Réseaux: Fiche d’exercices 2
16 février 2015

Exercice 1: Coupling.
Let X_n be an irreducible aperiodic Markov chain with invariant probability π on state space E. We consider two independent realizations of the Markov chain X_n and Y_n with $X_0 = x$ and Y_0 following the distribution π. We define $W_n = (X_n, Y_n) \in E^2$.

(a) Show that W_n is an irreducible aperiodic positive recurrent Markov chain on $E \times E$.

(b) Show that $T = \inf\{n \geq 0, X_n = Y_n\}$ is a stopping time. We define $Z_n = \begin{cases} X_n, & n < T \\ Y_n, & n \geq T \end{cases}$

Show that Z_n is a Markov chain with the same distribution as X_n.

(c) Show that $\lim_{n \to \infty} \mathbb{P}(X_n = y) = \pi(y)$.

Exercice 2: Wald identity.
Consider a random walk $S_n = \sum_{i=1}^{n} X_i$ where X_i is a sequence of i.i.d. random variables with $\mathbb{E}[|X_1|] < \infty$. We will show that for any stopping time T with $\mathbb{E}[T] < \infty$, we have $\mathbb{E} [S_T] = \mathbb{E} [T] \mathbb{E} [X_1]$.

(a) Give a counter-example when T is not a stopping time with $\mathbb{P}(X_i = 0) = \mathbb{P}(X_i = 1) = 1/2$.

(b) Show that $S = \sum_{n=1}^{\infty} X_n 1(T \geq n)$.

(c) Conclude when T is bounded by a constant M.

(d) Conclude in general.

Exercice 3: Reflected random walk.
We consider the reflected random walk defined by $S_0 \in \mathbb{N}$ and for $n \geq 0$, $S_{n+1} = \max(S_n + \Delta_{n+1}, 0)$ where the sequence Δ_n is a sequence of i.i.d. random variables in \mathbb{Z} such that $\mathbb{E} [\Delta_1] < 0$ and $\mathbb{P}(\Delta_1 = 1) > 0$.

(a) Show that S_n is an aperiodic irreducible Markov chain on \mathbb{R}^+.

(b) Assume first that $\Delta_n \geq -1$ for all n. Let $T = \inf\{n > 0, S_n = 0\}$. Prove that $\mathbb{E}[T] < \infty$.

(c) In general, we define $M = \max \left(0, \max_{0 \geq \Delta \geq -1} \sum_{n=0}^{\Delta} \right)$.

Show that $\mathbb{P}(M < \infty) = 1$ and that if $S_0 = M$, then the law of S_n is the same as the law of M. Conclude about the recurrence of S_n.

1
Exercice 4: Instability of Aloha

Let \(A_n \) be the number of messages arriving at the end of time slot \(n \). We are given a sequence of i.i.d Bernoulli random variables \(\{B_n\} \) with mean \(p \) independent of the \(A_n \). If at the beginning of time slot \(n \), there are \(k \) messages waiting to be transmitted, each of them try to use the channel with probability \(p \) and the transmission is successful if \(\sum_{i=1}^{k} B_n = 1 \). Hence the evolution of the number \(L_n \) of messages to be transmitted at the beginning of the \(n \)-th time slot is given by:

\[
L_{n+1} = L_n + A_n - 1 \left(\sum_{i=1}^{n} B_i = 1 \right)
\]

(a) Show that if \(0 < P(A_n = 0) < 1 \) then \(L_n \) is an aperiodic irreducible Markov chain.

(b) From now on, we assume that \(A_1 \) is a Poisson random variable with mean \(\lambda > 0 \). Compute \(\mathbb{E}[z^{A_1}] \) and \(\mathbb{E}[A_1 z^{A_1-1}] \).

(c) We define \(S_1 = \sum_{i=1}^{\infty} A_i \). Compute \(P \left(\sum_{i=1}^{\infty} B_i = 1 \right) \).

(d) Show that \(P \left(\cap_{x=0}^{\infty} \left\{ \sum_{i=1}^{\infty} B_i \neq 1 \right\} \right) > 0 \) for \(x \) sufficiently large.

(e) Show that \(L_n \) is transient.

We will now show a stronger result: with probability one, there are only a finite number of successful transmissions. Before that, prove the following general result: given a sequence of events \(E_n \) with \(\sum_{n=1}^{\infty} P(E_n) < \infty \), show that the probability that infinitely many of the events occur is 0.

(f) Show that

\[
\sum P \left(\text{there is at least one successful transmission} \right) < \infty.
\]

Conclude.

Exercice 5: Birth-death process

Let \(X_n \) be a Markov chain defined by its transition probabilities

\[
\forall i \geq 0, \; p = \begin{cases}
\lambda & \text{if } j = i + 1, \\
1 - \lambda =: \mu & \text{if } j = \max(i - 1, 0)
\end{cases}
\]

with \(\lambda_0 = 1 \) and \(0 < \lambda < 1 \) for all \(i \geq 1 \). We define

\[
S_1 = 1 + \sum_{i=1}^{\infty} \frac{\lambda_0 \cdots \lambda_{i-1}}{\mu_1 \cdots \mu_{i-1}} \quad \text{and} \quad S_2 = 1 + \sum_{i=1}^{\infty} \frac{\mu_1 \cdots \mu_{i-1}}{\lambda_1 \cdots \lambda_{i-1}}
\]

Show that \(X_n \) is positive recurrent iff \(S_1 < \infty \) and \(X_n \) is recurrent iff \(S_2 = \infty \).