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1. M/G/oo/oo queue and Poisson process

We consider a Poisson process N <> {T,,}n>0 on R with intensity A > 0 and to each point T,
attach a service time o, where {0, },>0 is i.i.d., independent of N, with density f on R..

1.1 Show that the set of points {(T},, 0p)}n>0 constitutes a (generalized) Poisson process. De-
termine its intensity function.

1.2 The number X; of customers present at time ¢ > 0 is given by X; = Zn>0 17, <t<T,+0,-
Show that X; admits a Poisson distribution. Determine its parameter.

1.3 We now assume that N extends to all of R so that, letting X; = >, 17, <t<7, 40,, We
obtain a stationary process. Determine the stationary covariance C(s) := Cov(Xy, Xtys)-

1.4 Is the process {X;} Markovian for general density f of service times o,,?

2. M/M/1/00 queues with Processor Sharing discipline

We consider a single server queue with customer arrivals at instants of Poisson process NV on R
with intensity A > 0, i.i.d. service times o,, independent of N with Exponential(u) distribution.
Service discipline is Processor Sharing, i.e. when there are k& > 0 customers present, each
receives service at speed 1/k.

2.1 Show that the number of customers in the queue is Markovian. Determine its transition
rates and a stationary measure. Is the process reversible? Under what condition is it ergodic?

2.2 Assume now there are K distinct customer types, customers of type ¢ € [K] arriving at
instants of Poisson process IV; with intensity A; > 0, the IV; being mutually independent. Assume
that service times of all customers of all types are i.i.d. with Exponential(u) distribution (and
independent of the N;). Let X;(¢) be the number of type i-customers present at time ¢. Answer
same questions as in 2.1.



2.3 Assume now a network of L stations indexed by ¢ € [L], K distinct customer types,
k € [K]. Assume a fixed network, with nj, customers of type &, each following a fixed cyclic route
0(1,k),0(2,k),...,0(dk, k), €(1,k), ..., each ¢ appearing at most once per cycle. Finally assume
that service at station ¢ is Processor Sharing, with service times there with Exponential(iy)
distribution.

Noting Xj¢ the number of customers of type k at station ¢, prove that a stationary measure

for { Xpe}reir) ek is given by, noting y, := >, 5, Tre,
yelp,
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Hint: Determine rates g,/ of generator, and associated rates G, such that

(@) asr = 7" ras @ # 7, (1)
then verify that Zr;ﬁr/ (o'o = Zr;ﬁr/ Gz’ to conclude.
2.4 We now set puy = ACy, ny, = Awy, for fixed wy, Cp, and let A — co. We also set xp = Avgye
and y, = Auy with uy = Zkee Uke. Show with a crude version of Stirling’s formula that for

A — oo, the stationary distribution 7 concentrates its mass on solutions of the optimization
problem

Max ZkG[K] 2 vek ke log(CZfM)
Over vge >0, k € [K],£ €k, (2)
such that  , . vpe = wy, k € [K].

2.5 The above scenario admits the following interpretation: service types correspond to in-
dividual transmissions; each transmission is regulated by a fized window control with Awy the
window size in number of packets, and C; the capacity (in bytes/s) of server ¢. The limit A — oo
corresponds to a “small data packets / high transmission rates” regime.

We will admit that (2) is a concave maximization problem, whose optimum {vj},} is charac-
terized as achieving the maximum of

L({ore}, {Bk}) = Y > owe log( (=~ — + > Belwe =Y vke)

ke[K] Lek kE[K] lek

over {vg,} > 0 for some suitable vector of multipliers {3} € R¥.

Argue from the corresponding solution, taking Cyvke/u, as the rate of transmission k for any
¢ € k with up > 0, that the resulting rates correspond to (w, 1)-fairness, or weighted proportional
fairness.

3. Jackson networks and Kleinrock’s square root law

Consider a Jackson network with stations ¢ € I, routing probabilities p;;, single server queues at
each station, and service time distributions Exponential(1). Let A\; > 0 be the solutions of the
traffic equations. Assume that a total capacity C is available, and to be distributed among the
SErvers.

3.1 Write the stationary measure for a particular allocation C; of capacity to each server i,
C; > 0, Zie] C;=C.



3.2 Determine under which condition an allocation C; makes the system ergodic.

3.3 Assume the system can be made ergodic. Determine the allocation which minimizes the
average number of customers in the system.



