US 20080016547A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2008/0016547 A1

Anderson et al.

(43) Pub. Date:

Jan. 17, 2008

(54) SYSTEM AND METHOD FOR SECURITY
PLANNING WITH HARD SECURITY
CONSTRAINTS

(735)

Inventors:

Kay Schwendimann Anderson,
Washington, DC (US); Pau-Chen
Cheng, Yorktown Heights, NY
(US); Genady Ya. Grabarnik,
Scarsdale, NY (US); Paul Ashley
Karger, Chappaqua, NY (US);
Marc Lelarge, Plessis-Robinson
(FR); Zhen Liu, Tarrytown, NY
(US); Anton Viktorovich Riabov,
Ossining, NY (US); Pankaj
Rohatgi, New Rochelle, NY (US);
Angela Marie Schuett, Columbia,
MD (US); Grant Wagner,
Columbia, MD (US)

Correspondence Address:

F. CHAU & ASSOCIATES, LLC
130 WOODBURY ROAD
WOODBURY, NY 11797

T,

[

(73) Assignee: International Business Machines
Corporation
(21) Appl. No.: 11/484,418
(22) Filed: Jul. 11, 2006
Publication Classification
(51) Imt. CL
HO4L 9/00 (2006.01)
(52) US. CL o 726/1
(57) ABSTRACT

A method for security planning with hard security con-
straints includes: receiving security-related requirements of
a network to be developed using system inputs and process-
ing components; and generating the network according to
the security-related requirements, wherein the network sat-
isfies hard security constraints.

215

Patent Application Publication Jan. 17,2008 Sheet 1 of 2 US 2008/0016547 A1

Receiving descriptions of system inputs
and processing components
105

Receiving security-related requirements
of a network to be developed using the
system inputs and processing
components . 110

Y

Generating the network according to the
security-related requirements, wherein [____
the network satisfies hard security
constraints 115

\ 4

Deploying the network that satisfies the
security hard constraints in a real
production system 120

FIG. 1

US 2008/0016547 A1

Jan. 17,2008 Sheet 2 of 2

Patent Application Publication

vy
—
(o)}

gomscecmmmceacacesan~

210

Available components

FIG. 2

US 2008/0016547 Al

SYSTEM AND METHOD FOR SECURITY
PLANNING WITH HARD SECURITY
CONSTRAINTS

GOVERNMENT INTERESTS

[0001] This invention was made with Government support
under Contract No.: H98230-04-3-0001 awarded by the U.S.
Department of Defense. The Government has certain rights
in this invention.

BACKGROUND OF THE INVENTION

[0002] 1. Technical Field

[0003] The present invention relates to network security,
and more particularly, to security planning with hard secu-
rity constraints.

[0004] 2. Discussion of the Related Art

[0005] A component environment is an environment
where entities (e.g., data, documents, machine parts or raw
materials) are processed by a network or multiple networks
of interconnected components (e.g., computers, business
services, factory machinery, etc.). Each component can
consume and produce entities. The components can be
connected by delivery channels. If two components are
connected, all or some of the entities produced by one or
both of the components can be consumed by the other
component.

[0006] The components can also consume entities taken
from external (e.g., primal) sources if a corresponding
source-component connection is established and the entities
produced can be shipped outside the system. The entities
shipped outside the system are considered a final product of
the component network. The component environment pro-
vides the infrastructure necessary for connecting compo-
nents, activating the components and delivery channels, and
implementing the entire production cycle, delivering entities
from sources, to components, and to consumers of the final
product.

[0007] The main advantage of a component environment
is component reuse. For example, different networks of
components can be composed as needed to generate a final
product according to current business requirements. The
same component can participate in multiple networks. In
some environments, for example, in computer systems pro-
cessing data in digital formats, entities can be easily copied,
which further increases potential reuse, thereby allowing the
entities to be produced once but consumed multiple times by
multiple processing components.

[0008] In many environments, components can be rear-
ranged dynamically to form new networks to adapt to
changing conditions, such as changing availability of primal
sources or introduction of new (e.g., more efficient) com-
ponents. Examples of component environments include
computer systems such as semantic grid, stream processing,
web services and autonomic computing systems, as well as
automated production lines and business document flows.
[0009] In many applications, entities flowing in and out of
a component network and between components are consid-
ered valuable entities and the value contained in the system
must be protected. Value of an entity can be, for example:
[0010] 1) Actual monetary value of a physical object (e.g.,
an entity), or replacement value of the entity, if the entity is
a physical object.

Jan. 17, 2008

[0011] 2) An estimate of the loss resulting from making
information public or releasing it to another party, if, for
example, the entity is a private document, or an object
containing secrets (e.g., trade secrets or personally identifi-
able information protected under privacy laws).

[0012] 3) A combination of 1) and 2) when the entity has
both monetary value and trade secret aspects, e.g., if secrets
can be discovered by inspecting or reverse-engineering the
entity.

[0013] Special security procedures are followed in such
environments to prevent potential loss of entities. Without
loss of generality, it can be assumed that the delivery
channels between the components are trusted and secure
since many well known techniques exist for creating secure
delivery channels. For example, when the entities consist of
data, cryptographic techniques can be applied to protect data
in transit from being disclosed or modified.

[0014] As described above, losses can occur at the com-
ponents if the components leak the entities or at the con-
sumer side if the consumers of the product leak the entities.
A method for controlling security risks in these environ-
ments is to restrict the set of entities exposed to components
and product consumers to the minimum necessary required
for system functionality. This can be achieved with the
enforcement of access control policies, which are also
known as hard security constraints. The term hard security
constraints is used because the access control policies are
strictly enforced, and violation of these policies leads to a
security risk that cannot be easily quantified. In other words,
the system satisfies the hard security constraints, or it does
not.

[0015] To prevent losses, various security policies for
access control are used. The most commonly used policies
belong to one of two types: Mandatory Access Control
(MAC) and Discretionary Access Control (DAC). In DAC
policies, the principals owning the entities are allowed to
grant and revoke access to other principals. In MAC poli-
cies, entities do not have owners, and access to entities is
controlled by the environment based on categorization of the
entities and clearance levels assigned to the principals. Both
classes of access control policies specify a set of formal rules
that are used by an enforcement or auditing facility to decide
whether a subject can access an object, and take appropriate
action (e.g., deny access or raise an alarm).

[0016] In component environments, the entities play the
role of objects, and components play the role of subjects.
Access control policies are implemented by assigning labels
to objects and subjects, and specifying the access rules in
terms of the labels. In particular, implementation of an
access control policy may require that object labels are
assigned to entities, and subject labels are assigned to
components. Further, the policy compliance of a network of
components can be verified using access control rules
defined by the policy.

[0017] The literature in the field of access control com-
monly discusses permissions for subjects to “read” and
“write” objects, which in the context of component envi-
ronments corresponds to components consuming and pro-
ducing entities. The “write” operation is understood as
creating a new object (e.g., an entity), and not as modifying
an existing object (e.g., the entity). In particular, the subject
label of each component producing entity has “write” access
to the object label of the produced entity, and the subject

US 2008/0016547 Al

label of each component consuming an entity has “read”
access to the object label of the consumed entity.

[0018] In many access control systems the set of subject
labels is partially ordered. For example, for any subject label
there can be a number of other subject labels that have
“read” access to the same or a smaller set of object labels,
which at the same time, have “write” access to the same or
a larger set of object labels. In other words, the subject label
assigned to a component can potentially be “reduced” in this
partial order such that the subject label still allows “read”
access to object labels of all consumed entities and “write”
access to object labels of all produced entities and at the
same time restrict “read” access to a smaller set of entities.

SUMMARY OF THE INVENTION

[0019] In an exemplary embodiment of the present inven-
tion, a method for security planning with hard security
constraints comprises: receiving security-related require-
ments of a network to be developed using system inputs and
processing components; and generating the network accord-
ing to the security-related requirements, wherein the net-
work satisfies hard security constraints.

[0020] The network is generated using a planning algo-
rithm. The planning algorithm receives a planning task in
Planning Domain Definition Language (PDDL) or Stream
Processing Planning Language (SPPL) format. The hard
security constraints are Bell-LaPadula constraints, Biba
integrity constraints, Caernarvon model constraints or Role-
based access control constraints.

[0021] The method further comprises receiving descrip-
tions of the system inputs and processing components. The
descriptions are metadata. The method further comprises
deploying the network that satisfies hard security constraints
in a real production system. The network includes a down-
grader.

[0022] In another exemplary embodiment of the present
invention, a method for security planning with access con-
trol policies comprises: receiving descriptions of available
external inputs and processing components; receiving first
security-related requirements of a first network to be devel-
oped using the available external inputs and processing
components; and generating the first network according to
the security-related requirements, wherein the first network
satisfies access control policies.

[0023] Generating the first network according to the secu-
rity-related requirements comprises: assigning object and
subject labels to system inputs and processing components
in the first network; and verifying access control policies for
the system inputs and processing components in the first
network.

[0024] The method further comprises: receiving second
security-related requirements of a second network to be
developed using the available external inputs and processing
components; and generating the second network according
to the second security-related requirements, wherein the
second network satisfies the access control policies; and
deploying the first or second networks that satisfy the access
control policies in a real production system. The first or
second networks that satisfy the access control policies are
newly generated networks or modifications of existing net-
works. The method further comprises translating privacy
constraints into access control policies.

[0025] In yet another exemplary embodiment of the
present invention, a computer program product comprising

Jan. 17, 2008

a computer useable medium having computer program logic
recorded thereon for security planning with hard security
constraints, the computer program logic comprises: program
code for receiving security-related requirements of a net-
work to be developed using system inputs and processing
components; and program code for generating the network
according to the security-related requirements, wherein the
network satisfies hard security constraints.

[0026] The computer program product further comprises:
program code for receiving descriptions of the system inputs
and processing components; and program code for deploy-
ing the network that satisfies hard security constraints in a
real production system.

[0027] In still another exemplary embodiment of the
present invention, a computer program product comprising
a computer useable medium having computer program logic
recorded thereon for security planning with access control
policies, the computer program logic comprises: program
code for receiving descriptions of available external inputs
and processing components; program code for receiving first
security-related requirements of a first network to be devel-
oped using the available external inputs and processing
components; and program code for generating the first
network according to the security-related requirements,
wherein the first network satisfies access control policies.
[0028] The computer program product further comprises:
program code for receiving second security-related require-
ments of a second network to be developed using the
available external inputs and processing components; and
program code for generating the second network according
to the second security-related requirements, wherein the
second network satisfies the access control policies; program
code for deploying the first or second networks that satisfy
the access control policies in a real production system; and
program code for translating privacy constraints into access
control policies.

[0029] The foregoing features are of representative
embodiments and are presented to assist in understanding
the invention. It should be understood that they are not
intended to be considered limitations on the invention as
defined by the claims, or limitations on equivalents to the
claims. Therefore, this summary of features should not be
considered dispositive in determining equivalents. Addi-
tional features of the invention will become apparent in the
following description, from the drawings and from the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] FIG. 1 is a flowchart illustrating a method for
security planning with hard security constraints according to
an exemplary embodiment of the present invention; and
[0031] FIG. 2 is a block diagram illustrating a process of
generating a network of components according to an exem-
plary embodiment of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

[0032] An automated method for constructing component
networks, or modifying existing networks, such that the
resulting network satisfies a chosen access control policy
(e.g., a hard security constraint, according to an exemplary
embodiment of the present invention will now be described.

US 2008/0016547 Al

[0033] Referring now to FIG. 1, a method for security
planning with hard security constraints according to an
exemplary embodiment of the present invention is shown.
Here, descriptions of each available system input and pro-
cessing component are created (105). The descriptions may
be entered into a database or a knowledgebase computer
system for simplified search and data management. The
descriptions may include, for example, security properties,
as well as specific properties describing the content of
entities and functionality of the processing components.
[0034] A description of requirements describing results, or
the desired outcome, of the processing are input by a user
(110). In other words, security-requirements of a network to
be developed using the system inputs and processing com-
ponents is received. The description of the user requirements
includes, for example, a definition of a maximum-accepted
security risk level. This level may be fixed by a system-wide
security policy or chosen by the user from a range allowed
by the system-wide security policy.

[0035] After the descriptions of the processing compo-
nents, system inputs, and user requirements become avail-
able, processing components are selected, and a network of
processing components, which satisfy an access control
policy, is created (115). The network is created by matching
an output of a station (or a primal entity) to an input of
another station (or a primal entity), and specifying which
outputs in the network are the final outputs that contain the
product while satisfying the access control policy.

[0036] The network is then implemented (e.g., deployed)
and used in a real production system (120). It should be
appreciated that steps 110 and 115 can be repeated several
times (shown by the dotted line of FIG. 1) for constructing
an alternative composition (e.g., network) of processing
components that satisfy different user objectives.

[0037] Referring now to FIG. 2, the process of generating
a component network based on information about process-
ing components 205, information about system inputs 210
and product requirements 215 is illustrated. A result 220,
produced by the network must match the product require-
ments 215, while at the same time satisfy access control
policies. The network comprises a selection of the process-
ing components 205, system inputs 210, and interconnec-
tions between the processing stations 205 and between the
system inputs 210 and processing stations 205.

[0038] Now that the method for constructing component
networks, or modifying existing networks such that the
resulting network satisfies an access control policy has been
described, examples of the access policies, hereinafter
referred to interchangeably as “hard constraints”, “access
policies” or “security policies”, that must be satisfied when
constructing a component network will be described.
[0039] First, it is to be understood that to implement
access control within component environments using hard
constraints, the following considerations must be addressed:
[0040] 1) The object network and subject labels must be
assigned to entities and components within each component
network.

[0041] 2) Access control rules must be verified for all
entities produced or consumed by components. Further, if
there is a choice in assigning subject and object labels, the
labels must be assigned to minimize security risk.

[0042] A multi-level security (MLS) Bell-LaPadula policy
with Biba integrity labels will now be described. This policy
will also be referred to as “MLS”.

Jan. 17, 2008

[0043] In a componentized MLS system, each of the
components is assigned a single access class on which it
operates. Each entity is assigned a label that specifies a
minimum access class required to receive the entity. A
security policy is comprised of three types of rules:

[0044] 1) Each component cannot accept any entities that
require an access class higher than the component’s access
class.

[0045] 2) Each component must label all entities that it
produces with a minimum access class equal to or higher
than the component’s access class. This rule ensures that
entities are not relabeled with lower access classes, or are
not contained (partially or completely) in the outgoing
entities that have lower access classes, and thus, helps to
avoids losses. However, special-purpose components, after a
mandatory review of their operation, can be authorized to
violate this rule and assign lower access classes to output
without incurring a security risk.

[0046] 3) The recipient of the products produced by the
network of components is also assigned an access class, and
therefore, the products must be entities labeled with the
access class of the consumer, or lower.

[0047] It is to be understood that violation of any of these
rules, except those by special-purpose components accord-
ing to their permission, results in a security risk. In other
words, if the rules are violated, there exists the possibility
that the value is lost.

[0048] Since a model of the method for constructing
component networks, or modifying existing networks such
that the resulting network satisfies a chosen access control
policy builds upon MLS and Biba integrity models, the
model will be described with respect to information, but the
model can be easily extended for secure processing of
physical objects.

[0049] The processing components will be referred to as
Processing Elements (PEs), and one-way communication
will be modeled between the PEs with streams of data
flowing between output and input ports of the PEs. The
correctness of this model flows from the correctness results
known for MLS and Biba integrity labels.

[0050] Security Labels and User Labels will now be
discussed.

[0051] Security Labels are used for:

[0052] 1) Labeling data objects according to the sensitivity

of information contained therein and the integrity of their
data.

[0053] 2) Describing access permissions and restrictions
associated with the subject (e.g., a user of the PEs).
[0054] Security labels are elements of label set A, on
which a partial order is defined. A partial order denoted

by < is a relation on set A, if it is:

[0055] 1. Reflexive: a<a for all a that are elements of A;
[0056] 2. Anti-symmetric: a<b and b<a implies a=b.
[0057] 3. Transitive: a<b and b<c implies a<c.
[0058] The following operations on the elements of the set
are defined as:

[0059] 1. allb is equal to an element c of the partially

ordered set A such that a<c and b<c, and for all deA

such that a<d and b<d it holds that c<d.
[0060] 2. Symmetrically, allb is equal to an element ¢

of A such that a)»c¢ and b}>c, and for all deA such that
a>d and b}>d it holds that ¢>d.

US 2008/0016547 Al

[0061] The partial order is used to control access to
objects. Here, the necessary condition for allowing read
access of a subject having label L, to an object with label L,
is that [, <L,. If this condition is not satisfied, a read access
request will be rejected.

[0062] For write requests, the reverse relationship must
hold. Here, the subject having label L, can be allowed to
write an object with label L, only if L, >L,.

[0063] In security models that allow the use of downgrad-
ers, each subject is assigned two labels, e.g., a “read” label
and a “write” label. In the former rule mentioned above, the
“read” label of the subject is used in place of the subject
label L,, and the “write” label is used in place of L, in the
latter rule.

[0064] The security models described above are referred
to as lattice-based models, where the set A is referred to as
the lattice.

[0065] For each inquiry planning request, the credentials
of the user making the request uniquely define the user’s
security label (e.g., user label). The user label plays two
roles during the construction of a plan graph:

[0066] 1) As a constraint on the output stream labels. All
output stream labels must be less than the user label in
partial order.

[0067] 2) As an object label for information supplied in an
inquiry specification.

[0068] There are no other uses of the user label. In
particular, the user label is not used to mark the PEs as
belonging to any single user.

[0069] Primal Stream and User Request Labels followed
by Derived Stream and PE Labels will now be discussed.
[0070] Each object entering the stream processing system
must have a security label assigned thereto. The following
information enters the system:

[0071] 1) Primal streams
[0072] 2) Inquiry specification.
[0073] Each data source specification includes the security

label associated with the primal stream produced by the data
source. As with all stream labels, the primal stream labels
must be equal or exceed in partial order the maximum of all
possible labels of all objects that may travel via this stream.
[0074] The primal stream labels are assigned by Data
Acquirers during the process of registering the data source
in the stream. The Data Acquirers may use their judgment
for assigning the labels, or use automated data analysis tools
that can assist them in defining the labels based on the data
that is coming through the data source. These data analysis
tools can be developed independently of security planning.
[0075] Inquiry specification, including inquiry parameters
such as search criteria, carries the label of the requesting
user. If any values from inquiry specification are supplied to
the PE (e.g., as execution parameters), these values are
treated as inputs to the PE for purposes of label computation,
and thus, the output of the PE will normally carry the label
identifying at least the requesting user if the PE is not a
special-purpose trusted PE, which is allowed to reduce
labels of processed information.

[0076] Labels of derived streams are computed using the
transformation formula as described in this section. For each
PE the following labels can be specified:

[0077] 1) The input maximum label C, for each input
port j of the PE, =1 . .. I.

Jan. 17, 2008

[0078] 2) The output minimum label I, and the output
maximum label U, for each output port k of the PE, k=1
... K (assume [,<U,).
[0079] Each of these labels may be omitted in each port
specification. For generality, during computation it is
assumed that if the input maximum label is not defined for
input port j, then C,=, where is the largest label in the
partial order, i.e., 1<co for all labels 1. Similarly, if the
maximum output label is not defined for port k, it is assumed
that U,=co. If the output minimum is not specified for output
port k, then it is assumed that LL,=0, where 0 is the smallest
label in the partial order, i.e., 0<1 for all labels 1.
[0080] If U,=c0 for some 1=k=K, then the PE is consid-
ered a special-purpose trusted PE that must be trusted to
write lower security labels than those assigned to the infor-
mation it receives. Appropriate code review and certification
must be performed before registering this PE in the system
to ensure that the PE will not leak sensitive information
under lower sensitivity labels.
[0081] To compute the output label I', for each output port
k, k=1 ...K, the following additional information is needed:

[0082] 1) For each input port j, j=1 ... J, the label |, of the
stream connected to that port. The planner must ensure that
1<C,.

[0083] 2) Additional information regarding input label 1. It

is assumed that 1 is equal to the user label if the PE has been
configured with parameter values originating from the
inquiry specification, and 1=0 otherwise.

[0084] The output label I'; is then computed according to
this formula:

z;:(ZLILkLI(I zj]]nuk.
l=j=J

[0085] Given a directed acyclic graph representing the
workflow, this formula can be applied in iteration, starting
from the sources, to compute the label of workflow output
based on the labels of workflow inputs.

[0086] An example of security labels based on a Caernar-
von model will now be discussed.

[0087] Inthe Caernarvon model, a security label is a triple
L=(s,c,i), where s is the secrecy level, c is the category set,
and 1 is the integrity level. Each of these components is
defined in more detail below. In addition, s=s(L.), c=c(L),
=().

[0088] Secrecy level is an integer in the interval between
constants S, and S, . Secrecy level reflects the sensitivity
of the information. For example, the higher the sensitivity,
the higher the secrecy level. Each number in this range
corresponds to one of the secrecy labels such as “top secret”,
“secret”, “confidential” or “unclassified”. It is assumed that
the ordering is preserved when the labels are mapped to the
integers in the [S,,;,.,S,,..] interval, where S, ., corresponds
to the most sensitive information and S, to the least
sensitive information.

[0089] In the labels assigned to streams, secrecy level
corresponds to the maximum secrecy level over all objects
that can pass through the stream.

[0090] Category set is the set of categories to which the
object belongs. An object can belong to zero or more
categories. A planning solver can view ¢ as a zero-one set

US 2008/0016547 Al

membership vector, which contains ones for every category
that is relevant for the object, and zero for all other catego-
ries.

[0091] In the labels assigned to streams, category set
corresponds to the union of category sets of all objects that
can pass through the stream.

[0092] Integrity level describes trustworthiness of the
information. It is an integer in the interval [1,,,,.1,,,.]. It can
correspond, for example, to an integrity level in the Biba
integrity model.

[0093] A partial order is defined as follows. Label L,=(s,,
¢,,1;) precedes label 1.,=(s,,c,.1,) in the partial order, and L,

L, is written, if and only if each of the following condi-
ffons is satisfied:

[0094] 1)s,=s,
[0095] 2)c,c=c,
[0096] 3) i, =i,.
[0097] The following notation is used to represent such a

security label, assuming letters A-Z denote available cat-
egories:

[0098] ([2.{A.D,Z}].5).

[0099] Examples of a partial order comparison are shown
below

[0100] (12,{A.D.Z}],5)<([4.{A,B.C.D,Z}].3).

[0101] With the partial order, it is possible that some

elements of the set are not comparable, see below:

[0102] ([2.{A.D.X.Z}].5)4(4.{A.B.C.D,Z}].3)
[0103] (12,{A.D.Z}].2)£(4.{A,B.C.D,Z}].3)
[0104] The combination operations on the labels, for any

two labels L,=(s,,c;,i;) and L,=(s,,c,,i,) are defined as: L,
L,=(max{s,,s,}c,Uc,,min{i;,i,}) and
" TIL,=(min{s, s, }¢;Nc,, max{i,,i}).

[0105] Now that several access control policies have been

described, the implementation of security planning with
hard constraints will be discussed.

[0106] The implementation of security planning with hard
constraints requires representing the user, data source, and
PE labels as predicates in the planning domain. The methods
for representing these labels typically depend of the expres-
sivity of the planning task description language, and on the
nature of the labels. Two exemplary methods will be
described below.

[0107] It is to be understood that both examples consider
security labels of the Caernarvon model described above.
One of the examples uses Planning Domain Definition
Language (PDDL) representation for planning tasks, and the
other uses Stream Processing Planning Language (SPPL)
representation. Depending on the representation, different
planners can be used to construct plans. Although various
planners exist for both PDDL and SPPL, if the planning task
is described correctly, e.g., such that the security policy rules
described above for general labels from the lattice are
expressed and enforced by the planner, the resulting work-
flows will be compliant with the security policy independent
of which planner is used.

[0108] It should also be understood that elements of the
description of the planning task given below are necessary,
but not sufficient, and other constraints, such as input-output
data type compatibility between communicating PEs, etc.
can be added.

symmetrically,

Jan. 17, 2008

[0109] A PDDL encoding of Bell-LaPadula policy with
Biba integrity labels in which each processing component is
represented by a PDDL action, and a stream is represented
by a PDDL object, will now be described.

[0110] A general workflow planning problem in PDDL
uses a straightforward approach, representing each stream
by a stream object. For simplicity it is assumed that the
composition rules in the system are represented by a system
of types. As long as a stream contains a type required by an
input port of the component, the stream can be connected to
the port, resulting in a valid workflow. More complex rules,
including various optimization criteria, can also be imple-
mented. Since all objects to be used are of type stream, one
PDDL type is defined as follows:

(:types stream)

[0111] One predicate (has-type-X ?s-stream) is defined for
each type X. If true in some state, it means that stream ?s
carries type X in that state. In addition, it is needed to keep
track of initialized streams, so that newly created streams do
not overwrite a description of the streams produced by other
actions. Therefore, a predicate (unused ?s-stream) is defined,
which, if true in some state, means that stream object ?s is
not yet an instantiated stream in that state, and it is safe to
use it as an output stream of an action. A special predicate
(goal-reached) is introduced that holds in the goal state. Here
is an example predicate definition for the planning domain:

(:predicates
(has-type-video ?s - stream)
(has-type-audio ?s - stream)

(has-type-temperature ?s - stream)
(unused ?s - stream)
(goal-reached)

[0112]
form:

Description of actions then will have the following

(raction A

(:parameters ?inl ?in2 ?in3 ?outl ?out2 - stream)

(:precondition (and (has-type-audio ?inl)
(has-type-temperature ?in2) (has-type-video ?in3)
(unused ?outl) (unused ?out2)))

(effect (and (has-type-humidity ?outl)
(has-type-detected-motion ?out2)
(not (unused ?outl)) (not (unused ?out2))))

[0113] A goal-reaching action is also introduced. The
precondition of this action can be used to describe condi-
tions the end user requirements place on the output stream.
Within the model of composition rules, these conditions are
given in the form of type requirements, just like action
preconditions. This action has a single effect of setting the
(goal-reached) predicate.

US 2008/0016547 Al

(:action ReachGoal
(:parameters ?inl ?in2)
(:precondition (and
(has-type-humidity ?inl) (has-type-temperature ?in2)))
(ceffect (goal-reached))
)

[0114] As will be shown in this example, each action
specifies required types of input ports in the precondition,
and the produced types are assigned to new streams in the
effect statement. Also, it is required that each output stream
is not used before the action is applied, and is to be marked
as used in the effect of the action, making them unchange-
able by other actions after this action initializes the objects.
[0115] The above statements describe the planning
domain. To describe the planning problem, objects and
initial and goal states need to be described. First, enough
stream objects are introduced so that the total number of
available objects would be sufficient for any practical work-
flow created by the planner. In this example 200 stream
objects are created. In PDDL each object must have a name,
therefore, arbitrary names are assigned to the objects. These
names are later used to establish connections between input
and output ports.

(:objects s1 s2 83 s4 s5 ... s200 - stream)

[0116] Initial state describes the types of primal streams,
and marks every non-primal stream object as un-initialized.

(:init (has-type-audio s1) (has-type-temperature s2)
(unused s3) ... (unused s200))

[0117] Finally, goal statement specifies that the workflow
must find a feasible solution.

(:goal (goal-reached))

[0118] The domain and problem description introduced
above represent the workflow composition problem in
PDDL. Any solution (e.g., valid plan) constructed for this
problem can be directly mapped to a valid workflow achiev-
ing the goal. In practical implementations domain-specific
optimization criteria and/or resource constraints may be
added to require that the best possible solution is produced.
[0119] However, the resulting workflow may not be com-
pliant with the security policy. Thus, a set of predicates
describing security labels assigned to the streams needs to be
introduced. The predicates are as follows:

[0120] 1) For each category X, a predicate (no-category-X
?s-stream) is introduced, where ?s is a variable that repre-
sents a stream object. If in any state this predicate is true for
stream ?s, the category set of the label assigned to stream ?s
does not contain category X in that state.

[0121] 2) For each secrecy level V, which by definition is
an integer in a limited range, a predicate (secrecy-below-V

Jan. 17, 2008

?s) is introduced, which, if true in some state, means that a
secrecy level of the label assigned to stream ?s is less than
V in that state.

[0122] 3) For each integrity level U, which also is an
integer from a limited range, a predicate (integrity-above-U
?s) is introduced. This predicate, if true in some state, means
that in that state stream ?s has label with an integrity level
higher than U.

[0123] These predicates are used as follows:

[0124] 1) For each primal stream S, its security label
L=(s,c,i) is translated to the predicates defined above. In
particular, the following additional predicates must be
included in the :init statement:

[0125] a) For all secrecy levels strictly higher that that
of the label, ie., Vs'>s, define predicate (secrecy-
below-s' S)

[0126] D) For all possible categories not in the set of
categories in the label, ie., Vc'&e, define predicate
(no-category-c' S)

[0127] c¢) For all integrity levels strictly lower than that
of the label, i.e., Vi'<i, define predicate (integrity-
above-i' S).

[0128] 2) For each action corresponding to a component,
labels corresponding to input ports {C;: 1=j=7} and labels
corresponding to output ports {[, U, 1=k=K} are
reflected in action description as follows:

[0129] a) For every input port j, 1=j=J which corre-
sponds to a variable ?sj in a PDDL representation of the
action, include the following predicates in the precon-
dition of the action:

[0130] al) If s(C))<S,,,,, include predicate (secrecy-
below-s' 7sj), where s'=s(C)+1.

[0131] a2) For all categories not in the set of catego-
ries in the label C,, i.e. Vc'@&(C)), include predicate
(no-category-c' ?sj).

[0132] a3) If (C)>L,,,, include predicate (integrity-
above-i' 7sj), where 1'=1(C))-1,

[0133] b) For every output port k, 1=k=K which
corresponds to a variable ?sk in a PDDL representation
of the action, include the following predicates in the
effect of the action:

[0134] bl) Vs" s(Lp<s'Es(U,) include the condi-
tional effect

(when (and (secrecy-below-*" ?inl)
(secrecy-below-*" 2in2) ...
(secrecy-below-* 2inl))

(secrecy-below-* ?sk))

where the condition is checked for all variables
corresponding to the input ports of the action ?inl,
2in2, . .., ?in].

[0135] b2) V" c'e(L,), c'ec(Uy) include the condi-
tional effect

(when (and (no-category-° ?inl)
(no-category- 2in2) ...
(no-category- 2inJ))
(no-category-* ?sk))

where, as above, the condition is checked for all
variables corresponding to the input ports of the
action ?inl, ?in2, . . ., ?inJ.

[0136] b3) Vi:i(U,)=i'<i(L,) include the conditional
effect

US 2008/0016547 Al

Jan. 17, 2008

-continued

(when (and (integrity-above-" ?in1)
(integrity-above-' 2in2) ...
(integrity-above-" 2inJ))

(integrity-above-* ?sk))

where, as above, the condition is checked for all
variables corresponding to the input ports of the
action ?inl, ?in2, . . ., ?inl.

[0137] 1) Vs" s(Uy)<s'ES,,,, include effect (secrecy-
below-s' 7sk)

[0138] 2) Vc': ¢'&e(U,) include effect (no-category-c'
?sk)
[0139] 3)Vi: 1, Zi<i(U,) include effect (integrity-

above-i' 7sk)

[0140] c¢) In the goal-reaching action a user’s label is to
be expressed as a precondition label. The representa-
tion of the label as a precondition should follow the
model described for representing C; labels as precon-
ditions above.

[0141] As can be gleaned, the workflow constructed by the
planner for the updated problem representation will satisfy
the security policy. The predicates introduced for imple-
menting the security model uniquely describe labels
assigned to streams in the composed workflow.

[0142] A similar approach can be used to describe the
workflow composition problem using SPPL. This will now
be described.

[0143] The type matching predicates in SPPL are defined
as part of the CLEAR-logic group, and stream variables and
unused predicates are no longer necessary:

(:predicates :clearlogic
(has-type-video)
(has-type-audio)

(has-type-temperature)

[0144] Description of action describes preconditions and
effects on every input and output port correspondingly. In
SPPL, goal reaching action is no longer needed.

(action A
(:precondition [inl] (has-type-audio))
(:precondition [in2] (has-type-temperature))
(:precondition [in3] (has-type-video))
(ceffect [outl] (has-type-humidity))
(reffect [out2] (has-type-detected-motion))

[0145] Since declaring explicit stream objects are not
needed in SPPL, the only declarations that must be present
in problem definition are goal and init statements. One init
statement per primal stream, and one goal statement per
output stream are required.

(:init (has-type-audio))
(:init (has-type-temperature))

(:goal (has-type-humidity))
(:goal (has-type-temperature))

[0146] The problem described in SPPL can be solved by
a suitable solver, which will produce a feasible workflow.
However, for the workflow to satisfy security constraints,
additional security predicates must be introduced. The predi-
cates are defined as part of an AND-logic predicate propa-
gation group, by specifying :andlogic in the predicate dec-
laration statement. For each security predicate defined in
PDDL, a similar predicate is defined in SPPL, but without
the stream parameter. In particular,

[0147] 1) For each category X, a predicate (no-category-
X) is introduced. If in any state this predicate is true for a
stream, the category set of the label assigned to stream ?s
does not contain category X in that state.

[0148] 2) For each secrecy level V, which by definition is
an integer in a limited range, a predicate (secrecy-below-V)
is introduced, which, if true in some state, means that a
secrecy level of the label assigned to the stream is less than
V in that state.

[0149] 3) For each integrity level U, which also is an
integer from a limited range, a predicate (integrity-above-U)
is introduced. This predicate, if true in some state, means
that in that state the stream has a label with an integrity level
higher than U.

[0150] Similarly to PDDL encoding, the use of the predi-
cates in the SPPL problem and domain description are
defined as:

[0151] 1) For each primal stream its security label L=(s,
c,i) is translated to the predicates defined above. In particu-
lar, the following additional predicates must be included in
the :init statement:

[0152] a) For all secrecy levels strictly higher that that
of the label, ie., Vs'>s, define predicate (secrecy-
below-s')

[0153] D) For all possible categories not in the set of
categories in the label, ie., Vc'&e, define predicate
(no-category-c")

[0154] c¢) For all integrity levels strictly lower than that
of the label, i.e., Vi'<i, define predicate (integrity-
above-i').

[0155] 2) For each action corresponding to a component,
labels corresponding to input ports {C;: 1=j=7} and labels
corresponding to output ports {[, U, 1=k=K} are
reflected in an action description as follows:

[0156] a) For every input port j, 1=j=J include the
following predicates in the corresponding precondition
of the action:

[0157] al) If s(C)<S,,,,, include predicate (secrecy-
below-s"), where s'=s(C)+1.

[0158] a2) For all categories not in the set of catego-
ries in the label C,, i.e. Vc'@&(C)), include predicate
(no-category-c").

[0159] a3) If i(C))>1,,,, include predicate (integrity-
above-i'), where i'=i(C))-1.

[0160] D) For every output port k, 1=k=K include the
following predicates in the corresponding effect of the
action:

[0161] b1) Vs" s'=s(L,) include negative effect (not
(secrecy-below-s"))

US 2008/0016547 Al

[0162] b2) Vc" c'ec(L,) include negative effect (not
(no-category-c'))

[0163] b3) Vi i'2i(L,) include negative effect (not
(integrity-above-i'))
[0164] b4) Vs s(U,)<s'ES,,,. include effect (se-

crecy-below-s")

[0165] b5) V" ¢'Ee(U,) include effect (no-category-
c)

[0166] b6)Vi:1,,,Zi'<i(U,) include effect (integrity-
above-i")

[0167] 3) In the goal express a user’s label as precondition
label. The representation of the label as precondition should
follow the model described for representing C; labels as
preconditions above.

[0168] It is to be understood that this SPPL domain and
problem description can be used to compose workflows
complying with the security policy, with or without plan
quality optimization and/or resource constraints. Additional
constraints and optimization objectives may be added, but
any plan feasible in this description will comply with the
policy.

[0169] A list of assumptions needed to have an effective
algorithm for planning using hard constraints is as follows:
[0170] 1) Workflow composition based on type matching
and security hard constraints (as used in PDDL and SPPL
representations above) is an NP-complete decision problem.
[0171] 2) In the absence of trusted components (e.g., if
there are no components with U, =) the composition prob-
lem can be solved efficiently in time O(m), where m is the
number of available components.

[0172] 3) Assume that for all inputs of all components
there are no security preconditions, e.g., for all components
Vj C;=. In the following cases eflicient algorithms exist:

[0173] a) If there exists a total order between all upper
bound labels U,, the workflow composition problem
can be solved in O(m) operations.

[0174] b) If the number of types such that more than one
component produces them, is limited by logarithm of
m, an O(m) algorithm exists.

[0175] c¢) If the number of distinct upper bound labels
U, is bounded by b, then there exists an algorithm that
finds a Workﬂow satlsfylng the security policy in 0(22
i(S, =S i+ 1)°m?) operations.

[0176] Although the embodiments of the present invention
have been described above as using MLS access policies for
security planning, an alternative embodiment employing a
multi-set attribute policy (MSA) in conjunction with the
aforementioned hard constraints can also be used for secu-
rity planning.

[0177] Here, the translation of MSA policy and MSA
metadata into Caernarvon policy and metadata, followed by
the application of the planning methods described in this
invention will be described. First, the structure of MSA
policy rules will be briefly discussed, and then an outline of
the process of translating MSA labels to Caernarvon labels
will be given.

[0178] MSA uses labels to annotate objects and subjects.
Each MSA label consists of 0, 1 or more (attribute, risk)
pairs, where 1) attribute is the name of an attribute denoting
a category of privacy-sensitive information, and 2) risk is the
value characterizing the likelihood of deriving this informa-
tion from the data annotated by the label.

Jan. 17, 2008

[0179] At most one (attribute, risk) pair for each attribute
is allowed in a label. In addition to the pairs, the MSA label
may contain an integrity level value.

[0180] In an MSA model, the privacy policy can also
specify input attribute combination constraints as part of the
subject label or labels. However, here a restricted version of
an MSA model is considered where such constraints are not
specified.

[0181] The following label mapping procedure can be
used during the mapping of MSA policy to Caernarvon
policy. Once a set of categories is created, the labels are
processed for each component separately, to define the labels
C;, U, and L, for each component. The procedure is as
follows:

[0182] 1) Create a new MLS category for every unique
combination of (attribute, risk) used in any MSA label. All
MSA labels used in the description of components, user
credentials, or sources should be considered during this
operation. For simplicity, the MLS category “attribute-risk”
corresponds to the MSA pair (attribute, risk).

[0183] 2) All MSA READ access labels are translated to
input maximum labels C,, where for all j,

[0184] a) Starting with empty category set in C,, for
each (attribute, risk) pair in the MSA READ label, add
to C, all defined categories “attribute-R” for which
R=risk.

[0185] D) Integrity level of C, is the same as the integrity
level of the MLS label.

[0186] 3) All MSA SUPPRESS labels are translated to
output maximum labels U,, such that for all outputs k,

[0187] a) Starting with an empty category set in U,, for
each (attribute, risk) pair in the MSA label, add to U,
all defined categories “attribute-R” for which R =risk.

[0188] D) For each attribute “attribute” that is not in the
MSA SUPPRESS label, add to U,_all defined categories
“attribute-risk”.

[0189] c) Let integrity level of U, be the same as that of
the MSA SUPPRESS label.

[0190] 4) All MSA SELECTION and ADDITION labels
are translated to output minimum labels L,, such that for all
outputs k,

[0191] a) Starting with an empty category set in [, for
each (attribute, risk) pair in the MSA labels, add to L,
all defined categories “attribute-R” for which R =risk.

[0192] D) Let the integrity level of L, be the smallest of
the integrity levels of the supplied SELECTION and
ADDITION MSA labels for the component.

[0193] 5) For all MSA WRITE labels the L, label is
computed similarly to the ADDITION labels, and U, is
chosen to be equal to L.

[0194] 6) Secrecy levels for all labels must be set to the
same constant value, for example, PUBLIC.

[0195] Due to the similarity of propagation and access
rules, it is straightforward to verify that after the labels are
mapped, if the rules of the Caernarvon policy are enforced
in the resulting system, the rules of MSA model will be
enforced automatically. Thus, a Caernarvon policy and an
MSA policy can be enforced simultaneously within the same
workflow using the method described in the embodiments
above. To enforce both policies, it is necessary to ensure that
the categories created by the mapping procedure do not
overlap with the original set of categories. In addition, the
computation of MLS labels must start not from empty

US 2008/0016547 Al

category set, but from the category set defined by the
Caernarvon metadata, and the secrecy levels must be set
based on the same metadata.

[0196] According to an exemplary embodiment of the
present invention, a network can be automatically con-
structed based on metadata describing components, sources
and product requirements, wherein the network satisfies the
specified requirements and complies with an access control
policy. By constructing a network according to an exemplary
embodiment of the present invention, security risks can be
managed and mitigated automatically as compared to exist-
ing manual or single-level security methods. Thus, analysis
of the network can be increased, potential human errors
resulting from manually constructing such a network can be
decreased and entities of multiple security levels can be
processed. In addition, a secure large-scale system that is
composed of hundreds or even thousands of networks can be
verifiably constructed.

[0197] By automatically constructing networks, after nec-
essary reviews and certification, the planner can act as a
trusted component, thus reducing the need for employing
trusted personnel for composing the networks that involve
sensitive (e.g., valuable) sources or components. For
example, users with low access rights can request workflows
processing data from sensitive sources or using sensitive
algorithms, provided that the data is downgraded during
processing. As compared to traditional systems, these users
would need assistance from users with higher privileges to
achieve this, thus resulting in delays. In addition, the meta-
data describing the components and entities can be sensitive
(e.g., valuable), thus providing additional trust requirements
to the planner.

[0198] It is to be understood that the present invention
may be applied to any lattice based secrecy model or any
lattice based secrecy model augmented by a lattice-based
data integrity model. The present invention may also be
applied with or without trusted components such as secrecy
downgrades and integrity upgraders.

[0199] It should also be understood that the present inven-
tion may be implemented in various forms of hardware,
software, firmware, special purpose processors, or a com-
bination thereof. In one embodiment, the present invention
may be implemented in software as an application program
tangibly embodied on a program storage device (e.g., mag-
netic floppy disk, RAM, CD ROM, DVD, ROM, and flash
memory). The application program may be uploaded to, and
executed by, a machine comprising any suitable architecture.
[0200] It is to be further understood that because some of
the constituent system components and method steps
depicted in the accompanying figures may be implemented
in software, the actual connections between the system
components (or the process steps) may differ depending on
the manner in which the present invention is programmed.
Given the teachings of the present invention provided
herein, one of ordinary skill in the art will be able to
contemplate these and similar implementations or configu-
rations of the present invention.

[0201] It should also be understood that the above descrip-
tion is only representative of illustrative embodiments. For
the convenience of the reader, the above description has
focused on a representative sample of possible embodi-
ments, a sample that is illustrative of the principles of the
invention. The description has not attempted to exhaustively
enumerate all possible variations. That alternative embodi-

Jan. 17, 2008

ments may not have been presented for a specific portion of
the invention, or that further undescribed alternatives may
be available for a portion, is not to be considered a dis-
claimer of those alternate embodiments. Other applications
and embodiments can be implemented without departing
from the spirit and scope of the present invention.

[0202] It is therefore intended, that the invention not be
limited to the specifically described embodiments, because
numerous permutations and combinations of the above and
implementations involving non-inventive substitutions for
the above can be created, but the invention is to be defined
in accordance with the claims that follow. It can be appre-
ciated that many of those undescribed embodiments are
within the literal scope of the following claims, and that
others are equivalent.

What is claimed is:

1. A method for security planning with hard security
constraints, comprising:

receiving security-related requirements of a network to be

developed using system inputs and processing compo-
nents; and

generating the network according to the security-related

requirements, wherein the network satisfies hard secu-
rity constraints.

2. The method of claim 1, wherein the network is gener-
ated using a planning algorithm.

3. The method of claim 2, wherein the planning algorithm
receives a planning task in Planning Domain Definition
Language (PDDL) or Stream Processing Planning [L.anguage
(SPPL) format.

4. The method of claim 1, wherein the hard security
constraints are Bell-LaPadula constraints, Biba integrity
constraints, Caernarvon model constraints or Role-based
access control constraints.

5. The method of claim 1, further comprising:

receiving descriptions of the system inputs and processing

components.

6. The method of claim 5, wherein the descriptions are
metadata.

7. The method of claim 1, further comprising:

deploying the network that satisfies hard security con-

straints in a real production system.

8. The method of claim 1, wherein the network includes
a downgrader.

9. A method for security planning with access control
policies, comprising:

receiving descriptions of available external inputs and

processing components;

receiving first security-related requirements of a first

network to be developed using the available external
inputs and processing components; and generating the
first network according to the security-related require-
ments, wherein the first network satisfies access control
policies.

10. The method of claim 9, wherein generating the first
network according to the security-related requirements com-
prises:

assigning object and subject labels to system inputs and

processing components in the first network; and
verifying access control policies for the system inputs and
processing components in the first network.

US 2008/0016547 Al

11. The method of claim 9, further comprising:
receiving second security-related requirements of a sec-
ond network to be developed using the available exter-
nal inputs and processing components; and

generating the second network according to the second
security-related requirements, wherein the second net-
work satisfies the access control policies.

12. The method of claim 11, further comprising:

deploying the first or second networks that satisfy the

access control policies in a real production system.

13. The method of claim 11, wherein the first or second
networks that satisfy the access control policies are newly
generated networks or modifications of existing networks.

14. The method of claim 9, further comprising:

translating privacy constraints into access control poli-

cies.

15. A computer program product comprising a computer
useable medium having computer program logic recorded
thereon for security planning with hard security constraints,
the computer program logic comprising:

program code for receiving security-related requirements

of a network to be developed using system inputs and
processing components; and

program code for generating the network according to the

security-related requirements, wherein the network sat-
isfies hard security constraints.

16. The computer program product of claim 15, further
comprising:

program code for receiving descriptions of the system

inputs and processing components.

17. The computer program product of claim 15, further
comprising:

program code for deploying the network that satisfies hard

security constraints in a real production system.

Jan. 17, 2008

18. A computer program product comprising a computer
useable medium having computer program logic recorded
thereon for security planning with access control policies,
the computer program logic comprising:

program code for receiving descriptions of available

external inputs and processing components;

program code for receiving first security-related require-

ments of a first network to be developed using the
available external inputs and processing components;
and

program code for generating the first network according

to the security-related requirements, wherein the first
network satisfies access control policies.

19. The computer program product of claim 18, further
comprising:

program code for receiving second security-related

requirements of a second network to be developed
using the available external inputs and processing com-
ponents; and

program code for generating the second network accord-

ing to the second security-related requirements,
wherein the second network satisfies the access control
policies.

20. The computer program product of claim 19, further
comprising:

program code for deploying the first or second networks

that satisfy the access control policies in a real produc-
tion system.

21. The computer program product of claim 18, further
comprising:

program code for translating privacy constraints into

access control policies.

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

