Reseaux: Fiche d’exercices 1
9 février 2015

Exercice 1:
(a) Let \(f \) be a concave function defined on a convex set \(\Omega \) such that \(\nabla f \) exists and is continuous on \(\Omega \). Show that
\[x^* \in \arg \max_{x \in \Omega} f(x) \iff \forall x \in \Omega, \nabla f(x^*)(x - x^*) \leq 0. \]

(b) A linear network has \(L \) links and \(L + 1 \) routes such that route 0 uses all links whereas route \(\ell \in \{1, \ldots, L\} \) uses only link \(\ell \). For \(i \in \{0, \ldots, L\} \) there are \(n_i > 0 \) users on route \(i \). For weights \(w = (w_i, i = 0, \ldots, L) \), and \(\alpha > 0, \alpha \neq 1 \), compute the \((w, \alpha)\)-fair allocation.

(c) Consider the limits \(\alpha \to \infty \) and \(\alpha \to 1 \) with equal weights.

Exercice 2: the Nash bargaining solution.
We consider the following two players game: given a convex set \(F \subset \mathbb{R}^2 \) and a disagreement point \(v \in \mathbb{R}^2 \), the two players need to agree on a point \(x \in F \) so that player 1 will get \(x_1 \) and player 2 will get \(x_2 \). If the players do not reach an agreement, then player 1 will get \(v_1 \) and player 2 will get \(v_2 \).

(a) Draw your favorite convex set in \(\mathbb{R}^2 \) and determine a max-min fair allocation. Now, choose an arbitrary point \(v \) and play with your neighbor!

In order to formalize a bit the problem, we introduce the axioms for Nash’s bargaining solution denoted \(\phi(F, v) \in \mathbb{R}^2 \):

A1 (Strong efficiency). \(\phi(F, v) \) is an allocation in \(F \) and for any \(x \in F \), if \(x \geq \phi(F, v) \), then \(x = \phi(F, v) \).

A2 (Individual rationality). \(\phi(F, v) \geq v \).

A3 (Scale covariance). For any numbers \(\lambda_1, \lambda_2, \gamma_1, \gamma_2 \) such that \(\lambda_1 \lambda_2 > 0 \) if
\[G = \{(\lambda_1 x_2 + \gamma_1, \lambda_2 x_2 + \gamma_2), (x_1, x_2) \in F \} \]
and \(w = (\lambda_1 v_1 + \gamma_1, \lambda_2 v_2 + \gamma_2) \), then \(\phi(G, w) = (\lambda_1 \phi(F, v) + \gamma_1, \lambda_2 \phi(F, v) + \gamma_2) \).

A4 (Independence of irrelevant alternatives). For any convex set \(G \), if \(G \subset F \) and \(\phi(F, v) \in G \) then \(\phi(G, v) = \phi(F, v) \).
A5 (Symmetry). If \(v_1 = v_2 \) and \(\{(x_2, x_1), (x_1, x_2) \in F\} = F \), then \(\phi_1(F, v) = \phi_2(F, v) \).

We will show that there is a unique solution function \(\phi(.,.) \) that satisfies all the axioms and

\[
\phi(F, v) \in \arg \max_{x \in F, x \geq v} (x_1 - v_1)(x_2 - v_2).
\]

(b) Did your solution in (a) satisfy the axioms? Show that the Nash’s bargaining solution is given by the following geometric picture:

(c) First conclude in the case where there is no point \(y \in F \) such that \(y > v \). For the rest of this exercise, we consider that there exists \(y \in F \) with \(y > v \).

(d) Show that we need only to prove the statement for \(v = 0 \) and \(F \) such that the maximum of \(x_1x_2 \) over \(F \) is located at \((1, 1)\).

(e) In this case, show that \(F \) is below the line \(x_1 + x_2 = 2 \).

(f) Conclude by considering a suitable symmetric set.

Exercice 3: Modelling MulTCP.

We describe a weighted version of TCP, called MulTCP. Let \(w \) be a weight parameter and suppose:

- the rate of additive increase is multiplied by \(w \), so that each acknowledgement increases \(cwnd \) by \(w/cwnd \) and;

- the multiplicative decrease factor becomes \(1 - 1/(2w) \), so that after a congestion indication the window size becomes \((1 - 1/(2w))cwnd \).
a) If the rate x_r is approximated by $cwnd/T_r$, where T_r is the round-trip time for route r, show that the evolution of x_r can be approximated by:

$$\frac{d}{dt}x_r(t) = \frac{w_r}{T_r^2} - \left(\frac{w_r}{T_r^2} + \frac{x_r^2}{2w_r} \right) \pi_r(t),$$

where $\pi_r(t) = \sum_{\ell \in r} p_l(y_\ell(t))$ with $y_\ell(t) = \sum_{r, \ell \in r} x_r(t)$.

b) Recognize a primal algorithm and show that $x(t)$ converges to the stable point:

$$x_r = \frac{w_r}{T_r} \left(2 \frac{1 - \pi_r}{\pi_r} \right)^{1/2}.$$

Hint: $\arctan'(z) = \frac{1}{1+z^2}$.

c) Show that when π_r is small or x_r is large, the rate is inversely proportional to the round-trip time T_r and to the square root of the packet loss probability π_r. Compare to a proportionally fair allocation.

d) Consider a network with three links and two routes: two of the links have round-trip time T_1 and the last one has round-trip time $T_2 = 100T_1$. Moreover the two short links are congested with a loss probability p_1 whereas the long link is not $p_2 \approx 0$. The short route uses the two short congested links and the long route uses a short link and a long one. If you had the choice to locate a cache at the end of one of this route, which one would you choose? What changes under proportional fairness?

Exercice 4: Multi-path routing.

We consider now a scenario where each source s may use several routes. We then define two matrices: $A_{sr} = 1$ if route r is possible for source s and $B_{r\ell} = 1$ if link ℓ is on route r. We also denote by $s(r)$ the unique source of route r. The network utility maximization problem becomes:

$$\max_{x \geq 0} \sum_s U_s \left(\sum_r A_{sr}x_r \right) - \sum_\ell C_\ell \left(\sum_r B_{r\ell}x_r \right).$$

a) Show that even if the U_s are strictly concave and the C_ℓ are strictly convex, unicity of the maximizing problem is lost in general.

b) Propose a primal algorithm and modify it to ensure its convergence.