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How to assign bandwidth in networks 
Understanding TCP, the protocol regulating most Internet 

traffic
Convex optimization theory & dynamical systems

Distributed control for data transport
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Distributed control for data transport

How to manage collisions (i.e. lost transmissions because of 
interference) between wireless transmitters

Aloha and Ethernet protocols

Markov chains and criteria for ergodicity



Distributed control for data transport

Crossbar switch
with input queues:

How to schedule transmissions in switches, and 
multi-hop wireless networks
Max-weight & backpressure algorithms



Network epidemics

Spread of a picture on facebook

https://www.facebookstories.com/stories/2200/

Spread of “CodeRed” Internet worm, 2001

https://www.facebookstories.com/stories/2200/


 What makes an epidemic potent or weak
random graphs, branching processes and phase transitions

 What features of network topology affect epidemic outbreak
graph topology descriptors, comparison of Markov chains by “coupling”

 How to maximize size of outbreak
submodular functions and greedy maximization

Network epidemics



Network epidemics

What is a “small world” network
And how to search for information in it



Network epidemics

Why are most networks “scale-free” (a.k.a. power-law)
martingales, coupling and “concentration inequalities”



Network epidemics

How to find community structure and recommend 
contacts in a social network 
spectra of random graphs and spectral methods

Political blogs: 

Republican vs Democrats



Network resource allocation: 
principles and algorithms

Convex optimization model

A “primal” algorithm

Reverse-engineering TCP

Lagrangian, duality and Lagrange multipliers

A “dual” algorithm



TCP in one slide

Source dynamics:
 Maintain Nb of (sent&not acked pkts)=cwnd (congestion window)
 Update cwnd
 cwnd+1/cwnd upon receipt of pkt ack
 cwnd/2 upon detection of pkt loss
“Congestion avoidance” alg introduced in 1993
After Internet congestion collapse
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Outline

Convex optimization model

A ”primal” algorithm

Reverse-engineering TCP

Lagrangian, duality and multipliers

A ”dual” algorithm
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Network model

Resources, or links, ` ∈ L, each with capacity C` > 0

Users, or transmissions, or flows, s ∈ S
User s uses same rate at all ` ∈ s (s ↔ subset of L)

Feasible rates:
variables xs ≥ 0, s ∈ S
such that ∀` ∈ L,

∑
s3` xs ≤ C`

Potential applications

Links on single path from source to destination

Links on tree of transmission from source to set of receivers
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Allocation principles 1

max-min fairness: feasible xmm such that
∀s ∈ S, ∃` ∈ s with

∑
t3` x

mm
t = C` and xmm

s = maxt3` x
mm
t

(“no envy”: each s can find competing t at least as poor as s)

Proportional fairness: feasible xpf such that

for all feasible y ,
∑

s
ys−xpfs
xpfs

≤ 0

Alternative characterization:
Unique maximizer of

∑
s log(xs) among feasible x
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Allocation principles 1

Alternative characterization: Nash’s bargaining solution

i.e. unique vector φ(C) in feasible convex set C ⊂ RS+
s.t.

Pareto efficiency: φ(C) ≤ x ∈ C ⇒ x = φ(C)

independence of irrelevant alternatives:
φ(C) ∈ C′ ⊂ C ⇒ φ(C) = φ(C′)
symmetry: C symmetric ⇒ φ(C)i ≡ φ(C)1

scale invariance: for diagonal D with Dii ≥ 0,
φ(DC) = Dφ(C)

Laurent Massoulié Network resource allocation



Allocation principles 2

Network Utility Maximization x∗: solution of

Max
∑

s Us(xs)

Over xs ≥ 0 (P)

Such that ∀`,
∑

s3` xs ≤ C`

for concave, increasing utility functions Us : R+ → R

⇒ A concave optimization program

Examples
Proportional fair xpf : Us = log

For w , α > 0, (w , α)-fair x = x(w , α): Us(xs) = ws
x1−α
s

1−α

[Exercise: limα→1 x(1, α) = xpf and limα→+∞ x(1, α) = xmm]
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Relaxed constraints and a “primal” algorithm

Relaxed problem: Max
∑
s

Us(xs)−
∑
`

C`(y`)

Over xs ≥ 0 (RP)

with y` =
∑
s3`

xs

for concave increasing utility functions Us and convex increasing
cost functions C`

primal algorithm: for Us and C` differentiable, let

d

dt
xs = κs(xs)

(
U ′s(xs)−

∑
`∈s

C ′`(y`)

)
“gradient ascent”

→ Implementable in a distributed fashion
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Stability via Lyapunov functions

Criterion for convergence of ODE ẋ = F (x) with trajectories in
O ⊂ Rn

Theorem

Assume F continuous on O, and ∃V : O → R such that:

(i) V continuously differentiable

(ii) ∀a ≤ A, {x ∈ O : V (x) ≤ A} and {x ∈ O : V (x) ∈ [a,A]}
either compact or empty

(iii) ∀x ∈ O \ B, ∇V (x) · F (x) < 0, where B = argminx∈O{V (x)}

Then limt→∞ V (x(t)) = infx∈O V (x), limt→∞ d(x(t),B) = 0.

If B = {x∗} then limt→∞ x(t) = x∗.
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Application to gradient ascent / descent dynamics

d

dt
xs = κs(xs)

(
U ′s(xs)−

∑
`∈s

C ′`(y`)

)
Let W (x) =

∑
s Us(xs)−

∑
` C`(y`) (system welfare)

and V (x) = −W (x)

Then: ∇V (x) · F (x) = −
∑

s κs(xs)
[
∂
∂xs

W (x)
]2

Theorem

For Us strictly concave with U ′s(0+) = +∞,
C` convex, continuously differentiable,
[ ⇒ strict concavity and continuous differentiability of W ]
κs > 0, continuous [ ⇒continuity of F ]
∃xs > 0 s.t. U ′s(xs) <

∑
`∈s C

′
`(xs)

[ ⇒ Max of W achieved at single point x∗ ∈ O := (0,∞)S ]
Then “primal” dynamics converge to unique maximizer x∗ of W
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Laurent Massoulié Network resource allocation



Reverse engineering TCP

Approx. xs ≈ cwnds/Ts where Ts : packet round-trip time

Approx. d
dt cwnds ≈ xs(1/cwnds)− p(s)[cwnds/2]

where p(s): packet loss probability along path of s

Approx. p(s) ≈
∑

`∈s p`(y`) for link packet loss prob. p`(y)
[e.g. p`(y) = max(0, 1− C`/y)]

⇒ ẋs =

(
x2
s

2

)[
2

(xsTs)2
−
∑
`∈s

p`(y`)

]

TCP implicitly runs primal alg. with utility function:
Us(x) = wsx

1−α/(1− α) with α = 2, ws = 2/T 2
s

→ Leads to (w , α)-fairness with suitable parameters
Can tweak congestion avoidance alg. if want e.g. proportional
fairness (α = 1) instead
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Laurent Massoulié Network resource allocation



Reverse engineering TCP

Approx. xs ≈ cwnds/Ts where Ts : packet round-trip time

Approx. d
dt cwnds ≈ xs(1/cwnds)− p(s)[cwnds/2]

where p(s): packet loss probability along path of s

Approx. p(s) ≈
∑

`∈s p`(y`) for link packet loss prob. p`(y)
[e.g. p`(y) = max(0, 1− C`/y)]

⇒ ẋs =
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Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C0, convex functions J, f` : C0 → R,

Min J(x)

Over x ∈ C0 (P)

Such that ∀` ∈ L, f`(x) ≤ 0

Associated Lagrangian L(x , λ) := J(x) +
∑

` λ`f`(x),

x ∈ C0, λ ≥ 0

λ: Lagrange multipliers of (P)’s constraints

Dual problem (D): Max D(λ) Over λ ≥ 0
where D(λ) := infx∈C0 L(x , λ)
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Kuhn-Tucker theorem and strong duality

Def: λ∗ ≥ 0 a Kuhn-Tucker vector iff ∀x ∈ C0, L(x , λ∗) ≥ J∗

where J∗: optimal value of (P).

Remark: J∗ ≥ D∗ where D∗ optimal value of (D)

Theorem

Assume there exists λ∗ a Kuhn-Tucker vector. Then
(i) λ∗ solves (D), and J∗ = D∗ (a.k.a. strong duality)
(ii) x∗ ∈ C0 if optimal for (P) then achieves minx∈C0 L(x , λ∗)
(iii) For x∗int(C0) an optimum of (P) at which ∃∇J,∇f`, then

∀`, λ∗` f`(x∗) = 0 (complementarity)
∇J(x∗) +

∑
` λ
∗
` f`(x

∗) = 0 (stationarity)

Reciprocally assume stationarity + complementarity
for some λ∗ ≥ 0 and some x∗ feasible for (P),
Then λ∗: Kuhn-Tucker and x∗ optimal for (P)
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Sufficient conditions for applying Kuhn-Tucker

Lemma

Assume J∗ > −∞ and ∃x̂ ∈ C0 such that ∀`, f`(x̂) < 0.
Then a Kuhn-Tucker vector λ∗ exists.

In practice: verify Lemma’s conditions + existence of optimum
x∗ ∈ int(C0) at which ∃∇J, ∇f`.
Then find x∗ that verifies complementarity + stationarity (now
guaranteed to exist)
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Solving original problem: dual algorithm

Lagrangian: L(x , λ) =
∑

s Us(xs) +
∑

` λ`[C` −
∑

s3` xs ]

Dual: D(λ) =
∑

s Us(gs(λs)) +
∑

` λ`[C` −
∑

s3` gs(λs)]

where λs :=
∑

`∈s λs and gs := (U ′s)−1

⇒ ∂
∂λs

D(λ) = C` −
∑

s3` gs(λs)

Dual algorithm: xs ≡ gs(λs),

λ̇` = κ`
[∑

s3` xs − C`
]+
λ`

where [a]+b = a if b > 0, max(a, 0) if b ≤ 0
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Solving original problem: dual algorithm

Theorem

Under suitable conditions
(Us strictly concave, twice differentiable, U ′s(0+) = +∞,
U ′s(+∞) = 0)
Trajectories xs of dual algorithm converge to unique maximizer x∗

of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]

Potential implementation: multiplier dynamics ≡ queue dynamics
⇒ Let λ` = queueing delay of packets and instantaneously let xs
to gs(λs)
⇒ Principle underlying TCP-Vegas, an alternative to default TCP
( TCP Reno)
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Takeaway messages

For unconstrained convex minimization, gradient descent
converges to optimizer [Lyapunov stability]

Admits distributed implementation in network optimization
setting

TCP implicitly achieves (w , α)-fair allocation by running
gradient descent

Kuhn-Tucker Theorem: Complementarity + Stationarity
characterization of (P)’s optima

Queue dynamics implicitly perform gradient descent for
multipliers of constrained program

Remaining question: How to discriminate between allocation
objectives?
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