Susceptible-Infective-Removed Epidemics and Erdős-Rényi random graphs

Laurent Massoulié

MSR-Inria Joint Centre

October 13, 2015
SIR epidemics: the Reed-Frost model

- Individuals $i \in [n]$ when infected, attempt to infect all neighbors independently with probability p in subsequent time slot and then die
- Focus on complete graph (everyone neighbor of everyone)
- Associated model: Erdős-Rényi random graph $G(n, p)$: undirected graph on node set $[n]$. Edge (i, j) present iff $\xi_{ij} = 1$ where $\{\xi_{ij}\}_{i < j}$: i.i.d., Bernoulli (p)
Individuals $i \in [n]$ when infected, attempt to infect all neighbors independently with probability p in subsequent time slot and then die.

Focus on complete graph (everyone neighbor of everyone)

Associated model: Erdős-Rényi random graph $G(n, p)$: undirected graph on node set $[n]$. Edge (i, j) present iff $\xi_{ij} = 1$ where $\{\xi_{ij}\}_{i<j}$: i.i.d., Bernoulli (p)

From random graph to epidemic process: use ξ_{ij} to determine if when the first of i and j gets infected, it infects the other
SIR epidemics: the Reed-Frost model

- Individuals $i \in [n]$ when infected, attempt to infect all neighbors independently with probability p in subsequent time slot and then die
- Focus on complete graph (everyone neighbor of everyone)
- Associated model: Erdős-Rényi random graph $G(n, p)$: undirected graph on node set $[n]$. Edge (i, j) present iff $\xi_{ij} = 1$ where \{\xi_{ij}\}_{i<j}: i.i.d., Bernoulli (p)
- From random graph to epidemic process: use ξ_{ij} to determine if when the first of i and j gets infected, it infects the other

\Rightarrow For initial set X_0 of infective nodes at time 0, i infected at time t iff $d_G(X_0, i) = t$

Set of nodes eventually infected: $\bigcup_{i \in X_0} \Gamma(i)$ where $\Gamma(i)$: graph’s connected component including i
Seminal results by Erdős and Rényi (1959-1960)

- First phase transition: emergence of giant component
 [Tool: branching processes & Chernoff’s inequality]
- Second phase transition: emergence of connectivity
 [Tools: 1st and 2nd moment methods; Poisson approximation]
Emergence of giant component

Analysis of graph’s connected components: let $C(i)$: size of i-th largest connected component (in number of nodes) in $G(n, p)$

Theorem

Let $p = \lambda/n$ for fixed $\lambda > 0$

Sub-critical case ($\lambda < 1$): there exists $f(\lambda)$ such that

$$\lim_{n \to \infty} \mathbb{P}(C(1) \leq f(\lambda) \log(n)) = 1$$

Super-critical case ($\lambda > 1$): there exists $g(\lambda)$ such that for all $\delta > 0$,

$$\lim_{n \to \infty} \mathbb{P}(\left| \frac{C(1)}{n} - (1 - p_{\text{ext}}) \right| \leq \delta, \ C(2) \leq g(\lambda) \log(n)) = 1,$$

where p_{ext}: extinction probability of Poisson (λ) branching process, i.e. smallest root of $x = e^{\lambda(x-1)}$ in $[0, 1]$
Sub-critical regime: Only logarithmically sized components i.e. no global outbreak

Super-critical regime: with probability $1 - p_{\text{ext}}$, epidemics started from randomly selected node reaches $n[1 - p_{\text{ext}} + o(1)]$ others, i.e. macroscopic outbreak

Note: only one giant component, others still logarithmic
Exploration of connected component $\Gamma(i_0)$: initialized with active set $A_0 = \{i_0\}$ and killed set $B_0 = \emptyset$

At time t pick $j_t \in A_{t-1}$, kill it and activate its neighbours not yet activated (set D_t)

\[A_t = A_{t-1} \setminus \{j_t\} \cup D_t, \quad B_t = B_{t-1} \cup \{j_t\} \]

Notation:

\[A_t = |A_t|, \quad D_t = |D_t| \quad \Rightarrow A_t = 1 - t + D_1 + \cdots + D_t \]

Conditionally on $\mathcal{F}_{t-1} = \sigma(A_0, \ldots, A_{t-1})$,

$D_t \sim \text{Bin}(p, n - 1 - D_0 - \cdots - D_{t-1})$

Size C of connected component:

\[C = \inf\{t > 0 : A_t = 0\} \]
Processes $\{A_t\}, \{D_t\}$ can be extended after end of component’s exploration.

Upper bound:

$$\mathbb{P}(C > k) = \mathbb{P}(A_1, \ldots, A_k > 0) \leq \mathbb{P}(A_k > 0)$$

Chernoff’s bounding technique: $\mathbb{P}(A_k > 0) \leq e^{-kh(1)}$

where $h(x) = \lambda h_1(x/\lambda)$, $h_1(x) = x \log(x) - x + 1$: Chernoff’s exponent for Poisson (λ) random variable.

Union bound allows to conclude.
Super-critical regime $\lambda > 1$

Lemma

For any $k > 0, d_1, \ldots, d_k \in \mathbb{N}^k$,
\[
\lim_{n \to \infty} \mathbb{P}(D_1^k = d_1^k) = \prod_{s=1}^k e^{-\frac{\lambda d_s}{d_s!}},
\]
hence
\[
\lim_{n \to \infty} \mathbb{P}(C \leq k) = \mathbb{P}(Z \leq k)
\]
where Z: total population of Poisson (λ) branching process.

Lemma

For any $k \geq 1$, $A_k + k - 1 \sim Bin(1 - (1 - p)^k, n - 1)$,
hence
\[
\mathbb{P}(C = k) \leq \mathbb{P}(Bin(1 - (1 - p)^k, n - 1) = k - 1)
\]

Corollary

For any fixed $\epsilon, \delta > 0$, there exists $A > 0$ such that
\[
|\mathbb{P}(C \leq A) - p_{ext}| \leq \epsilon, \quad \mathbb{P}(|C/n - (1 - p_{ext})| \leq \delta) \geq 1 - p_{ext} - \epsilon
\]
Fix $\epsilon, \delta > 0$. Call connected component \textbf{small} if $C \leq A$, \textbf{gigantic} if $|C/n - (1 - p_{\text{ext}})| \leq \delta$, \textbf{failed} otherwise.

Repeatedly extract connected component until either failure or giant component found.

Probability of “finding giant”, i.e. success, in at most M steps: at least

$$\sum_{m=0}^{M-1} (p_{\text{ext}} - \epsilon)^m[1 - p_{\text{ext}} - \epsilon] = \frac{1 - p_{\text{ext}} - \epsilon}{1 - p_{\text{ext}} + \epsilon}[1 - (p_{\text{ext}} - \epsilon)^M]$$

Hence probability of success $1 - O(\epsilon)$ for $M \geq \Omega(\log(1/\epsilon))$

Given success, remaining graph: $G(n', p)$ with

$n' \leq n - n(1 - p_{\text{ext}} - \delta) = n(p_{\text{ext}} + \delta)$

\Rightarrow a sub-critical Erdős-Rényi graph, as $\lambda p_{\text{ext}} < 1$

(see notes on branching processes)
By previous result: for fixed $\lambda > 1$, giant component of size
$\sim n(1 - p_{ext})$
For fixed λ, graph disconnected \Rightarrow Under what regime is graph connected?

Theorem

For fixed $c \in \mathbb{R}$, assume $np = \log(n) + c$.
Then $\lim_{n \to \infty} \mathbb{P}(G(n, p) \text{ connected}) = e^{-e^{-c}}$

Corollary

If $np - \log(n) \to +\infty$, then $\lim_{n \to \infty} \mathbb{P}(G(n, p) \text{ connected}) = 1$
If $np - \log(n) \to -\infty$, then $\lim_{n \to \infty} \mathbb{P}(G(n, p) \text{ connected}) = 0$
Proof strategy

- Show that number of isolated nodes (i.e. nodes of degree 0) admits asymptotically Poisson \((e^{-c})\) distribution [Poisson approximation method],

\[
\lim_{n \to \infty} \mathbb{P}(\mathcal{A}) = e^{-e^{-c}} \quad \text{where} \quad \mathcal{A} = \{\text{no isolated vertices in } G(n, p)\}
\]

- Show that \(\lim_{n \to \infty} \mathbb{P}(\mathcal{B}) = 0\) where \(\mathcal{B} = \{\exists \text{ connected component of size } k \in \{2, \ldots, n/2\}\}\)

- Use bounds

\[
\mathbb{P}(\mathcal{A}) - \mathbb{P}(\mathcal{B}) \leq \mathbb{P}(G(n, p) \text{ connected}) = \mathbb{P}(\mathcal{A} \cap \overline{\mathcal{B}}) \leq \mathbb{P}(\mathcal{A})
\]
Let $Z_u, u \in V$ be indicators of events and $X = \sum_{u \in V} Z_u$.

First moment method:
\[P(\exists u \in V : Z_u = 1) \leq \sum_{u \in V} \mathbb{E}(Z_u) = \mathbb{E}(X) \], hence “with high probability” none of these events occurs if $\lim_{n \to \infty} \mathbb{E}(X) = 0$.

Application: with high probability no isolated node in $G(n, p)$ if $\lim_{n \to \infty} [np - \log(n)] = +\infty$.

Second moment method:
\[P(\forall u \in V, Z_u = 0) = P(X = 0) \leq \frac{\text{Var}(X)}{\mathbb{E}(X)^2} \]. Hence if $\text{Var}(X) = o(\mathbb{E}(X)^2)$, then with high probability some event occurs.

Application: with high probability there is some isolated node in $G(n, p)$ if $\lim_{n \to \infty} [np - \log(n)] = -\infty$.
Variation distance

Definition

Variation distance between two probability measures μ, ν on (Ω, \mathcal{F}):

$$d_{\text{var}}(\mu, \nu) = 2 \sup_{A \in \mathcal{F}} |\mu(A) - \nu(A)|$$

Alternative characterization: if μ, ν admit densities $\frac{d\mu}{d\pi}, \frac{d\nu}{d\pi}$ with respect to measure π (e.g., $\pi = \mu + \nu$) then

$$d_{\text{var}}(\mu, \nu) = \int_{\Omega} \left| \frac{d\mu}{d\pi} - \frac{d\nu}{d\pi} \right| d\pi$$

In particular for $\Omega = \mathbb{N}$ and $\pi = \sum_{n \in \mathbb{N}} \delta_n$, $d_{\text{var}}(\mu, \nu) = \sum_{n \in \mathbb{N}} |\mu_n - \nu_n|$

Definition

$\{\mu^{(n)}\}_{n \in \mathbb{N}}$ converges in variation to μ iff $\lim_{n \to \infty} d_{\text{var}}(\mu^{(n)}, \mu) = 0$

A strong form of convergence (implies convergence in distribution)
Theorem

Let \(Z_u \in \{0, 1\}, \, u \in V, \, X = \sum_{u \in V} Z_u \).

Denote \(\pi_u = \mathbb{E}(Z_u), \lambda = \mathbb{E}(X) = \sum_{u \in V} \pi_u \).

Assume \(\exists \{Z_{uv}\}_{u,v \in V, v \neq u} \) such that

\[
\forall u \in V, \quad \mathbb{P}(\{Z_{uv}\}_{v \neq u} \in \cdot) = \mathbb{P}(\{Z_v\}_{v \neq u} \in \cdot | Z_u = 1).
\]

Then:

\[
d_{var}(X, \text{Poisson}(\lambda)) \leq 2 \min(1, 1/\lambda) \sum_{u \in V} \pi_u \left[\pi_u + \sum_{v \neq u} \mathbb{E}|Z_{uv} - Z_v| \right]
\]
Proposition (Binomial approximation)

One has for all $n, \lambda \leq n$:
\[d_{\text{var}}(\text{Bin}(n, \lambda/n), \text{Poisson}(\lambda)) \leq 2 \min(1, \lambda) \frac{\lambda}{n} \]

Proposition (Isolated nodes)

In $\mathcal{G}(n, p)$ with $np = \log(n) + c$, noting $\lambda = n(1 - p)^{n-1} \sim e^{-c}$ and X: number of isolated nodes, then
\[d_{\text{var}}(X, \text{Poisson}(\lambda)) \leq 2\lambda[1/n + p/(1 - p)] = O(\log(n)/n) \]

Hence, $\lim_{n \to \infty} \mathbb{P}(X = 0) = e^{-e^{-c}}$
Stein-Chen method – proof arguments

Fact: for each $\lambda > 0, A \subset \mathbb{N}$, function $f : \mathbb{N} \rightarrow \mathbb{R}$ defined by

$$f(0) = 0, \lambda f(j + 1) - j \cdot f(j) = \mathbb{I}_A(j) - \text{Poi}_\lambda(A), j \in \mathbb{N}$$

is $\min(1, \lambda^{-1})$–Lipschitz

Write

$$|\mathbb{P}(X \in A) - \text{Poi}_\lambda(A)| = |\mathbb{E}[\lambda f(X + 1) - Xf(X)]|$$

$$= \left| \sum_{u \in V} \pi_u \mathbb{E} \left[f(X + 1) - f(1 + \sum_{v \neq u} Z_{uv}) \right] \right|$$

$$\leq \sum_{u \in V} \pi_u \min(1, \lambda^{-1}) \mathbb{E} \left| \sum_{v \in V} Z_v - \sum_{v \neq u} Z_{uv} \right|$$

$$\leq \sum_{u \in V} \pi_u \left[\pi_u + \sum_{v \neq u} \mathbb{E}|Z_v - Z_{uv}| \right]$$
Let $A_k = \{\exists$ connected component of size $k\}$.

By union bound, for $p = \Theta(\log(n)/n)$,

$$\mathbb{P}(A_2) \leq \binom{n}{2} p(1 - p)^2(n-2) \leq O(p) = o(1)$$

Similarly for $k \leq n/2$, $\mathbb{P}(A_k) \leq \binom{n}{k} T_k p^{k-1}(1 - p)^{k(n-k)}$

where T_k: number of trees on $[k]$

Cayley’s theorem: $T_k = k^{k-2}$.

Hence

$$\mathbb{P}(A_k) \leq \binom{n}{k} k^{k-2} p^{k-1}(1 - p)^{k(n-k)}$$

$$\leq \frac{n^k}{k!} k^{k-2} p^{k-1} e^{-pkn/2}$$

$$\leq \frac{1}{p} \frac{1}{k^2 \sqrt{k}} e^{k(1+\log(np) - np/2)}$$

Conclusion $\mathbb{P}(\cup_{2 \leq k \leq n/2} A_k) \leq \sum_{2 \leq k \leq n/2} \mathbb{P}(A_k) \rightarrow 0$ as $n \rightarrow \infty$ follows.
Takeaway messages

- Connectivity of Erdős-Rényi graphs informs behaviour of SIR epidemics on complete graph.
- Emergence of giant component of size $n(1 - p_{ext})$ as average degree crosses critical value 1.
- Full connectivity for average degree $\log(n) + O(1)$.
- Proof techniques: branching process approximation, Chernoff bounds; First and second moment methods; Poisson approximation via Stein-Chen method.