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Distributed control for data transport
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J How to assign bandwidth in networks

dUnderstanding TCP, the protocol regulating most Internet
traffic

— Convex optimization theory & dynamical systems



Distributed control for data transport
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How to manage collisions (i.e. lost transmissions because of
interference) between wireless transmitters

JAloha and Ethernet protocols
—>Markov chains and criteria for ergodicity



Distributed control for data transport
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JHow to schedule transmissions in switches, and
multi-hop wireless networks

JMax-weight & backpressure algorithms



Network epidemics

Spread of “CodeRed” Internet worm, 2001

Spread of a picture on facebook
https://www.facebookstories.com/stories/2200/



https://www.facebookstories.com/stories/2200/

Network epidemics

d What makes an epidemic potent or weak
—>random graphs, branching processes and phase transitions

d What features of network topology affect epidemic outbreak
—>graph topology descriptors, comparison of Markov chains by “coupling”

O How to maximize size of outbreak
—>submodular functions and greedy maximization



Network epidemics

dWhat is a “small world” network
(JANnd how to search for information in it
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J Why are most networks “scale-free” (a.k.a. power-law)
=2 martingales, coupling and “concentration inequalities”
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Network epidemics

+

Political blogs:
Republican vs Democrats

JdHow to find community structure and recommend
contacts in a social network

—>spectra of random graphs and spectral methods



Network resource allocation:
principles and algorithms

1 Convex optimization model

A “primal” algorithm

(1 Reverse-engineering TCP

J Lagrangian, duality and Lagrange multipliers

J A “dual” algorithm



TCP in one slide

@ buffer
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Source dynamics: acknowledgements

= Maintain Nb of (sent&not acked pkts)=cwnd (congestion window)
= Update cwnd 14

< cwnd+1/cwnd upon receipt of pkt ack 12 1

& cwnd/2 upon detection of pkt loss ™

“Congestion avoidance” alg introduced in 1993
After Internet congestion collapse
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Convex optimization model
A "primal” algorithm
Reverse-engineering TCP

Lagrangian, duality and multipliers

e 6 6 o o

A "dual” algorithm
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Network model

@ Resources, or links, £ € L, each with capacity C, > 0
@ Users, or transmissions, or flows, s € S

@ User s uses same rate at all £ € s (s <> subset of L)
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Network model

@ Resources, or links, £ € L, each with capacity C, > 0
@ Users, or transmissions, or flows, s € S

@ User s uses same rate at all £ € s (s <> subset of L)

FEASIBLE RATES:
variables x; >0, s € S
suchthat V0l € L, Y o, xs < G
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Network model

@ Resources, or links, £ € L, each with capacity C, > 0
@ Users, or transmissions, or flows, s € S

@ User s uses same rate at all £ € s (s <> subset of L)

FEASIBLE RATES:
variables x; >0, s € S
suchthat V0l € L, Y o, xs < G

POTENTIAL APPLICATIONS
@ Links on single path from source to destination
@ Links on tree of transmission from source to set of receivers

Laurent Massoulié Network resource allocation



Allocation principles 1

@ max-min fairness: feasible x”" such that
Vs e S,30 € s with ), , x{" = C; and x"™ = max;5¢ x{""
(“no envy”: each s can find competing t at least as poor as s)
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Allocation principles 1

@ max-min fairness: feasible x”" such that
Vs e S,30 € s with ), , x{" = C; and x"™ = max;5¢ x{""
(“no envy”: each s can find competing t at least as poor as s)
o Proportional fairness: feasible x?* such that

!
for all feasible y, >~ }/s_);f <0
X

P
S
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Allocation principles 1

@ max-min fairness: feasible x”" such that
Vs e S,30 € s with ), , x{" = C; and x"™ = max;5¢ x{""
(“no envy”: each s can find competing t at least as poor as s)
o Proportional fairness: feasible x?* such that

!
for all feasible y, >~ }/s_);f <0
X

P
S

Alternative characterization:
Unique maximizer of ) _log(xs) among feasible x
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Allocation principles 1

Alternative characterization: Nash's bargaining solution

i.e. unique vector ¢(C) in feasible convex set C C RY
s.t.
o Pareto efficiency: ¢(C) < x € C = x = ¢(C)
@ independence of irrelevant alternatives:
¢(C) eC' CcC = ¢(C) = ¢(C')
e symmetry: C symmetric = ¢(C); = ¢(C)1
@ scale invariance: for diagonal D with D; > 0,

¢(DC) = Do(C)
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Allocation principles 2

Network Utility Maximization x*: solution of

Max > s Us(xs)
Over xs >0 (P)
Such that V¢,% " _,xs < G

for concave, increasing utility functions Us : Ry — R
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Allocation principles 2

Network Utility Maximization x*: solution of

Max > s Us(xs)
Over xs >0 (P)
Such that V¢,% " _,xs < G

for concave, increasing utility functions Us : Ry — R

= A concave optimization program
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Allocation principles 2

Network Utility Maximization x*: solution of

Max > s Us(xs)
Over xs >0 (P)
Such that V¢,% " _,xs < G

for concave, increasing utility functions Us : Ry — R
= A concave optimization program

EXAMPLES
Proportional fair xP*: Us = log
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Allocation principles 2

Network Utility Maximization x*: solution of

Max > s Us(xs)
Over xs >0 (P)
Such that V¢,% " _,xs < G

for concave, increasing utility functions Us : Ry — R
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EXAMPLES
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Allocation principles 2

Network Utility Maximization x*: solution of

Max > s Us(xs)
Over xs >0 (P)
Such that V¢,% " _,xs < G

for concave, increasing utility functions Us : Ry — R
= A concave optimization program

EXAMPLES
Proportional fair xP*: Us = log

[Exercise: limy_1 x(1,a) = xPf and lima_s o0 x(1, @) = x™™]
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Relaxed constraints and a “primal” algorithm

Relaxed problem: Max Z Us(xs) — Z Co(ye)

l
Over xs >0 (RP)
with  yp = sz
s34

for concave increasing utility functions Us and convex increasing
cost functions G,
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Relaxed constraints and a “primal” algorithm

Relaxed problem: Max Z Us(xs) — Z Co(ye)

l
Over xs >0 (RP)
with  yp = sz
s34

for concave increasing utility functions Us and convex increasing
cost functions G,
primal algorithm: for Us and C; differentiable, let

%xs = ris(xs) (U' Xs) Z Co(ye ) “gradient ascent”

les
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Relaxed constraints and a “primal” algorithm

Relaxed problem: Max Z Us(xs) — Z Co(ye)

l
Over xs >0 (RP)
with  yp = sz
s34

for concave increasing utility functions Us and convex increasing
cost functions G,
primal algorithm: for Us and C; differentiable, let

%xs = ris(xs) (U' Xs) Z Co(ye ) “gradient ascent”

les

— Implementable in a distributed fashion
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Stability via Lyapunov functions

Criterion for convergence of ODE x = F(x) with trajectories in
OCR"

Theorem

Assume F continuous on O, and 3V : O — R such that:
(i) V continuously differentiable

(i)Va< A {xeO0:V(x)<A}and {x € O: V(x) € [a, A}
either compact or empty

(i) Vx € O\ B, VV(x) - F(x) <0, where B = argmin,co{V(x)}
Then lim¢_oo V(x(t)) = infxco V(x), limioo d(x(t), B) = 0.

If B={x*} then lim:_ x(t) = x*.
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Application to gradient ascent / descent dynamics

%Xs = ks(Xs) (Ug(xs) -y Cé(ﬂ))

les

Let W(x) = >, Us(xs) — >y Ce(ve) (system welfare)
and V(x) = —W(x)
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Application to gradient ascent / descent dynamics

%Xs = ks(Xs) (Ug(xs) -y Cé(ﬂ))

les

Let W(x) = >, Us(xs) — >y Ce(ve) (system welfare)
and V(x) = —W(x)

Then: VV(x) - F(x) = — >, ks(xs) [a%s W(X)}2
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Application to gradient ascent / descent dynamics

%Xs = ks(Xs) (Ug(xs) -y Cé(ﬂ))

les

Let W(x) = >, Us(xs) — >y Ce(ve) (system welfare)
and V(x) = —W(x)

Then: VV(x) - F(x) = — >, ks(xs) [8%5 W(X)}2

Theorem

For Us strictly concave with UL(0T) = +oo,

Cy convex, continuously differentiable,

[ = strict concavity and continuous differentiability of W]

ks > 0, continuous [ = continuity of F]

Ixs > 0 s.t. Ul(xs) < Dpes Colxs)

[ = Max of W achieved at single point x* € O := (0, 00)°]
Then “primal” dynamics converge to unique maximizer x* of W

4
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Reverse engineering TCP

Approx. xs =~ cwnds/ Ts where Ts: packet round-trip time
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Reverse engineering TCP

Approx. xs =~ cwnds/ Ts where Ts: packet round-trip time

Approx. & cwnds ~ xs(1/cwnds) — p(s)[cwnds /2]
where p(s): packet loss probability along path of s
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Reverse engineering TCP

Approx. xs =~ cwnds/ Ts where Ts: packet round-trip time

Approx. & cwnds ~ xs(1/cwnds) — p(s)[cwnds /2]
where p(s): packet loss probability along path of s

Approx. p(s) ~ > s pe(ye) for link packet loss prob. py(y)
[e.g. pe(y) = max(0,1 - G/y)]
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Reverse engineering TCP

Approx. xs =~ cwnds/ Ts where Ts: packet round-trip time

Approx. & cwnds ~ xs(1/cwnds) — p(s)[cwnds /2]
where p(s): packet loss probability along path of s

Approx. p(s) ~ > s pe(ye) for link packet loss prob. py(y)
[e.g. pe(y) = max(0,1 - G/y)]

= % = <X252> [(Xiy - Zpe(ye)]

les
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Reverse engineering TCP

Approx. xs =~ cwnds/ Ts where Ts: packet round-trip time

Approx. & cwnds ~ xs(1/cwnds) — p(s)[cwnds /2]
where p(s): packet loss probability along path of s

Approx. p(s) ~ > s pe(ye) for link packet loss prob. py(y)
[e.g. pe(y) = max(0,1 - G/y)]

= % = (’f) [(Xiy - Zpe(ye)]

les

TCP implicitly runs primal alg. with utility function:
Us(x) = wex}=%/(1 — @) with a = 2, ws =2/ T2
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Reverse engineering TCP

Approx. xs =~ cwnds/ Ts where Ts: packet round-trip time

Approx. & cwnds ~ xs(1/cwnds) — p(s)[cwnds /2]
where p(s): packet loss probability along path of s

Approx. p(s) ~ > s pe(ye) for link packet loss prob. py(y)
[e.g. pe(y) = max(0,1 - G/y)]

= % = (’f) [(Xiy - Zpe(ye)]

les

TCP implicitly runs primal alg. with utility function:
Us(x) = wex}=%/(1 — @) with a = 2, ws =2/ T2
— Leads to (w, «)-fairness with suitable parameters
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Reverse engineering TCP

Approx. xs =~ cwnds/ Ts where Ts: packet round-trip time

Approx. & cwnds ~ xs(1/cwnds) — p(s)[cwnds /2]
where p(s): packet loss probability along path of s

Approx. p(s) ~ > s pe(ye) for link packet loss prob. py(y)
[e.g. pe(y) = max(0,1 - G/y)]

2

o % = (’;) [(Xiy — Zpe(ye)]

les

TCP implicitly runs primal alg. with utility function:

Us(x) = wex}=%/(1 — @) with a = 2, ws =2/ T2

— Leads to (w, «)-fairness with suitable parameters

Can tweak congestion avoidance alg. if want e.g. proportional
fairness (o = 1) instead
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Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C°, convex functions J, f; : C° — R,

Min J(x)
Over x €O (P)
Such that V¢ € L, f(x) <0
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Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C°, convex functions J, f; : C° — R,

Min J(x)
Over x €O (P)
Such that V¢ € L, f(x) <0

Associated Lagrangian L(x,\) = J(x) + >, Aefe(x),
X € CO, A>0
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Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C°, convex functions J, f; : C° — R,

Min J(x)
Over x €O (P)
Such that V¢ € L, f(x) <0

Associated Lagrangian L(x,\) = J(x) + >, Aefe(x),
X € CO, A>0

A: Lagrange multipliers of (P)'s constraints
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Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C°, convex functions J, f; : C° — R,

Min J(x)
Over x €O (P)
Such that V¢ € L, f(x) <0

Associated Lagrangian L(x,\) = J(x) + >, Aefe(x),
X € CO, A>0

A: Lagrange multipliers of (P)'s constraints

Dual problem (D): Max D(X) Over A >0
where D()) := inf,cco L(x, \)
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Kuhn-Tucker theorem and strong duality

Def: \* > 0 a Kuhn-Tucker vector iff Vx € C%, L(x, \*) > J*
where J*: optimal value of (P).
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Kuhn-Tucker theorem and strong duality

Def: \* > 0 a Kuhn-Tucker vector iff Vx € C%, L(x, \*) > J*
where J*: optimal value of (P).
Remark: J* > D* where D* optimal value of (D)
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Kuhn-Tucker theorem and strong duality

Def: \* > 0 a Kuhn-Tucker vector iff Vx € C%, L(x, \*) > J*
where J*: optimal value of (P).
Remark: J* > D* where D* optimal value of (D)

Theorem

Assume there exists \* a Kuhn-Tucker vector. Then

(i) X* solves (D), and J* = D* (a.k.a. strong duality)

(ii) x* € C° if optimal for (P) then achieves min,cco L(x, \*)
(iii) For x*int(C®) an optimum of (P) at which 3V J,V/ f,, then

Ve N f(x*) =0 (complementarity)
VI(x*)+ >, A fy(x*) =0 (stationarity)

Reciprocally assume stationarity + complementarity
for some \* > 0 and some x* feasible for (P),
Then X*: Kuhn-Tucker and x* optimal for (P)
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Sufficient conditions for applying Kuhn-Tucker

Assume J* > —oo and 3% € C° such that V¢, f,(X) < 0.
Then a Kuhn-Tucker vector \* exists.

In practice: verify Lemma'’s conditions + existence of optimum
x* € int(C°) at which 3V J, Vf,.

Then find x* that verifies complementarity + stationarity (now
guaranteed to exist)
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Solving original problem: dual algorithm

Lagrangian: L(x, ) = >, Us(xs) + >, Me[Co — D g50 Xs]
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Solving original problem: dual algorithm

Lagrangian: L(x, ) = >, Us(xs) + >, Me[Co — D g50 Xs]
Dual: D(A) = 35 Us(gs(A®)) + 22, Al Cr = 2250 85(N°))]

where \* := 3", As and g5 == (UL)7!
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Solving original problem: dual algorithm

Lagrangian: L(x, ) = >, Us(xs) + >, Me[Co — D g50 Xs]
Dual: D(A) = 35 Us(gs(A®)) + 22, Al Cr = 2250 85(N°))]

where \* := 3", As and g5 == (UL)7!

= D) = G — Y5, 8(N°)
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Solving original problem: dual algorithm

Lagrangian: L(x, ) = >, Us(xs) + >, Me[Co — D g50 Xs]
Dual: D(A) = 35 Us(gs(A®)) + 22, Al Cr = 2250 85(N°))]

where \* := 3", As and g5 == (UL)7!

= 3500 = G = Losr&s(V)
Dual algorithm:  xs = gs(\°),

).\E = K¢ [ZSBZ Xs — Cg] ;\:

where [a]} = aif b> 0, max(a,0) if b< 0
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Solving original problem: dual algorithm

Under suitable conditions

(Us strictly concave, twice differentiable, UL(0") = +oo0,

Ul(+0) =0)

Trajectories xs of dual algorithm converge to unique maximizer x*
of primal problem.
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Solving original problem: dual algorithm

Under suitable conditions

(Us strictly concave, twice differentiable, UL(0") = +oo0,

Ul(4+00) =0)

Trajectories xs of dual algorithm converge to unique maximizer x*
of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]
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Solving original problem: dual algorithm

Under suitable conditions

(Us strictly concave, twice differentiable, UL(0") = +oo0,

Ul(4+00) =0)

Trajectories xs of dual algorithm converge to unique maximizer x*
of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]

Potential implementation: multiplier dynamics = queue dynamics
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Solving original problem: dual algorithm

Under suitable conditions

(Us strictly concave, twice differentiable, UL(0") = +oo0,
Ul(4+00) =0)

Trajectories xs of dual algorithm converge to unique maximizer x
of primal problem.

*

[Proof: involved. Quasiproof: Lyapunov function argument]

Potential implementation: multiplier dynamics = queue dynamics
= Let A\’ = queueing delay of packets and instantaneously let x,

to gs(A°%)
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Solving original problem: dual algorithm

Under suitable conditions

(Us strictly concave, twice differentiable, UL(0") = +oo0,

Ul(4+00) =0)

Trajectories xs of dual algorithm converge to unique maximizer x*
of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]

Potential implementation: multiplier dynamics = queue dynamics
= Let A\’ = queueing delay of packets and instantaneously let x,

to gs(\°)

= Principle underlying TCP-Vegas, an alternative to default TCP
( TCP Reno)
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Takeaway messages

@ For unconstrained convex minimization, gradient descent
converges to optimizer [Lyapunov stability]

@ Admits distributed implementation in network optimization
setting

e TCP implicitly achieves (w, «)-fair allocation by running
gradient descent

@ Kuhn-Tucker Theorem: Complementarity + Stationarity
characterization of (P)'s optima

@ Queue dynamics implicitly perform gradient descent for
multipliers of constrained program
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Takeaway messages

@ For unconstrained convex minimization, gradient descent
converges to optimizer [Lyapunov stability]

@ Admits distributed implementation in network optimization
setting

e TCP implicitly achieves (w, «)-fair allocation by running
gradient descent

@ Kuhn-Tucker Theorem: Complementarity + Stationarity
characterization of (P)'s optima

@ Queue dynamics implicitly perform gradient descent for
multipliers of constrained program

Remaining question: How to discriminate between allocation
objectives?
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