1. \(M/G/\infty/\infty \) queue and Poisson process

We consider a Poisson process \(N \leftrightarrow \{T_n\}_{n>0} \) on \(\mathbb{R}_+ \) with intensity \(\lambda > 0 \) and to each point \(T_n \) attach a service time \(\sigma_n \), where \(\{\sigma_n\}_{n>0} \) is i.i.d., independent of \(N \), with density \(f \) on \(\mathbb{R}_+ \).

1.1 Show that the set of points \(\{(T_n, \sigma_n)\}_{n>0} \) constitutes a (generalized) Poisson process. Determine its intensity function.

1.2 The number \(X_t \) of customers present at time \(t > 0 \) is given by
\[X_t = \sum_{n>0} 1_{T_n \leq t < T_n + \sigma_n}. \]
Show that \(X_t \) admits a Poisson distribution. Determine its parameter.

1.3 We now assume that \(N \) extends to all of \(\mathbb{R} \) so that, letting
\[X_t = \sum_{n \in \mathbb{Z}} 1_{T_n \leq t < T_n + \sigma_n}, \]
we obtain a stationary process. Determine the stationary covariance \(C(s) := \text{Cov}(X_t, X_{t+s}) \).

1.4 Is the process \(\{X_t\} \) Markovian for general density \(f \) of service times \(\sigma_n \)?

2. \(M/M/1/\infty \) queues with Processor Sharing discipline

We consider a single server queue with customer arrivals at instants of Poisson process \(N \) on \(\mathbb{R}_+ \) with intensity \(\lambda > 0 \). i.i.d. service times \(\sigma_n \) independent of \(N \) with Exponential(\(\mu \)) distribution. Service discipline is Processor Sharing, i.e. when there are \(k > 0 \) customers present, each receives service at speed \(1/k \).

2.1 Show that the number of customers in the queue is Markovian. Determine its transition rates and a stationary measure. Is the process reversible? Under what condition is it ergodic?

2.2 Assume now there are \(K \) distinct customer types, customers of type \(i \in [K] \) arriving at instants of Poisson process \(N_i \) with intensity \(\lambda_i > 0 \), the \(N_i \) being mutually independent. Assume that service times of all customers of all types are i.i.d. with Exponential(\(\mu \)) distribution (and independent of the \(N_i \)). Let \(X_i(t) \) be the number of type \(i \)-customers present at time \(t \). Answer same questions as in 2.1.
2.3 Assume now a network of L stations indexed by $\ell \in [L]$, K distinct customer types, $k \in [K]$. Assume a fixed network, with n_k customers of type k, each following a fixed cyclic route $\ell(1,k), \ell(2,k), \ldots, \ell(d_k,k)$, each ℓ appearing at most once per cycle. Finally assume that service at station ℓ is Processor Sharing, with service times there with Exponential(μ_ℓ) distribution.

Noting $X_{k\ell}$ the number of customers of type k at station ℓ, prove that a stationary measure for $\{X_{k\ell}\}_{k \in [K], \ell \in k}$ is given by, noting $y_\ell := \sum_{k \in \ell} x_{k\ell}$,

$$\pi(x) = \left(\prod_{k \in [K]} \mathbf{1}_{\sum_{\ell \in [L]} x_{k\ell} = n_k} \right) \prod_{\ell \in [L]} \left(\frac{y_\ell y_\ell^{x_{k\ell}}}{\prod_{k \in \ell} x_{k\ell}!} \right)$$

Hint: Determine rates $q_{xx'}$ of generator, and associated rates $\tilde{q}_{xx'}$ such that

$$\pi(x) q_{xx'} = \pi(x') \tilde{q}_{xx'}, \quad x \neq x', \quad (1)$$

then verify that $\sum_{x \neq x'} \tilde{q}_{xx'} = \sum_{x \neq x'} q_{xx'}$ to conclude.

2.4 We now set $\mu_\ell = AC_\ell$, $n_k = Aw_\ell$, for fixed w_ℓ, C_ℓ, and let $A \to \infty$. We also set $x_{k\ell} = Av_\ell$ and $y_\ell = Aw$ with $u_\ell = \sum_{k \in \ell} v_\ell$. Show with a crude version of Stirling’s formula that for $A \to \infty$, the stationary distribution π concentrates its mass on solutions of the optimization problem

$$\text{Maximize} \quad \sum_{k \in [K]} \sum_{\ell \in k} v_\ell \log\left(\frac{w_\ell}{C_\ell v_\ell} \right)$$

$$\text{over} \quad v_\ell \geq 0, \quad k \in [K], \quad \ell \in k,$$

$$\text{such that} \quad \sum_{\ell \in k} v_\ell = w_\ell, \quad k \in [K]. \quad (2)$$

2.5 The above scenario admits the following interpretation: service types correspond to individual transmissions; each transmission is regulated by a fixed window control with Aw_ℓ the window size in number of packets, and C_ℓ the capacity (in bytes/s) of server ℓ. The limit $A \to \infty$ corresponds to a “small data packets / high transmission rates” regime.

We will admit that (2) is a concave maximization problem, whose optimum $\{v_\ell^*\}$ is characterized as achieving the maximum of

$$L(\{v_\ell\}, \{\beta_k\}) := \sum_{k \in [K]} \sum_{\ell \in k} v_\ell \log\left(\frac{u_\ell}{C_\ell v_\ell} \right) + \sum_{k \in [K]} \beta_k (w_k - \sum_{\ell \in k} v_\ell)$$

over $\{v_\ell\} \geq 0$ for some suitable vector of multipliers $\{\beta_k\} \in \mathbb{R}^K$.

Argue from the corresponding solution, taking $C_\ell v_\ell / u_\ell$ as the rate of transmission ℓ for any $\ell \in k$ with $u_\ell > 0$, that the resulting rates correspond to $(w,1)$-fairness, or weighted proportional fairness.

3. Jackson networks and Kleinrock’s square root law

Consider a Jackson network with stations $i \in I$, routing probabilities p_{ij}, single server queues at each station, and service time distributions Exponential(1). Let $\lambda_i > 0$ be the solutions of the traffic equations. Assume that a total capacity C is available, and to be distributed among the servers.

3.1 Write the stationary measure for a particular allocation C_i of capacity to each server i, $C_i > 0$, $\sum_{i \in I} C_i = C$.

2
3.2 Determine under which condition an allocation C_i makes the system ergodic.

3.3 Assume the system can be made ergodic. Determine the allocation which minimizes the average number of customers in the system.