Exercice 1: linear path in Erdős Rényi graphs

Recall that the Depth First Search (DFS) is a graph search algorithm that visits all vertices of a graph \(G = (V, E) \) as follows. It maintains three sets of vertices, letting \(S \) be the set of vertices whose exploration is complete, \(T \) be the set of unvisited vertices, and \(U = V \setminus (S \cup T) \), where the vertices of \(U \) are kept in a stack (the last in, first out data structure). It is also assumed that some order \(\sigma \) on the vertices of \(G \) is fixed. The algorithm starts with \(S = U = \emptyset \) and \(T = V \), and runs until \(U \cup T = \emptyset \).

At each round of the algorithm, if the set \(U \) is non-empty, the algorithm queries \(T \) for neighbors of the last vertex \(v \) that has been added to \(U \), scanning \(T \) according to \(\sigma \). If \(v \) has a neighbor \(u \) in \(T \), the algorithm deletes \(u \) from \(T \) and inserts it into \(U \). If \(v \) does not have a neighbor in \(T \), then \(v \) is popped out of \(U \) and is moved to \(S \). If \(U \) is empty, the algorithm chooses the first vertex of \(T \) according to \(\sigma \), deletes it from \(T \) and pushes it into \(U \). In order to complete the exploration of the graph, whenever the sets \(U \) and \(T \) have both become empty (at this stage the connected component structure of \(G \) has already been revealed), we make the algorithm query all remaining pairs of vertices in \(S = V \), not queried before.

(a) Show that at any stage of the algorithm, it has been revealed already that the graph \(G \) has no edges between the current set \(S \) and the current set \(T \).

(b) Show that the set \(U \) always spans a path.

We will run the DFS on a random input \(G \sim G(n, p) \), fixing the order \(\sigma \) on \(V(G) = [n] \) to be the identity permutation. Let \(N = \binom{n}{2} \).

(c) When the DFS algorithm is fed with a sequence of i.i.d. Bernoulli \(p \) random variables \(\bar{X} = (X_i)_{i=1}^{N} \), so that is gets its \(i \)-th query answered positively if \(X_i = 1 \) and answered negatively otherwise, show that the so obtained graph is distributed according to \(G(n, p) \).

Thus, studying the component structure of \(G \) can be reduced to studying the properties of the random sequence \(\bar{X} \).

(d) Show that after \(t \) queries and assuming that \(T \) never emptied, we have \(|S \cup U| \geq \sum_{i=1}^{t} X_i \) and \(|U| \leq 1 + \sum_{i=1}^{t} X_i \).

The probabilistic part of our argument is provided by the following result. Let \(\epsilon > 0 \) be a small enough constant. Consider the sequence \(\bar{X} = (X_i)_{i=1}^{N} \) of i.i.d. Bernoulli random variables with parameter \(p = \frac{1+\epsilon}{n} \).

(e) Let \(N_0 = \frac{c n^2}{2} \). Show that with high probability \(\left| \sum_{i=1}^{N_0} X_i - \frac{c (1+\epsilon)n}{2} \right| \leq n^{2/3} \).
We run the DFS algorithm on $G \sim G(n, p)$, and assume that the sequence $\bar{X} = (X_i)_{i=1}^N$ of random variables, defining the random graph $G \sim G(n, p)$ and guiding the DFS algorithm, satisfies the above property.

We will show that after the first $N_0 = \frac{ep^2}{8}$ queries of the DFS algorithm, the set U contains at least $\frac{e^2n}{5}$ vertices, which implies that with high probability G contains a path of length at least $e^2n/5$.

(f) Show that if at time $t \leq N_0$, $|S| = n/3$, then $|T| \geq n/3$. Show that the algorithm examined at least $n^2/9$ pairs which leads to a contradiction. Conclude that $|S| < n/3$ at time N_0.

(g) Assume that $|U| < \frac{e^2n}{5}$. Show that $|S \cup U| \geq \frac{c(1+e)n}{2} - n^2/3$ and conclude similarly as above.

Exercice 2: counting isolated subgraphs

We wish to count the isolated copies of a connected graph H in $G(n, p)$, i.e. the connected components of $G(n, p)$ which are isomorphic to H. Let N_H count the isolated copies of H. Let v_H and e_H be the number of vertices and edges of H.

(a) Show that $\mathbb{E}[N_H] = O(v_Hp^{e_H}e^{-v_Gnp})$. Show that with high probability $N_H = 0$ if $e_H > v_H$ or if $e_H = v_H$ and $p \ll 1/n$ or $p \gg 1/n$.

We now consider the case $np \to c > 0$. We first consider the case where H is a triangle and denote by N_3 the number of isolated triangles: $N_3 = \sum_G I_G$ where the sum is over all triangles G of K_n and I_G is the indicator that G is an isolated triangle.

(b) Compute $\mathbb{E}[I_G]$ and $\mathbb{E}[N_3]$. (c) For $G' = \{u', v', w'\}$ and $G = \{u, v, w\}$, define the indicator $J_{G', G}$ that G is an isolated subgraph of $G(n, p)$ where all edges incident with u', v' and w' have been removed and the edges of the triangle G' have been added. Show that the random variables I_G and $J_{G', G}$ satisfy the condition of the Stein-Chen method.

(d) Conclude that N_3 converges in distribution to a Poisson distribution.

(e) Extend previous analysis to unicyclic connected components.

Exercice 3: improved second moment method

(a) Using Tchebichev’s inequality show that

$$P(X = 0) \leq \frac{\text{Var}(X)}{\mathbb{E}[X]^2}.$$

(b) Using the Cauchy-Schwarz inequality applied to $X = X_1(X \neq 0)$ show that

$$P(X = 0) \leq \frac{\text{Var}(X)}{(\mathbb{E}[X])^2 + \text{Var}(X)}.$$