
Networks: distributed control and
emerging phenomena

(formerly: Networks, algorithms and
probability)

Laurent Massoulié
laurent.massoulie@inria.fr

mailto:laurent.massoulie@inria.fr

How to assign bandwidth in networks
Understanding TCP, the protocol regulating most Internet

traffic
Convex optimization theory & dynamical systems

Distributed control for data transport

s1

d3

d2

d1

s2

s3

s1

s1

s1

s1

s1

s1

s1

s1
s1

s1

s1

Distributed control for data transport

How to manage collisions (i.e. lost transmissions because of
interference) between wireless transmitters

Aloha and Ethernet protocols

Markov chains and criteria for ergodicity

Distributed control for data transport

Crossbar switch
with input queues:

How to schedule transmissions in switches, and
multi-hop wireless networks
Max-weight & backpressure algorithms

Network epidemics

Spread of a picture on facebook

https://www.facebookstories.com/stories/2200/

Spread of “CodeRed” Internet worm, 2001

https://www.facebookstories.com/stories/2200/

 What makes an epidemic potent or weak
random graphs, branching processes and phase transitions

 What features of network topology affect epidemic outbreak
graph topology descriptors, comparison of Markov chains by “coupling”

 How to maximize size of outbreak
submodular functions and greedy maximization

Network epidemics

Network epidemics

What is a “small world” network
And how to search for information in it

Network epidemics

Why are most networks “scale-free” (a.k.a. power-law)
martingales, coupling and “concentration inequalities”

Network epidemics

How to find community structure and recommend
contacts in a social network
spectra of random graphs and spectral methods

Political blogs:

Republican vs Democrats

Network resource allocation:
principles and algorithms

Convex optimization model

A “primal” algorithm

Reverse-engineering TCP

Lagrangian, duality and Lagrange multipliers

A “dual” algorithm

TCP in one slide

Source dynamics:
 Maintain Nb of (sent¬ acked pkts)=cwnd (congestion window)
 Update cwnd
 cwnd+1/cwnd upon receipt of pkt ack
 cwnd/2 upon detection of pkt loss
“Congestion avoidance” alg introduced in 1993
After Internet congestion collapse

source

dest

buffer

Link
Data

packets

acknowledgements

Outline

Convex optimization model

A ”primal” algorithm

Reverse-engineering TCP

Lagrangian, duality and multipliers

A ”dual” algorithm

Laurent Massoulié Network resource allocation

Network model

Resources, or links, ` ∈ L, each with capacity C` > 0

Users, or transmissions, or flows, s ∈ S
User s uses same rate at all ` ∈ s (s ↔ subset of L)

Feasible rates:
variables xs ≥ 0, s ∈ S
such that ∀` ∈ L,

∑
s3` xs ≤ C`

Potential applications

Links on single path from source to destination

Links on tree of transmission from source to set of receivers

Laurent Massoulié Network resource allocation

Network model

Resources, or links, ` ∈ L, each with capacity C` > 0

Users, or transmissions, or flows, s ∈ S
User s uses same rate at all ` ∈ s (s ↔ subset of L)

Feasible rates:
variables xs ≥ 0, s ∈ S
such that ∀` ∈ L,

∑
s3` xs ≤ C`

Potential applications

Links on single path from source to destination

Links on tree of transmission from source to set of receivers

Laurent Massoulié Network resource allocation

Network model

Resources, or links, ` ∈ L, each with capacity C` > 0

Users, or transmissions, or flows, s ∈ S
User s uses same rate at all ` ∈ s (s ↔ subset of L)

Feasible rates:
variables xs ≥ 0, s ∈ S
such that ∀` ∈ L,

∑
s3` xs ≤ C`

Potential applications

Links on single path from source to destination

Links on tree of transmission from source to set of receivers

Laurent Massoulié Network resource allocation

Allocation principles 1

max-min fairness: feasible xmm such that
∀s ∈ S, ∃` ∈ s with

∑
t3` x

mm
t = C` and xmm

s = maxt3` x
mm
t

(“no envy”: each s can find competing t at least as poor as s)

Proportional fairness: feasible xpf such that

for all feasible y ,
∑

s
ys−xpfs
xpfs

≤ 0

Alternative characterization:
Unique maximizer of

∑
s log(xs) among feasible x

Laurent Massoulié Network resource allocation

Allocation principles 1

max-min fairness: feasible xmm such that
∀s ∈ S, ∃` ∈ s with

∑
t3` x

mm
t = C` and xmm

s = maxt3` x
mm
t

(“no envy”: each s can find competing t at least as poor as s)

Proportional fairness: feasible xpf such that

for all feasible y ,
∑

s
ys−xpfs
xpfs

≤ 0

Alternative characterization:
Unique maximizer of

∑
s log(xs) among feasible x

Laurent Massoulié Network resource allocation

Allocation principles 1

max-min fairness: feasible xmm such that
∀s ∈ S, ∃` ∈ s with

∑
t3` x

mm
t = C` and xmm

s = maxt3` x
mm
t

(“no envy”: each s can find competing t at least as poor as s)

Proportional fairness: feasible xpf such that

for all feasible y ,
∑

s
ys−xpfs
xpfs

≤ 0

Alternative characterization:
Unique maximizer of

∑
s log(xs) among feasible x

Laurent Massoulié Network resource allocation

Allocation principles 1

Alternative characterization: Nash’s bargaining solution

i.e. unique vector φ(C) in feasible convex set C ⊂ RS+
s.t.

Pareto efficiency: φ(C) ≤ x ∈ C ⇒ x = φ(C)

independence of irrelevant alternatives:
φ(C) ∈ C′ ⊂ C ⇒ φ(C) = φ(C′)
symmetry: C symmetric ⇒ φ(C)i ≡ φ(C)1

scale invariance: for diagonal D with Dii ≥ 0,
φ(DC) = Dφ(C)

Laurent Massoulié Network resource allocation

Allocation principles 2

Network Utility Maximization x∗: solution of

Max
∑

s Us(xs)

Over xs ≥ 0 (P)

Such that ∀`,
∑

s3` xs ≤ C`

for concave, increasing utility functions Us : R+ → R

⇒ A concave optimization program

Examples
Proportional fair xpf : Us = log

For w , α > 0, (w , α)-fair x = x(w , α): Us(xs) = ws
x1−α
s

1−α

[Exercise: limα→1 x(1, α) = xpf and limα→+∞ x(1, α) = xmm]

Laurent Massoulié Network resource allocation

Allocation principles 2

Network Utility Maximization x∗: solution of

Max
∑

s Us(xs)

Over xs ≥ 0 (P)

Such that ∀`,
∑

s3` xs ≤ C`

for concave, increasing utility functions Us : R+ → R

⇒ A concave optimization program

Examples
Proportional fair xpf : Us = log

For w , α > 0, (w , α)-fair x = x(w , α): Us(xs) = ws
x1−α
s

1−α

[Exercise: limα→1 x(1, α) = xpf and limα→+∞ x(1, α) = xmm]

Laurent Massoulié Network resource allocation

Allocation principles 2

Network Utility Maximization x∗: solution of

Max
∑

s Us(xs)

Over xs ≥ 0 (P)

Such that ∀`,
∑

s3` xs ≤ C`

for concave, increasing utility functions Us : R+ → R

⇒ A concave optimization program

Examples
Proportional fair xpf : Us = log

For w , α > 0, (w , α)-fair x = x(w , α): Us(xs) = ws
x1−α
s

1−α

[Exercise: limα→1 x(1, α) = xpf and limα→+∞ x(1, α) = xmm]

Laurent Massoulié Network resource allocation

Allocation principles 2

Network Utility Maximization x∗: solution of

Max
∑

s Us(xs)

Over xs ≥ 0 (P)

Such that ∀`,
∑

s3` xs ≤ C`

for concave, increasing utility functions Us : R+ → R

⇒ A concave optimization program

Examples
Proportional fair xpf : Us = log

For w , α > 0, (w , α)-fair x = x(w , α): Us(xs) = ws
x1−α
s

1−α

[Exercise: limα→1 x(1, α) = xpf and limα→+∞ x(1, α) = xmm]

Laurent Massoulié Network resource allocation

Allocation principles 2

Network Utility Maximization x∗: solution of

Max
∑

s Us(xs)

Over xs ≥ 0 (P)

Such that ∀`,
∑

s3` xs ≤ C`

for concave, increasing utility functions Us : R+ → R

⇒ A concave optimization program

Examples
Proportional fair xpf : Us = log

For w , α > 0, (w , α)-fair x = x(w , α): Us(xs) = ws
x1−α
s

1−α

[Exercise: limα→1 x(1, α) = xpf and limα→+∞ x(1, α) = xmm]

Laurent Massoulié Network resource allocation

Relaxed constraints and a “primal” algorithm

Relaxed problem: Max
∑
s

Us(xs)−
∑
`

C`(y`)

Over xs ≥ 0 (RP)

with y` =
∑
s3`

xs

for concave increasing utility functions Us and convex increasing
cost functions C`

primal algorithm: for Us and C` differentiable, let

d

dt
xs = κs(xs)

(
U ′s(xs)−

∑
`∈s

C ′`(y`)

)
“gradient ascent”

→ Implementable in a distributed fashion

Laurent Massoulié Network resource allocation

Relaxed constraints and a “primal” algorithm

Relaxed problem: Max
∑
s

Us(xs)−
∑
`

C`(y`)

Over xs ≥ 0 (RP)

with y` =
∑
s3`

xs

for concave increasing utility functions Us and convex increasing
cost functions C`
primal algorithm: for Us and C` differentiable, let

d

dt
xs = κs(xs)

(
U ′s(xs)−

∑
`∈s

C ′`(y`)

)
“gradient ascent”

→ Implementable in a distributed fashion

Laurent Massoulié Network resource allocation

Relaxed constraints and a “primal” algorithm

Relaxed problem: Max
∑
s

Us(xs)−
∑
`

C`(y`)

Over xs ≥ 0 (RP)

with y` =
∑
s3`

xs

for concave increasing utility functions Us and convex increasing
cost functions C`
primal algorithm: for Us and C` differentiable, let

d

dt
xs = κs(xs)

(
U ′s(xs)−

∑
`∈s

C ′`(y`)

)
“gradient ascent”

→ Implementable in a distributed fashion

Laurent Massoulié Network resource allocation

Stability via Lyapunov functions

Criterion for convergence of ODE ẋ = F (x) with trajectories in
O ⊂ Rn

Theorem

Assume F continuous on O, and ∃V : O → R such that:

(i) V continuously differentiable

(ii) ∀a ≤ A, {x ∈ O : V (x) ≤ A} and {x ∈ O : V (x) ∈ [a,A]}
either compact or empty

(iii) ∀x ∈ O \ B, ∇V (x) · F (x) < 0, where B = argminx∈O{V (x)}

Then limt→∞ V (x(t)) = infx∈O V (x), limt→∞ d(x(t),B) = 0.

If B = {x∗} then limt→∞ x(t) = x∗.

Laurent Massoulié Network resource allocation

Application to gradient ascent / descent dynamics

d

dt
xs = κs(xs)

(
U ′s(xs)−

∑
`∈s

C ′`(y`)

)
Let W (x) =

∑
s Us(xs)−

∑
` C`(y`) (system welfare)

and V (x) = −W (x)

Then: ∇V (x) · F (x) = −
∑

s κs(xs)
[
∂
∂xs

W (x)
]2

Theorem

For Us strictly concave with U ′s(0+) = +∞,
C` convex, continuously differentiable,
[⇒ strict concavity and continuous differentiability of W]
κs > 0, continuous [⇒continuity of F]
∃xs > 0 s.t. U ′s(xs) <

∑
`∈s C

′
`(xs)

[⇒ Max of W achieved at single point x∗ ∈ O := (0,∞)S]
Then “primal” dynamics converge to unique maximizer x∗ of W

Laurent Massoulié Network resource allocation

Application to gradient ascent / descent dynamics

d

dt
xs = κs(xs)

(
U ′s(xs)−

∑
`∈s

C ′`(y`)

)
Let W (x) =

∑
s Us(xs)−

∑
` C`(y`) (system welfare)

and V (x) = −W (x)

Then: ∇V (x) · F (x) = −
∑

s κs(xs)
[
∂
∂xs

W (x)
]2

Theorem

For Us strictly concave with U ′s(0+) = +∞,
C` convex, continuously differentiable,
[⇒ strict concavity and continuous differentiability of W]
κs > 0, continuous [⇒continuity of F]
∃xs > 0 s.t. U ′s(xs) <

∑
`∈s C

′
`(xs)

[⇒ Max of W achieved at single point x∗ ∈ O := (0,∞)S]
Then “primal” dynamics converge to unique maximizer x∗ of W

Laurent Massoulié Network resource allocation

Application to gradient ascent / descent dynamics

d

dt
xs = κs(xs)

(
U ′s(xs)−

∑
`∈s

C ′`(y`)

)
Let W (x) =

∑
s Us(xs)−

∑
` C`(y`) (system welfare)

and V (x) = −W (x)

Then: ∇V (x) · F (x) = −
∑

s κs(xs)
[
∂
∂xs

W (x)
]2

Theorem

For Us strictly concave with U ′s(0+) = +∞,
C` convex, continuously differentiable,
[⇒ strict concavity and continuous differentiability of W]
κs > 0, continuous [⇒continuity of F]
∃xs > 0 s.t. U ′s(xs) <

∑
`∈s C

′
`(xs)

[⇒ Max of W achieved at single point x∗ ∈ O := (0,∞)S]
Then “primal” dynamics converge to unique maximizer x∗ of W

Laurent Massoulié Network resource allocation

Reverse engineering TCP

Approx. xs ≈ cwnds/Ts where Ts : packet round-trip time

Approx. d
dt cwnds ≈ xs(1/cwnds)− p(s)[cwnds/2]

where p(s): packet loss probability along path of s

Approx. p(s) ≈
∑

`∈s p`(y`) for link packet loss prob. p`(y)
[e.g. p`(y) = max(0, 1− C`/y)]

⇒ ẋs =

(
x2
s

2

)[
2

(xsTs)2
−
∑
`∈s

p`(y`)

]

TCP implicitly runs primal alg. with utility function:
Us(x) = wsx

1−α/(1− α) with α = 2, ws = 2/T 2
s

→ Leads to (w , α)-fairness with suitable parameters
Can tweak congestion avoidance alg. if want e.g. proportional
fairness (α = 1) instead

Laurent Massoulié Network resource allocation

Reverse engineering TCP

Approx. xs ≈ cwnds/Ts where Ts : packet round-trip time

Approx. d
dt cwnds ≈ xs(1/cwnds)− p(s)[cwnds/2]

where p(s): packet loss probability along path of s

Approx. p(s) ≈
∑

`∈s p`(y`) for link packet loss prob. p`(y)
[e.g. p`(y) = max(0, 1− C`/y)]

⇒ ẋs =

(
x2
s

2

)[
2

(xsTs)2
−
∑
`∈s

p`(y`)

]

TCP implicitly runs primal alg. with utility function:
Us(x) = wsx

1−α/(1− α) with α = 2, ws = 2/T 2
s

→ Leads to (w , α)-fairness with suitable parameters
Can tweak congestion avoidance alg. if want e.g. proportional
fairness (α = 1) instead

Laurent Massoulié Network resource allocation

Reverse engineering TCP

Approx. xs ≈ cwnds/Ts where Ts : packet round-trip time

Approx. d
dt cwnds ≈ xs(1/cwnds)− p(s)[cwnds/2]

where p(s): packet loss probability along path of s

Approx. p(s) ≈
∑

`∈s p`(y`) for link packet loss prob. p`(y)
[e.g. p`(y) = max(0, 1− C`/y)]

⇒ ẋs =

(
x2
s

2

)[
2

(xsTs)2
−
∑
`∈s

p`(y`)

]

TCP implicitly runs primal alg. with utility function:
Us(x) = wsx

1−α/(1− α) with α = 2, ws = 2/T 2
s

→ Leads to (w , α)-fairness with suitable parameters
Can tweak congestion avoidance alg. if want e.g. proportional
fairness (α = 1) instead

Laurent Massoulié Network resource allocation

Reverse engineering TCP

Approx. xs ≈ cwnds/Ts where Ts : packet round-trip time

Approx. d
dt cwnds ≈ xs(1/cwnds)− p(s)[cwnds/2]

where p(s): packet loss probability along path of s

Approx. p(s) ≈
∑

`∈s p`(y`) for link packet loss prob. p`(y)
[e.g. p`(y) = max(0, 1− C`/y)]

⇒ ẋs =

(
x2
s

2

)[
2

(xsTs)2
−
∑
`∈s

p`(y`)

]

TCP implicitly runs primal alg. with utility function:
Us(x) = wsx

1−α/(1− α) with α = 2, ws = 2/T 2
s

→ Leads to (w , α)-fairness with suitable parameters
Can tweak congestion avoidance alg. if want e.g. proportional
fairness (α = 1) instead

Laurent Massoulié Network resource allocation

Reverse engineering TCP

Approx. xs ≈ cwnds/Ts where Ts : packet round-trip time

Approx. d
dt cwnds ≈ xs(1/cwnds)− p(s)[cwnds/2]

where p(s): packet loss probability along path of s

Approx. p(s) ≈
∑

`∈s p`(y`) for link packet loss prob. p`(y)
[e.g. p`(y) = max(0, 1− C`/y)]

⇒ ẋs =

(
x2
s

2

)[
2

(xsTs)2
−
∑
`∈s

p`(y`)

]

TCP implicitly runs primal alg. with utility function:
Us(x) = wsx

1−α/(1− α) with α = 2, ws = 2/T 2
s

→ Leads to (w , α)-fairness with suitable parameters
Can tweak congestion avoidance alg. if want e.g. proportional
fairness (α = 1) instead

Laurent Massoulié Network resource allocation

Reverse engineering TCP

Approx. xs ≈ cwnds/Ts where Ts : packet round-trip time

Approx. d
dt cwnds ≈ xs(1/cwnds)− p(s)[cwnds/2]

where p(s): packet loss probability along path of s

Approx. p(s) ≈
∑

`∈s p`(y`) for link packet loss prob. p`(y)
[e.g. p`(y) = max(0, 1− C`/y)]

⇒ ẋs =

(
x2
s

2

)[
2

(xsTs)2
−
∑
`∈s

p`(y`)

]

TCP implicitly runs primal alg. with utility function:
Us(x) = wsx

1−α/(1− α) with α = 2, ws = 2/T 2
s

→ Leads to (w , α)-fairness with suitable parameters

Can tweak congestion avoidance alg. if want e.g. proportional
fairness (α = 1) instead

Laurent Massoulié Network resource allocation

Reverse engineering TCP

Approx. xs ≈ cwnds/Ts where Ts : packet round-trip time

Approx. d
dt cwnds ≈ xs(1/cwnds)− p(s)[cwnds/2]

where p(s): packet loss probability along path of s

Approx. p(s) ≈
∑

`∈s p`(y`) for link packet loss prob. p`(y)
[e.g. p`(y) = max(0, 1− C`/y)]

⇒ ẋs =

(
x2
s

2

)[
2

(xsTs)2
−
∑
`∈s

p`(y`)

]

TCP implicitly runs primal alg. with utility function:
Us(x) = wsx

1−α/(1− α) with α = 2, ws = 2/T 2
s

→ Leads to (w , α)-fairness with suitable parameters
Can tweak congestion avoidance alg. if want e.g. proportional
fairness (α = 1) instead

Laurent Massoulié Network resource allocation

Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C0, convex functions J, f` : C0 → R,

Min J(x)

Over x ∈ C0 (P)

Such that ∀` ∈ L, f`(x) ≤ 0

Associated Lagrangian L(x , λ) := J(x) +
∑

` λ`f`(x),

x ∈ C0, λ ≥ 0

λ: Lagrange multipliers of (P)’s constraints

Dual problem (D): Max D(λ) Over λ ≥ 0
where D(λ) := infx∈C0 L(x , λ)

Laurent Massoulié Network resource allocation

Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C0, convex functions J, f` : C0 → R,

Min J(x)

Over x ∈ C0 (P)

Such that ∀` ∈ L, f`(x) ≤ 0

Associated Lagrangian L(x , λ) := J(x) +
∑

` λ`f`(x),

x ∈ C0, λ ≥ 0

λ: Lagrange multipliers of (P)’s constraints

Dual problem (D): Max D(λ) Over λ ≥ 0
where D(λ) := infx∈C0 L(x , λ)

Laurent Massoulié Network resource allocation

Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C0, convex functions J, f` : C0 → R,

Min J(x)

Over x ∈ C0 (P)

Such that ∀` ∈ L, f`(x) ≤ 0

Associated Lagrangian L(x , λ) := J(x) +
∑

` λ`f`(x),

x ∈ C0, λ ≥ 0

λ: Lagrange multipliers of (P)’s constraints

Dual problem (D): Max D(λ) Over λ ≥ 0
where D(λ) := infx∈C0 L(x , λ)

Laurent Massoulié Network resource allocation

Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C0, convex functions J, f` : C0 → R,

Min J(x)

Over x ∈ C0 (P)

Such that ∀` ∈ L, f`(x) ≤ 0

Associated Lagrangian L(x , λ) := J(x) +
∑

` λ`f`(x),

x ∈ C0, λ ≥ 0

λ: Lagrange multipliers of (P)’s constraints

Dual problem (D): Max D(λ) Over λ ≥ 0
where D(λ) := infx∈C0 L(x , λ)

Laurent Massoulié Network resource allocation

Kuhn-Tucker theorem and strong duality

Def: λ∗ ≥ 0 a Kuhn-Tucker vector iff ∀x ∈ C0, L(x , λ∗) ≥ J∗

where J∗: optimal value of (P).

Remark: J∗ ≥ D∗ where D∗ optimal value of (D)

Theorem

Assume there exists λ∗ a Kuhn-Tucker vector. Then
(i) λ∗ solves (D), and J∗ = D∗ (a.k.a. strong duality)
(ii) x∗ ∈ C0 if optimal for (P) then achieves minx∈C0 L(x , λ∗)
(iii) For x∗int(C0) an optimum of (P) at which ∃∇J,∇f`, then

∀`, λ∗` f`(x∗) = 0 (complementarity)
∇J(x∗) +

∑
` λ
∗
` f`(x

∗) = 0 (stationarity)

Reciprocally assume stationarity + complementarity
for some λ∗ ≥ 0 and some x∗ feasible for (P),
Then λ∗: Kuhn-Tucker and x∗ optimal for (P)

Laurent Massoulié Network resource allocation

Kuhn-Tucker theorem and strong duality

Def: λ∗ ≥ 0 a Kuhn-Tucker vector iff ∀x ∈ C0, L(x , λ∗) ≥ J∗

where J∗: optimal value of (P).
Remark: J∗ ≥ D∗ where D∗ optimal value of (D)

Theorem

Assume there exists λ∗ a Kuhn-Tucker vector. Then
(i) λ∗ solves (D), and J∗ = D∗ (a.k.a. strong duality)
(ii) x∗ ∈ C0 if optimal for (P) then achieves minx∈C0 L(x , λ∗)
(iii) For x∗int(C0) an optimum of (P) at which ∃∇J,∇f`, then

∀`, λ∗` f`(x∗) = 0 (complementarity)
∇J(x∗) +

∑
` λ
∗
` f`(x

∗) = 0 (stationarity)

Reciprocally assume stationarity + complementarity
for some λ∗ ≥ 0 and some x∗ feasible for (P),
Then λ∗: Kuhn-Tucker and x∗ optimal for (P)

Laurent Massoulié Network resource allocation

Kuhn-Tucker theorem and strong duality

Def: λ∗ ≥ 0 a Kuhn-Tucker vector iff ∀x ∈ C0, L(x , λ∗) ≥ J∗

where J∗: optimal value of (P).
Remark: J∗ ≥ D∗ where D∗ optimal value of (D)

Theorem

Assume there exists λ∗ a Kuhn-Tucker vector. Then
(i) λ∗ solves (D), and J∗ = D∗ (a.k.a. strong duality)
(ii) x∗ ∈ C0 if optimal for (P) then achieves minx∈C0 L(x , λ∗)
(iii) For x∗int(C0) an optimum of (P) at which ∃∇J,∇f`, then

∀`, λ∗` f`(x∗) = 0 (complementarity)
∇J(x∗) +

∑
` λ
∗
` f`(x

∗) = 0 (stationarity)

Reciprocally assume stationarity + complementarity
for some λ∗ ≥ 0 and some x∗ feasible for (P),
Then λ∗: Kuhn-Tucker and x∗ optimal for (P)

Laurent Massoulié Network resource allocation

Sufficient conditions for applying Kuhn-Tucker

Lemma

Assume J∗ > −∞ and ∃x̂ ∈ C0 such that ∀`, f`(x̂) < 0.
Then a Kuhn-Tucker vector λ∗ exists.

In practice: verify Lemma’s conditions + existence of optimum
x∗ ∈ int(C0) at which ∃∇J, ∇f`.
Then find x∗ that verifies complementarity + stationarity (now
guaranteed to exist)

Laurent Massoulié Network resource allocation

Solving original problem: dual algorithm

Lagrangian: L(x , λ) =
∑

s Us(xs) +
∑

` λ`[C` −
∑

s3` xs]

Dual: D(λ) =
∑

s Us(gs(λs)) +
∑

` λ`[C` −
∑

s3` gs(λs)]

where λs :=
∑

`∈s λs and gs := (U ′s)−1

⇒ ∂
∂λs

D(λ) = C` −
∑

s3` gs(λs)

Dual algorithm: xs ≡ gs(λs),

λ̇` = κ`
[∑

s3` xs − C`
]+
λ`

where [a]+b = a if b > 0, max(a, 0) if b ≤ 0

Laurent Massoulié Network resource allocation

Solving original problem: dual algorithm

Lagrangian: L(x , λ) =
∑

s Us(xs) +
∑

` λ`[C` −
∑

s3` xs]

Dual: D(λ) =
∑

s Us(gs(λs)) +
∑

` λ`[C` −
∑

s3` gs(λs)]

where λs :=
∑

`∈s λs and gs := (U ′s)−1

⇒ ∂
∂λs

D(λ) = C` −
∑

s3` gs(λs)

Dual algorithm: xs ≡ gs(λs),

λ̇` = κ`
[∑

s3` xs − C`
]+
λ`

where [a]+b = a if b > 0, max(a, 0) if b ≤ 0

Laurent Massoulié Network resource allocation

Solving original problem: dual algorithm

Lagrangian: L(x , λ) =
∑

s Us(xs) +
∑

` λ`[C` −
∑

s3` xs]

Dual: D(λ) =
∑

s Us(gs(λs)) +
∑

` λ`[C` −
∑

s3` gs(λs)]

where λs :=
∑

`∈s λs and gs := (U ′s)−1

⇒ ∂
∂λs

D(λ) = C` −
∑

s3` gs(λs)

Dual algorithm: xs ≡ gs(λs),

λ̇` = κ`
[∑

s3` xs − C`
]+
λ`

where [a]+b = a if b > 0, max(a, 0) if b ≤ 0

Laurent Massoulié Network resource allocation

Solving original problem: dual algorithm

Lagrangian: L(x , λ) =
∑

s Us(xs) +
∑

` λ`[C` −
∑

s3` xs]

Dual: D(λ) =
∑

s Us(gs(λs)) +
∑

` λ`[C` −
∑

s3` gs(λs)]

where λs :=
∑

`∈s λs and gs := (U ′s)−1

⇒ ∂
∂λs

D(λ) = C` −
∑

s3` gs(λs)

Dual algorithm: xs ≡ gs(λs),

λ̇` = κ`
[∑

s3` xs − C`
]+
λ`

where [a]+b = a if b > 0, max(a, 0) if b ≤ 0

Laurent Massoulié Network resource allocation

Solving original problem: dual algorithm

Theorem

Under suitable conditions
(Us strictly concave, twice differentiable, U ′s(0+) = +∞,
U ′s(+∞) = 0)
Trajectories xs of dual algorithm converge to unique maximizer x∗

of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]

Potential implementation: multiplier dynamics ≡ queue dynamics
⇒ Let λ` = queueing delay of packets and instantaneously let xs
to gs(λs)
⇒ Principle underlying TCP-Vegas, an alternative to default TCP
(TCP Reno)

Laurent Massoulié Network resource allocation

Solving original problem: dual algorithm

Theorem

Under suitable conditions
(Us strictly concave, twice differentiable, U ′s(0+) = +∞,
U ′s(+∞) = 0)
Trajectories xs of dual algorithm converge to unique maximizer x∗

of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]

Potential implementation: multiplier dynamics ≡ queue dynamics
⇒ Let λ` = queueing delay of packets and instantaneously let xs
to gs(λs)
⇒ Principle underlying TCP-Vegas, an alternative to default TCP
(TCP Reno)

Laurent Massoulié Network resource allocation

Solving original problem: dual algorithm

Theorem

Under suitable conditions
(Us strictly concave, twice differentiable, U ′s(0+) = +∞,
U ′s(+∞) = 0)
Trajectories xs of dual algorithm converge to unique maximizer x∗

of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]

Potential implementation: multiplier dynamics ≡ queue dynamics

⇒ Let λ` = queueing delay of packets and instantaneously let xs
to gs(λs)
⇒ Principle underlying TCP-Vegas, an alternative to default TCP
(TCP Reno)

Laurent Massoulié Network resource allocation

Solving original problem: dual algorithm

Theorem

Under suitable conditions
(Us strictly concave, twice differentiable, U ′s(0+) = +∞,
U ′s(+∞) = 0)
Trajectories xs of dual algorithm converge to unique maximizer x∗

of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]

Potential implementation: multiplier dynamics ≡ queue dynamics
⇒ Let λ` = queueing delay of packets and instantaneously let xs
to gs(λs)

⇒ Principle underlying TCP-Vegas, an alternative to default TCP
(TCP Reno)

Laurent Massoulié Network resource allocation

Solving original problem: dual algorithm

Theorem

Under suitable conditions
(Us strictly concave, twice differentiable, U ′s(0+) = +∞,
U ′s(+∞) = 0)
Trajectories xs of dual algorithm converge to unique maximizer x∗

of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]

Potential implementation: multiplier dynamics ≡ queue dynamics
⇒ Let λ` = queueing delay of packets and instantaneously let xs
to gs(λs)
⇒ Principle underlying TCP-Vegas, an alternative to default TCP
(TCP Reno)

Laurent Massoulié Network resource allocation

Takeaway messages

For unconstrained convex minimization, gradient descent
converges to optimizer [Lyapunov stability]

Admits distributed implementation in network optimization
setting

TCP implicitly achieves (w , α)-fair allocation by running
gradient descent

Kuhn-Tucker Theorem: Complementarity + Stationarity
characterization of (P)’s optima

Queue dynamics implicitly perform gradient descent for
multipliers of constrained program

Remaining question: How to discriminate between allocation
objectives?

Laurent Massoulié Network resource allocation

Takeaway messages

For unconstrained convex minimization, gradient descent
converges to optimizer [Lyapunov stability]

Admits distributed implementation in network optimization
setting

TCP implicitly achieves (w , α)-fair allocation by running
gradient descent

Kuhn-Tucker Theorem: Complementarity + Stationarity
characterization of (P)’s optima

Queue dynamics implicitly perform gradient descent for
multipliers of constrained program

Remaining question: How to discriminate between allocation
objectives?

Laurent Massoulié Network resource allocation

