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Exercice 1:

(a) Let f be a concave function defined on a convex set Ω such that ∇f exists and is continuous
on Ω. Show that

x∗ ∈ arg max
x∈Ω

f(x)⇔ ∀x ∈ Ω, ∇f(x∗)(x− x∗) ≤ 0.

(b) A linear network has L links and L + 1 routes such that route 0 uses all links whereas route
` ∈ {1, . . . , L} uses only link `. For i ∈ {0, . . . , L} there are ni > 0 users on route i. For weights
w = (wi, i = 0, . . . , L), and α > 0, α 6= 1, compute the (w, α)-fair allocation.

(c) Consider the limits α→∞ and α→ 1 with equal weights.

Exercice 2: the Nash bargaining solution.
We consider the following two players game: given a convex set F ⊂ R2 and a disagreement point
v ∈ R2, the two players need to agree on a point x ∈ F so that player 1 will get x1 and player 2 will
get x2. If the players do not reach an agreement, then player 1 will get v1 and player 2 will get v2.

(a) Draw your favorite convex set in R2 and determine a max-min fair allocation. Now, choose an
arbitrary point v and play with your neighbor!

In order to formalize a bit the problem, we introduce the axioms for Nash’s bargaining solution
denoted φ(F, v) ∈ R2:

A1 (Strong efficiency). φ(F, v) is an allocation in F and for any x ∈ F , if x ≥ φ(F, v), then
x = φ(F, v).

A2 (Individual rationality). φ(F, v) ≥ v.

A3 (Scale covariance). For any numbers λ1, λ2, γ1, γ2 such that λ1λ2 > 0 if

G = {(λ1x2 + γ1, λ2x2 + γ2), (x1, x2) ∈ F}

and w = (λ1v1 + γ1, λ2v2 + γ2), then φ(G,w) = (λ1φ1(F, v) + γ1, λ2φ(F, v) + γ2).

A4 (Independence of irrelevant alternatives). For any convex set G, if G ⊂ F and φ(F, v) ∈ G
then φ(G, v) = φ(F, v).
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A5 (Symmetry). If v1 = v2 and {(x2, x1), (x1, x2) ∈ F} = F , then φ1(F, v) = φ2(F, v).

We will show that there is a unique solution function φ(., .) that satisfies all the axioms and

φ(F, v) ∈ arg max
x∈F, x≥v

(x1 − v1)(x2 − v2).

(b) Did your solution in (a) satisfy the axioms? Show that the Nash’s bargaining solution is given
by the following geometric picture:

(c) First conclude in the case where there is no point y ∈ F such that y > v. For the rest of this
exercice, we consider that there exists y ∈ F with y > v.

(d) Show that we need only to prove the statement for v = 0 and F such that the maximum of
x1x2 over F is located at (1, 1).

(e) In this case, show that F is below the line x1 + x2 = 2.

(f) Conclude by considering a suitable symmetric set.

Exercice 3: Modelling MulTCP.
We describe a weighted version of TCP, called MulTCP. Let w be a weight parameter and suppose:

• the rate of additive increase is multiplied by w, so that each acknowledgement increases cwnd
by w/cwnd and;

• the multiplicative decrease factor becomes 1−1/(2w), so that after a congestion indication the
window size becomes (1− 1/(2w))cwnd.
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(a) If the rate xr is approximated by cwnd/Tr, where Tr is the round-trip time for route r, show
that the evolution of xr can be approximated by:

d

dt
xr(t) =

wr

T 2
r

−
(
wr

T 2
r

+
x2
r

2wr

)
πr(t),

where πr(t) =
∑

`∈r p`(y`(t)) with y`(t) =
∑

r, `∈r xr(t).

(b) Recognize a primal algorithm and show that x(t) converges to the stable point:

xr =
wr

Tr

(
2

1− πr
πr

)1/2

.

Hint: arctan′(z) = 1
1+z2

.

(c) Show that when πr is small or xr is large, the rate is inversely proportional to the round-trip
time Tr and to the square root of the packet loss probability πr. Compare to a proportionally
fair allocation.

(d) Consider a network with three links and two routes: two of the links have round-trip time T1

and the last one has round-trip time T2 = 100T1. Moreover the two short links are congested
with a loss probability p1 whereas the long link is not p2 ≈ 0. The short route uses the two
short congested links and the long route uses a short link and a long one. If you had the choice
to locate a cache at the end of one of this route, which one would you choose? What changes
under proportional fairness?

Exercice 4: Multi-path routing.
We consider now a scenario where each source s may use several routes. We then define two matrices:
Asr = 1 if route r is possible for source s and Br` = 1 if link ` is on route r. We also denote by s(r)
the unique source of route r. The network utility maximization problem becomes:

max
x≥0

∑
s

Us

(∑
r

Asrxr

)
−
∑
`

C`

(∑
r

Br`xr

)
.

(a) Show that even if the Us are strictly concave and the C` are strictly convex, unicity of the
maximizing problem is lost in general.

(b) Propose a primal algorithm and modify it to ensure its convergence.
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