1. $M/G/\infty/\infty$ queue and Poisson process

We consider a Poisson process $N \leftrightarrow \{T_n\}_{n>0}$ on \mathbb{R}_+ with intensity $\lambda > 0$ and to each point T_n attach a service time σ_n, where $\{\sigma_n\}_{n>0}$ is i.i.d., independent of N, with density f on \mathbb{R}_+.

1.1 Show that the set of points $\{(T_n, \sigma_n)\}_{n>0}$ constitutes a (generalized) Poisson process. Determine its intensity function.

1.2 The number X_t of customers present at time $t > 0$ is given by $X_t = \sum_{n>0} 1_{T_n \leq t < T_n + \sigma_n}$. Show that X_t admits a Poisson distribution. Determine its parameter.

1.3 We now assume that N extends to all of \mathbb{R} so that, letting $X_t = \sum_{n \in \mathbb{Z}} 1_{T_n \leq t < T_n + \sigma_n}$, we obtain a stationary process. Determine the stationary covariance $C(t) := \text{Cov}(X_t, X_{t+s})$.

1.4 Is the process $\{X_t\}$ Markovian for general density f of service times σ_n?

2. $M/M/1/\infty$ queues with Processor Sharing discipline

We consider a single server queue with customer arrivals at instants of Poisson process N on \mathbb{R}_+ with intensity $\lambda > 0$, i.i.d. service times σ_n independent of N with Exponential(μ) distribution. Service discipline is Processor Sharing, i.e. when there are $k > 0$ customers present, each receives service at speed $1/k$.

2.1 Show that the number of customers in the queue is Markovian. Determine its transition rates and a stationary measure. Is the process reversible? Under what condition is it ergodic?

2.2 Assume now there are K distinct customer types, customers of type $i \in [K]$ arriving at instants of Poisson process N_i with intensity $\lambda_i > 0$, the N_i being mutually independent. Assume that service times of all customers of all types are i.i.d. with Exponential(μ) distribution (and independent of the N_i). Let $X_i(t)$ be the number of type i-customers present at time t. Answer same questions as in 2.1.
2.3 Assume now a network of \(L \) stations indexed by \(\ell \in [L] \), \(K \) distinct customer types, \(k \in [K] \). Assume a fixed network, with \(n_k \) customers of type \(k \), each following a fixed cyclic route \(\ell(1,k), \ell(2,k), \ldots, \ell(d_k, k), \ell(1,k), \ldots \), each \(\ell \) appearing at most once per cycle. Finally assume that service at station \(\ell \) is Processor Sharing, with service times there with Exponential(\(\mu_k \)) distribution.

Noting \(X_{k\ell} \) the number of customers of type \(k \) at station \(\ell \), prove that a stationary measure for \(\{X_{k\ell}\}_{k \in [K], \ell \in K} \) is given by, noting \(y_{\ell} := \sum_{k \geq \ell} x_{k\ell} \),

\[
\pi(x) = \left(\prod_{k \in [K]} 1^{\sum_{\ell \in [L]} x_{k\ell} = n_k} \right) \prod_{\ell \in [L]} \left(\frac{y_{\ell}\mu^{-\omega}_{\ell}}{\prod_{k \geq \ell}(x_{k\ell})!} \right)
\]

Hint: Determine rates \(q_{xx'} \) of generator, and associated rates \(\tilde{q}_{xx'} \) such that

\[
\pi(x)q_{xx'} = \pi(x')\tilde{q}_{x'x}, \quad x \neq x',
\]

then verify that \(\sum_{x \neq x'} \tilde{q}_{x'x} = \sum_{x \neq x'} q_{xx'} \) to conclude.

2.4 We now set \(\mu_{\ell} = AC_{\ell}, n_k = Aw_{k}, \) for fixed \(w_k, C_{\ell} \), and let \(A \to \infty \). We also set \(x_{k\ell} = Aw_{k\ell} \) and \(y_{\ell} = Aw \) with \(u_{\ell} = \sum_{k \in [K]} v_{k\ell} \). Show with a crude version of Stirling’s formula that for \(A \to \infty \), the stationary distribution \(\pi \) concentrates its mass on solutions of the optimization problem

\[
\begin{align*}
\text{Max} & \quad \sum_{k \in [K]} \sum_{\ell \in [L]} v_{k\ell} \log\left(\frac{u_{\ell}}{C_{\ell}v_{k\ell}} \right) \\
\text{Over} & \quad v_{k\ell} \geq 0, \; k \in [K], \ell \in k, \\
& \quad \sum_{\ell \in k} v_{k\ell} = w_k, \; k \in [K].
\end{align*}
\]

2.5 The above scenario admits the following interpretation: service types correspond to individual transmissions; each transmission is regulated by a fixed window control with \(Aw_k \) the window size in number of packets, and \(C_{\ell} \) the capacity (in bytes/s) of server \(\ell \). The limit \(A \to \infty \) corresponds to a “small data packets / high transmission rates” regime.

We will admit that (2) is a concave maximization problem, whose optimum \(\{v_{k\ell}^*\} \) is characterized as achieving the maximum of

\[
L(\{v_{k\ell}\}, \{\beta_k\}) := \sum_{k \in [K]} \sum_{\ell \in [K]} v_{k\ell} \log\left(\frac{u_{\ell}}{C_{\ell}v_{k\ell}} \right) + \sum_{k \in [K]} \beta_k (w_k - \sum_{\ell \in k} v_{k\ell})
\]

over \(\{v_{k\ell}\} \geq 0 \) for some suitable vector of multipliers \(\{\beta_k\} \in \mathbb{R}^K \).

Argue from the corresponding solution, taking \(C_{\ell}v_{k\ell}/u_{\ell} \) as the rate of transmission \(k \) for any \(\ell \in k \) with \(u_{\ell} > 0 \), that the resulting rates correspond to \((w,1)\)-fairness, or weighted proportional fairness.

3. Jackson networks and Kleinrock’s square root law

Consider a Jackson network with stations \(i \in I \), routing probabilities \(p_{ij} \), single server queues at each station, and service time distributions Exponential(1). Let \(\lambda_i > 0 \) be the solutions of the traffic equations. Assume that a total capacity \(C \) is available, and to be distributed among the servers.

3.1 Write the stationary measure for a particular allocation \(C_i \) of capacity to each server \(i \), \(C_i > 0, \sum_{i \in I} C_i = C \).
3.2 Determine under which condition an allocation C_i makes the system ergodic.

3.3 Assume the system can be made ergodic. Determine the allocation which minimizes the average number of customers in the system.