Networks: distributed control and emerging phenomena

(formerly: Networks, algorithms and probability)

Laurent Massoulié

laurent.massoulie@inria.fr

Distributed control for data transport

- ☐ How to assign bandwidth in networks
 - ☐ Understanding TCP, the protocol regulating most Internet traffic
 - → Convex optimization theory & dynamical systems

Distributed control for data transport

How to manage collisions (i.e. lost transmissions because of interference) between wireless transmitters

- ☐ Aloha and Ethernet protocols
- → Markov chains and criteria for ergodicity

Distributed control for data transport

Crossbar switch with input queues:

- ☐ How to schedule transmissions in switches, and multi-hop wireless networks
 - ☐ Max-weight & backpressure algorithms

Spread of "CodeRed" Internet worm, 2001

Spread of a picture on facebook https://www.facebookstories.com/stories/2200/

- What makes an epidemic potent or weak
 - random graphs, branching processes and phase transitions
- ☐ What features of network topology affect epidemic outbreak
 - →graph topology descriptors, comparison of Markov chains by "coupling"
- How to maximize size of outbreak
 - → submodular functions and greedy maximization

- ☐What is a "small world" network
 - ☐And how to search for information in it

☐ Why are most networks "scale-free" (a.k.a. power-law)

martingales, coupling and "concentration inequalities"

■How to find community structure and recommend contacts in a social network

→ spectra of random graphs and spectral methods

Network resource allocation: principles and algorithms

- ☐ Convex optimization model
- ☐ A "primal" algorithm
- ☐ Reverse-engineering TCP
- ☐ Lagrangian, duality and Lagrange multipliers
- ☐ A "dual" algorithm

TCP in one slide

- Maintain Nb of (sent¬ acked pkts)=cwnd (congestion window)
- Update cwnd
- ← cwnd+1/cwnd upon receipt of pkt ack
- ← cwnd/2 upon detection of pkt loss

"Congestion avoidance" alg introduced in 1993

After Internet congestion collapse

Outline

- Convex optimization model
- A "primal" algorithm
- Reverse-engineering TCP
- Lagrangian, duality and multipliers
- A "dual" algorithm

Network model

- Resources, or links, $\ell \in \mathcal{L}$, each with capacity $C_{\ell} > 0$
- ullet Users, or transmissions, or flows, $s \in \mathcal{S}$
- User s uses same rate at all $\ell \in s$ ($s \leftrightarrow$ subset of \mathcal{L})

Network model

- Resources, or links, $\ell \in \mathcal{L}$, each with capacity $C_{\ell} > 0$
- ullet Users, or transmissions, or flows, $s\in\mathcal{S}$
- User s uses same rate at all $\ell \in s$ ($s \leftrightarrow$ subset of \mathcal{L})

FEASIBLE RATES:

variables
$$x_s \geq 0$$
, $s \in \mathcal{S}$ such that $\forall \ell \in \mathcal{L}$, $\sum_{s \ni \ell} x_s \leq C_{\ell}$

Network model

- Resources, or links, $\ell \in \mathcal{L}$, each with capacity $C_{\ell} > 0$
- ullet Users, or transmissions, or flows, $s\in\mathcal{S}$
- User s uses same rate at all $\ell \in s$ $(s \leftrightarrow \mathsf{subset}\ \mathsf{of}\ \mathcal{L})$

FEASIBLE RATES:

variables $x_s \geq 0$, $s \in \mathcal{S}$ such that $\forall \ell \in \mathcal{L}$, $\sum_{s \ni \ell} x_s \leq C_{\ell}$

POTENTIAL APPLICATIONS

- Links on single path from source to destination
- Links on tree of transmission from source to set of receivers

• max-min fairness: feasible x^{mm} such that $\forall s \in \mathcal{S}, \exists \ell \in s \text{ with } \sum_{t \ni \ell} x_t^{mm} = C_\ell \text{ and } x_s^{mm} = \max_{t \ni \ell} x_t^{mm}$ ("no envy": each s can find competing t at least as poor as s)

- max-min fairness: feasible x^{mm} such that $\forall s \in \mathcal{S}, \exists \ell \in s \text{ with } \sum_{t \ni \ell} x_t^{mm} = C_\ell \text{ and } x_s^{mm} = \max_{t \ni \ell} x_t^{mm}$ ("no envy": each s can find competing t at least as poor as s)
- **Proportional fairness**: feasible x^{pf} such that for all feasible y, $\sum_s \frac{y_s x_s^{pf}}{x_s^{pf}} \le 0$

- max-min fairness: feasible x^{mm} such that $\forall s \in \mathcal{S}, \exists \ell \in s \text{ with } \sum_{t \ni \ell} x_t^{mm} = C_\ell \text{ and } x_s^{mm} = \max_{t \ni \ell} x_t^{mm}$ ("no envy": each s can find competing t at least as poor as s)
- **Proportional fairness**: feasible x^{pf} such that for all feasible y, $\sum_{s} \frac{y_s x_s^{pf}}{x_s^{pf}} \le 0$

Alternative characterization: Unique maximizer of $\sum_s \log(x_s)$ among feasible x

Alternative characterization: Nash's bargaining solution

i.e. unique vector $\phi(\mathcal{C})$ in feasible convex set $\mathcal{C} \subset \mathbb{R}_+^{\mathcal{S}}$ s.t.

• independence of irrelevant alternatives:

$$\phi(\mathcal{C}) \in \mathcal{C}' \subset \mathcal{C} \Rightarrow \phi(\mathcal{C}) = \phi(\mathcal{C}')$$

• symmetry: \mathcal{C} symmetric $\Rightarrow \phi(\mathcal{C})_i \equiv \phi(\mathcal{C})_1$

• scale invariance: for diagonal D with $D_{ii} \ge 0$, $\phi(DC) = D\phi(C)$

Network Utility Maximization x^* : solution of

$$\begin{array}{ccc} \mathsf{Max} & \sum_s U_s(x_s) \\ \mathsf{Over} & x_s \geq 0 & (P) \\ \mathsf{Such that} & \forall \ell, \sum_{s \ni \ell} x_s \leq \mathit{C}_\ell \end{array}$$

for **concave, increasing** utility functions $\mathit{U}_s:\mathbb{R}_+ o \mathbb{R}$

Network Utility Maximization x^* : solution of

$$\begin{array}{ccc} \text{Max} & \sum_s U_s(x_s) \\ \text{Over} & x_s \geq 0 & (P) \\ \text{Such that} & \forall \ell, \sum_{s \ni \ell} x_s \leq C_\ell \end{array}$$

for **concave, increasing** utility functions $U_s: \mathbb{R}_+ o \mathbb{R}$

 \Rightarrow A concave optimization program

Network Utility Maximization x^* : solution of

$$\begin{array}{ccc} \text{Max} & \sum_s U_s(x_s) \\ \text{Over} & x_s \geq 0 & (P) \\ \text{Such that} & \forall \ell, \sum_{s \ni \ell} x_s \leq C_\ell \end{array}$$

for **concave**, **increasing** utility functions $U_s: \mathbb{R}_+ o \mathbb{R}$

 \Rightarrow A concave optimization program

EXAMPLES

Proportional fair x^{pf} : $U_s = \log$

Network Utility Maximization x^* : solution of

$$\begin{array}{ccc} \text{Max} & \sum_s U_s(x_s) \\ \text{Over} & x_s \geq 0 & (P) \\ \text{Such that} & \forall \ell, \sum_{s \ni \ell} x_s \leq C_\ell \end{array}$$

for **concave**, **increasing** utility functions $U_s: \mathbb{R}_+ o \mathbb{R}$

 \Rightarrow A concave optimization program

EXAMPLES

Proportional fair x^{pf} : $U_s = \log x$

For
$$w, \alpha > 0$$
, (w, α) -fair $x = x(w, \alpha)$: $U_s(x_s) = w_s \frac{x_s^{1-\alpha}}{1-\alpha}$

Network Utility Maximization x^* : solution of

$$\begin{array}{ccc} \text{Max} & \sum_s U_s(x_s) \\ \text{Over} & x_s \geq 0 & (P) \end{array}$$
 Such that $\forall \ell, \sum_{s \ni \ell} x_s \leq C_\ell$

for **concave, increasing** utility functions $U_s: \mathbb{R}_+ \to \mathbb{R}$

 \Rightarrow A concave optimization program

EXAMPLES

Proportional fair x^{pf} : $U_s = \log$

For
$$w, \alpha > 0$$
, (w, α) -fair $x = x(w, \alpha)$: $U_s(x_s) = w_s \frac{x_s^{1-\alpha}}{1-\alpha}$

[Exercise:
$$\lim_{\alpha \to 1} x(1, \alpha) = x^{pf}$$
 and $\lim_{\alpha \to +\infty} x(1, \alpha) = x^{mm}$]

Relaxed constraints and a "primal" algorithm

Relaxed problem: Max
$$\sum_s U_s(x_s) - \sum_\ell C_\ell(y_\ell)$$
 Over $x_s \geq 0$ (RP) with $y_\ell = \sum_{s \ni \ell} x_s$

for concave increasing utility functions U_s and convex increasing cost functions C_ℓ

Relaxed constraints and a "primal" algorithm

Relaxed problem: Max
$$\sum_s U_s(x_s) - \sum_\ell C_\ell(y_\ell)$$
 Over $x_s \geq 0$ (RP) with $y_\ell = \sum_{s \ni \ell} x_s$

for concave increasing utility functions U_s and convex increasing cost functions C_ℓ

primal algorithm: for U_s and C_ℓ differentiable, let

$$\frac{d}{dt}x_s = \kappa_s(x_s) \left(U_s'(x_s) - \sum_{\ell \in s} C_\ell'(y_\ell) \right) \quad \text{"gradient ascent"}$$

Relaxed constraints and a "primal" algorithm

Relaxed problem:
$$\max_s \sum_s U_s(x_s) - \sum_\ell C_\ell(y_\ell)$$

Over $x_s \geq 0$ (RP)
with $y_\ell = \sum_{s \ni \ell} x_s$

for concave increasing utility functions U_s and convex increasing cost functions C_ℓ

primal algorithm: for U_s and C_ℓ differentiable, let

$$\frac{d}{dt}x_s = \kappa_s(x_s) \left(U_s'(x_s) - \sum_{\ell \in s} C_\ell'(y_\ell) \right) \quad \text{``gradient ascent''}$$

→ Implementable in a distributed fashion

Stability via Lyapunov functions

Criterion for convergence of ODE $\dot{x} = F(x)$ with trajectories in $O \subset \mathbb{R}^n$

$\mathsf{Theorem}$

Assume F continuous on O, and $\exists V:O \to \mathbb{R}$ such that:

- (i) V continuously differentiable
- (ii) $\forall a \leq A$, $\{x \in O : V(x) \leq A\}$ and $\{x \in O : V(x) \in [a, A]\}$ either compact or empty
- (iii) $\forall x \in O \setminus B$, $\nabla V(x) \cdot F(x) < 0$, where $B = \operatorname{argmin}_{x \in O} \{V(x)\}$
- Then $\lim_{t\to\infty} V(x(t)) = \inf_{x\in O} V(x)$, $\lim_{t\to\infty} d(x(t), B) = 0$.
- If $B = \{x^*\}$ then $\lim_{t\to\infty} x(t) = x^*$.

Application to gradient ascent / descent dynamics

$$\frac{d}{dt}x_s = \kappa_s(x_s) \left(U_s'(x_s) - \sum_{\ell \in s} C_\ell'(y_\ell) \right)$$

Let
$$W(x) = \sum_s U_s(x_s) - \sum_\ell C_\ell(y_\ell)$$
 (system welfare) and $V(x) = -W(x)$

Application to gradient ascent / descent dynamics

$$\frac{d}{dt}x_s = \kappa_s(x_s)\left(U_s'(x_s) - \sum_{\ell \in s} C_\ell'(y_\ell)\right)$$

Let
$$W(x) = \sum_s U_s(x_s) - \sum_\ell C_\ell(y_\ell)$$
 (system welfare) and $V(x) = -W(x)$

Then:
$$\nabla V(x) \cdot F(x) = -\sum_{s} \kappa_{s}(x_{s}) \left[\frac{\partial}{\partial x_{s}} W(x) \right]^{2}$$

Application to gradient ascent / descent dynamics

$$\frac{d}{dt}x_s = \kappa_s(x_s)\left(U_s'(x_s) - \sum_{\ell \in s} C_\ell'(y_\ell)\right)$$

Let
$$W(x) = \sum_s U_s(x_s) - \sum_\ell C_\ell(y_\ell)$$
 (system welfare) and $V(x) = -W(x)$

Then:
$$\nabla V(x) \cdot F(x) = -\sum_s \kappa_s(x_s) \left[\frac{\partial}{\partial x_s} W(x) \right]^2$$

Theorem

For U_s strictly concave with $U_s'(0^+) = +\infty$, C_ℓ convex, continuously differentiable, $[\Rightarrow strict\ concavity\ and\ continuous\ differentiability\ of\ W]$ $\kappa_s > 0$, continuous $[\Rightarrow continuity\ of\ F]$ $\exists x_s > 0\ s.t.\ U_s'(x_s) < \sum_{\ell \in s} C_\ell'(x_s)$ $[\Rightarrow Max\ of\ W\ achieved\ at\ single\ point\ x^* \in O:=(0,\infty)^S]$ Then "primal" dynamics converge to unique maximizer x^* of W

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $\frac{d}{dt} cwnd_s \approx x_s (1/cwnd_s) - p(s)[cwnd_s/2]$ where p(s): packet loss probability along path of s

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $\frac{d}{dt} cwnd_s \approx x_s (1/cwnd_s) - p(s)[cwnd_s/2]$ where p(s): packet loss probability along path of s

Approx. $p(s) \approx \sum_{\ell \in s} p_{\ell}(y_{\ell})$ for link packet loss prob. $p_{\ell}(y)$ [e.g. $p_{\ell}(y) = \max(0, 1 - C_{\ell}/y)$]

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $\frac{d}{dt} cwnd_s \approx x_s (1/cwnd_s) - p(s)[cwnd_s/2]$ where p(s): packet loss probability along path of s

Approx. $p(s) \approx \sum_{\ell \in s} p_{\ell}(y_{\ell})$ for link packet loss prob. $p_{\ell}(y)$ [e.g. $p_{\ell}(y) = \max(0, 1 - C_{\ell}/y)$]

$$\Rightarrow \dot{x}_s = \left(\frac{x_s^2}{2}\right) \left[\frac{2}{(x_s T_s)^2} - \sum_{\ell \in s} p_\ell(y_\ell)\right]$$

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $\frac{d}{dt} cwnd_s \approx x_s (1/cwnd_s) - p(s)[cwnd_s/2]$ where p(s): packet loss probability along path of s

Approx. $p(s) \approx \sum_{\ell \in s} p_{\ell}(y_{\ell})$ for link packet loss prob. $p_{\ell}(y)$ [e.g. $p_{\ell}(y) = \max(0, 1 - C_{\ell}/y)$]

$$\Rightarrow \dot{x}_s = \left(\frac{x_s^2}{2}\right) \left[\frac{2}{(x_s T_s)^2} - \sum_{\ell \in s} p_\ell(y_\ell)\right]$$

TCP implicitly runs primal alg. with utility function: $U_s(x) = w_s x^{1-\alpha}/(1-\alpha)$ with $\alpha = 2$, $w_s = 2/T_s^2$

Reverse engineering TCP

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $\frac{d}{dt} cwnd_s \approx x_s (1/cwnd_s) - p(s)[cwnd_s/2]$ where p(s): packet loss probability along path of s

Approx. $p(s) \approx \sum_{\ell \in s} p_{\ell}(y_{\ell})$ for link packet loss prob. $p_{\ell}(y)$ [e.g. $p_{\ell}(y) = \max(0, 1 - C_{\ell}/y)$]

$$\Rightarrow \dot{x}_s = \left(\frac{x_s^2}{2}\right) \left[\frac{2}{(x_s T_s)^2} - \sum_{\ell \in s} p_\ell(y_\ell)\right]$$

TCP implicitly runs primal alg. with utility function: $U_s(x) = w_s x^{1-\alpha}/(1-\alpha)$ with $\alpha=2$, $w_s=2/T_s^2$ \rightarrow Leads to (w,α) -fairness with suitable parameters

Reverse engineering TCP

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $\frac{d}{dt} cwnd_s \approx x_s (1/cwnd_s) - p(s)[cwnd_s/2]$ where p(s): packet loss probability along path of s

Approx. $p(s) \approx \sum_{\ell \in s} p_{\ell}(y_{\ell})$ for link packet loss prob. $p_{\ell}(y)$ [e.g. $p_{\ell}(y) = \max(0, 1 - C_{\ell}/y)$]

$$\Rightarrow \dot{x}_s = \left(\frac{x_s^2}{2}\right) \left[\frac{2}{(x_s T_s)^2} - \sum_{\ell \in s} p_\ell(y_\ell)\right]$$

TCP implicitly runs primal alg. with utility function: $U_s(x) = w_s x^{1-\alpha}/(1-\alpha)$ with $\alpha=2$, $w_s=2/T_s^2 \rightarrow$ Leads to (w,α) -fairness with suitable parameters Can tweak congestion avoidance alg. if want e.g. proportional fairness $(\alpha=1)$ instead

Generic convex optimization program For convex set \mathcal{C}^0 , convex functions $J,\ f_\ell:\mathcal{C}^0\to\mathbb{R},$

Min
$$J(x)$$

Over $x \in \mathcal{C}^0$ (P)
Such that $\forall \ell \in \mathcal{L}, f_{\ell}(x) \leq 0$

Generic convex optimization program For convex set \mathcal{C}^0 , convex functions J, $f_\ell: \mathcal{C}^0 \to \mathbb{R}$,

Min
$$J(x)$$

Over $x \in \mathcal{C}^0$ (P)
Such that $\forall \ell \in \mathcal{L}, f_{\ell}(x) \leq 0$

Associated Lagrangian
$$L(x, \lambda) := J(x) + \sum_{\ell} \lambda_{\ell} f_{\ell}(x),$$

 $x \in \mathcal{C}^{0}, \ \lambda \geq 0$

Generic convex optimization program For convex set \mathcal{C}^0 , convex functions $J, f_\ell : \mathcal{C}^0 \to \mathbb{R}$,

Min
$$J(x)$$

Over $x \in \mathcal{C}^0$ (P)
Such that $\forall \ell \in \mathcal{L}, f_{\ell}(x) \leq 0$

Associated Lagrangian
$$L(x, \lambda) := J(x) + \sum_{\ell} \lambda_{\ell} f_{\ell}(x),$$

 $x \in \mathcal{C}^{0}, \ \lambda \geq 0$

 λ : Lagrange multipliers of (P)'s constraints

Generic convex optimization program For convex set \mathcal{C}^0 , convex functions J, $f_\ell: \mathcal{C}^0 \to \mathbb{R}$,

Min
$$J(x)$$

Over $x \in \mathcal{C}^0$ (P)
Such that $\forall \ell \in \mathcal{L}, f_{\ell}(x) \leq 0$

Associated Lagrangian
$$L(x, \lambda) := J(x) + \sum_{\ell} \lambda_{\ell} f_{\ell}(x),$$

 $x \in \mathcal{C}^{0}, \ \lambda \geq 0$

 λ : Lagrange multipliers of (P)'s constraints

Dual problem (D): Max
$$D(\lambda)$$
 Over $\lambda \geq 0$ where $D(\lambda) := \inf_{x \in \mathcal{C}^0} L(x, \lambda)$

Kuhn-Tucker theorem and strong duality

Def: $\lambda^* \geq 0$ a Kuhn-Tucker vector iff $\forall x \in C^0, L(x, \lambda^*) \geq J^*$ where J^* : optimal value of (P).

Kuhn-Tucker theorem and strong duality

Def: $\lambda^* \geq 0$ a Kuhn-Tucker vector iff $\forall x \in C^0, L(x, \lambda^*) \geq J^*$

where J^* : optimal value of (P).

Remark: $J^* \geq D^*$ where D^* optimal value of (D)

Kuhn-Tucker theorem and strong duality

Def: $\lambda^* \geq 0$ a Kuhn-Tucker vector iff $\forall x \in C^0, L(x, \lambda^*) \geq J^*$ where J^* : optimal value of (P).

Remark: $J^* \geq D^*$ where D^* optimal value of (D)

$\mathsf{Theorem}$

Assume there exists λ^* a Kuhn-Tucker vector. Then

- (i) λ^* solves (D), and $J^* = D^*$ (a.k.a. strong duality)
- (ii) $x^* \in \mathcal{C}^0$ if optimal for (P) then achieves $\min_{x \in \mathcal{C}^0} L(x, \lambda^*)$
- (iii) For x^* int(\mathcal{C}^0) an optimum of (P) at which $\exists \nabla J, \nabla f_\ell$, then

$$\begin{array}{ll} \forall \ell, \lambda_\ell^* f_\ell(x^*) = 0 & \text{(complementarity)} \\ \nabla J(x^*) + \sum_\ell \lambda_\ell^* f_\ell(x^*) = 0 & \text{(stationarity)} \end{array}$$

Reciprocally assume stationarity + complementarity for some $\lambda^* \ge 0$ and some x^* feasible for (P), Then λ^* : Kuhn-Tucker and x^* optimal for (P)

Sufficient conditions for applying Kuhn-Tucker

Lemma

Assume $J^* > -\infty$ and $\exists \hat{x} \in C^0$ such that $\forall \ell, f_{\ell}(\hat{x}) < 0$. Then a Kuhn-Tucker vector λ^* exists.

In practice: verify Lemma's conditions + existence of optimum $x^* \in \text{int}(\mathcal{C}^0)$ at which $\exists \nabla J, \nabla f_{\ell}$.

Then find x^* that verifies complementarity + stationarity (now guaranteed to exist)

Lagrangian:
$$L(x, \lambda) = \sum_s U_s(x_s) + \sum_\ell \lambda_\ell [C_\ell - \sum_{s \ni \ell} x_s]$$

Lagrangian:
$$L(x,\lambda) = \sum_s U_s(x_s) + \sum_\ell \lambda_\ell [C_\ell - \sum_{s \ni \ell} x_s]$$

Dual:
$$D(\lambda) = \sum_s U_s(g_s(\lambda^s)) + \sum_\ell \lambda_\ell [C_\ell - \sum_{s \ni \ell} g_s(\lambda^s)]$$

where
$$\lambda^{s} := \sum_{\ell \in s} \lambda_{s}$$
 and $g_{s} := (\mathit{U}'_{s})^{-1}$

Lagrangian:
$$L(x,\lambda) = \sum_s U_s(x_s) + \sum_\ell \lambda_\ell [C_\ell - \sum_{s \ni \ell} x_s]$$

Dual: $D(\lambda) = \sum_s U_s(g_s(\lambda^s)) + \sum_\ell \lambda_\ell [C_\ell - \sum_{s \ni \ell} g_s(\lambda^s)]$
where $\lambda^s := \sum_{\ell \in s} \lambda_s$ and $g_s := (U_s')^{-1}$
 $\Rightarrow \frac{\partial}{\partial \lambda_s} D(\lambda) = C_\ell - \sum_{s \ni \ell} g_s(\lambda^s)$

Lagrangian:
$$L(x,\lambda) = \sum_s U_s(x_s) + \sum_\ell \lambda_\ell [C_\ell - \sum_{s \ni \ell} x_s]$$

Dual: $D(\lambda) = \sum_s U_s(g_s(\lambda^s)) + \sum_\ell \lambda_\ell [C_\ell - \sum_{s \ni \ell} g_s(\lambda^s)]$
where $\lambda^s := \sum_{\ell \in s} \lambda_s$ and $g_s := (U_s')^{-1}$
 $\Rightarrow \frac{\partial}{\partial \lambda_s} D(\lambda) = C_\ell - \sum_{s \ni \ell} g_s(\lambda^s)$

Dual algorithm:
$$x_s \equiv g_s(\lambda^s),$$

 $\dot{\lambda}_\ell = \kappa_\ell \left[\sum_{s \ni \ell} x_s - C_\ell \right]_{\lambda_\ell}^+$

where $[a]_b^+ = a$ if b > 0, max(a, 0) if $b \le 0$

Theorem

Under suitable conditions

(U_s strictly concave, twice differentiable, $U_s'(0^+) = +\infty$,

$$U_s'(+\infty)=0$$

Trajectories x_s of dual algorithm converge to unique maximizer x^* of primal problem.

Theorem

Under suitable conditions

(U_s strictly concave, twice differentiable, $U_s'(0^+) = +\infty$,

$$U_s'(+\infty)=0$$

Trajectories x_s of dual algorithm converge to unique maximizer x^* of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]

Theorem

Under suitable conditions

 $(U_s \text{ strictly concave, twice differentiable, } U_s'(0^+) = +\infty,$

$$U_s'(+\infty)=0$$

Trajectories x_s of dual algorithm converge to unique maximizer x^* of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]

Potential implementation: multiplier dynamics \equiv queue dynamics

Theorem

Under suitable conditions

(U_s strictly concave, twice differentiable, $U_s'(0^+) = +\infty$, $U_s'(+\infty) = 0$)

Trajectories x_s of dual algorithm converge to unique maximizer x^* of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]

Potential implementation: multiplier dynamics \equiv queue dynamics \Rightarrow Let λ^{ℓ} = queueing delay of packets and instantaneously let x_s to $g_s(\lambda^s)$

Theorem

Under suitable conditions

(U_s strictly concave, twice differentiable, $U_s'(0^+) = +\infty$, $U_s'(+\infty) = 0$)

Trajectories x_s of dual algorithm converge to unique maximizer x^* of primal problem.

[Proof: involved. Quasiproof: Lyapunov function argument]

Potential implementation: multiplier dynamics \equiv queue dynamics \Rightarrow Let $\lambda^\ell =$ queueing delay of packets and instantaneously let x_s to $g_s(\lambda^s)$

 \Rightarrow Principle underlying TCP-Vegas, an alternative to default TCP (TCP Reno)

Takeaway messages

- For unconstrained convex minimization, gradient descent converges to optimizer [Lyapunov stability]
- Admits distributed implementation in network optimization setting
- TCP implicitly achieves (w, α) -fair allocation by running gradient descent
- Kuhn-Tucker Theorem: Complementarity + Stationarity characterization of (P)'s optima
- Queue dynamics implicitly perform gradient descent for multipliers of constrained program

Takeaway messages

- For unconstrained convex minimization, gradient descent converges to optimizer [Lyapunov stability]
- Admits distributed implementation in network optimization setting
- TCP implicitly achieves (w, α) -fair allocation by running gradient descent
- Kuhn-Tucker Theorem: Complementarity + Stationarity characterization of (P)'s optima
- Queue dynamics implicitly perform gradient descent for multipliers of constrained program

Remaining question: How to discriminate between allocation objectives?

