: For $nr^{d} \ge 2\log n$, the $G(n,r)$ is connected wit

	Fig. 3. An example of a Geometric Random Graph in two dimensions
	Theorem 8: For $G^{d}(n,r)$ with $r=\omega (r_{c}(d))$, with hig
	1) Regularity of $G^{d}(n,r)$: In this subsection, we prove a re
	Lemma 10: For $G^{d}(n,r)$ with $r =\omega (r_{c}(d))$, the degr
	Proof: Let nodes be numbered $i=1,\ldots, n$. Consider a partic

	2) Proof of Theorem 8 a): Optimal Random Walk on $G^{d}(n,r)$: I
	Lemma 11: For k, n such that $k \le n/4$, the mixing rate of
	Proof: It can be shown using symmetry arguments [41] that the

	Lemma 12: For $k = o(n)$, there is a random walk on G_{k} for
	Proof: For simplicity, let us assume that $2k$ divides n; it i

	Lemma 13: The mixing rate of the optimal reversible random walk
	Proof: As in the one-dimensional case, by symmetry, the optimal

	Lemma 14: There exists a fastest mixing symmetric random walk on
	Proof: We prove this by contradiction. Suppose the claimed state

	Lemma 15: Consider a connected graph $$G = (\{1,\ldots, n\},E)$$
	Proof: Consider a reversible random walk with stationary distrib

	Claim I: There exists a symmetric random walk on graph G with
	Proof of Claim I: For a reversible matrix R, by definition $$\

	Remark: In fact, a stronger result can be proved, which is $$T^{
	3) Proof of Theorem 8 b): Natural Random Walk on $G^{d}(n,r)$: I
	Lemma 16: Under the probability distribution on Γ as desc
	Proof: We will compute the average load in order notation. Simil

	Lemma 17: Consider the natural random walk on a graph $G = (\{1,
	Proof: The proof follows from a modification of Poincare's inequ

	Averaging in $G^{d}(n,r)$: The natural averaging algorithm, base
	Theorem 9: On the Geometric Random Graph $G^{d}(n,r)$, the absol
	Proof: We showed in Theorem 8 that for $\epsilon = 1/n^{\alpha},

	B. Expander Graphs
	Theorem 10: Under the PC model, the optimal averaging algorithm
	Remark: Let d_{\max} be the maximum node degree of the graph $

	C. Information Exchange
	Theorem 11: For a gossip algorithm specified by a matrix P and
	Proof: Consider first a single node i, and set $x_{i}(0) = 1$

	VII. C ONCLUSION
	S. Boyd, P. Diaconis, and L. Xiao, Fastest mixing Markov chain o
	S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Analysis and optim
	J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Opt
	R. W. Beard and V. Stepanyan, Synchronization of information in
	S. Boyd and L. Vandenberghe, Convex Optimization . New York: Cam
	F. H. Clarke, Optimization and Nonsmooth Analysis . Philadelphia
	P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of
	A. Dembo and O. Zeitouni, Large Deviations Techniques and Applic
	D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, Next century
	L. Elsner, I. Koltracht, and M. Neumann, On the convergence of a
	P. Gupta and P. R. Kumar, The capacity of wireless networks, IEE
	A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah, Throughput-de
	V. Guruswami . (2000) Rapidly Mixing Markov Chains: A Comparison
	I. Gupta, R. van Renesse, and K. Birman, Scalable fault-tolerant
	S. Hedetniemi, S. Hedetniemi, and A. Liestman, A survey of gossi
	R. Horn and C. Johnson, Matrix Analysis . Cambridge, U.K.: Cambr
	J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Mini
	C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, Imp
	A. Jadbabaie, J. Lin, and A. Morse, Coordination of groups of mo
	D. Kempe, A. Dobra, and J. Gehrke, Gossip-based computation of a
	B. Krishnamachari, D. Estrin, and S. Wicker, The impact of data
	K. Kiwiel, Convergence of approximate and incremental subgradien
	D. Kempe and J. Kleinberg, Protocols and impossibility results f
	D. Kempe, J. Kleinberg, and A. Demers, Spatial gossip and resour
	J. Kleinberg, The small-world phenomenon: An algorithmic perspec
	D. Kempe and F. McSherry, A decentralized algorithm for spectral
	R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking, Randomize
	Z. Lin, M. Brouke, and B. Francis, Local control strategies for
	A. S. Lewis, Convex analysis on the Hermitian matrices, SIAM J.
	A. S. Lewis and M. L. Overton, Eigenvalue optimization, Acta Num
	S. Madden, M. Franklin, J. Hellerstein, and W. Hong, Tag: A tiny
	M. Mihail, C. Papadimitriou, and A. Saberi, On certain connectiv
	L. Mureau, Leaderless coordination via bidirectional and unidire
	R. Olfati-Saber and R. M. Murray, Consensus problems in networks
	M. L. Overton, Large-scale optimization of eigenvalues, SIAM J.
	M. L. Overton and R. S. Womersley, Optimality conditions and dua
	M. Penrose, Random geometric graphs, in Oxford Studies in Probab
	P. A. Parrilo, L. Xiao, S. Boyd, and P. Diaconis, Symmetry analy
	S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A
	Y. Rabani, A. Sinclair, and R. Wanka, Local divergence of Markov
	I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishna
	J. Tsitsiklis, Problems in decentralized decision making and com
	R. van Renesse, Scalable and secure resource location, in Proc.

	H. Wolkowicz, R. Saigal, and L. Vengerghe, Eds., Handbook of Sem
	L. Xiao and S. Boyd, Fast linear iterations for distributed aver

