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Motivation

Community detection in social or biological networks in the
sparse regime with a (not too large) average degree.

Labels to characterize various interaction types, e.g. strong
and weak ties in friendship network.
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A model: the stochastic block model



The sparse stochastic block model

A random graph model on n nodes with two parameters,
a,b ≥ 0.
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The sparse stochastic block model

A random graph model on n nodes with two parameters,
a,b ≥ 0.

Assign each vertex spin
+1 or −1 uniformly at
random.
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The sparse stochastic block model

A random graph model on n nodes with two parameters,
a,b ≥ 0.

Independently for each
pair (u, v):

if σu = σv , draw the
edge w.p. a/n.
if σu 6= σv , draw the
edge w.p. b/n.
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Reconstruction problem

Reconstruct the underlying spin configuration σ based on
the observed labeled graph.
Sparse graph: as n→∞, the asymptotic degree
distribution is Poisson with mean a+b

2 . With on average, a
2

neighbors in the same community and b
2 in the other

community.
Isolated nodes render exact reconstruction impossible.
Focus on positively correlated reconstruction, i.e., σ̂ agrees
with σ in more than 1/2 of all its entries.
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Phase transition

Theorem

If τ > 1, then positively correlated reconstruction is possible.
If τ < 1, then positively correlated reconstruction is impossible.

τ =
(a− b)2

2(a + b)
.

Conjectured by Decelle, Krzakala, Moore, Zdeborova ’11 based
on statistical physics arguments.

Non-reconstruction proved by Mossel, Neeman, Sly ’12.
Reconstruction proved by Massoulié ’13 and Mossel,
Neeman, Sly ’13.
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Efficiency of Spectral Algorithms

Boppana ’87, Condon, Karp ’01, Carson, Impagliazzo ’01,
McSherry ’01, Kannan, Vempala, Vetta ’04...

Proposition

Suppose that for sufficiently large c and c′,

(a− b)2

a + b
≥ c + c′

a
a + b

ln
(

a + b
2

)
,

then ’trimming+spectral+greedy improvement’ outputs a
positively correlated partition a.a.s.

Coja-Oghlan ’10



What if a,b →∞ ?

Proposition

Assume a ≥ ln5 n and (a− b)2 > 164(a + b), then the
clustering problem is solvable by the simple spectral method.

Lelarge, Massoulié, Xu ’13
Lower bound (valid for any a)

Proposition

For α < 1/2, define δ = 1
2 − infσ̂ P(d(σ, σ̂) > α). Then δ > 0

implies

(a− b)2

2(a + b)
> 1− H(α),

with H(x) = −x log x − (1− x) log(1− x).

Proof: Fano’s inequality.
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Spectral analysis

Assume that a > ln5 n, and a− b ≈
√

a + b so that a ∼ b.

A =
a + b

2
1√
n

1T
√

n
+

a− b
2

σ√
n
σT
√

n
+ A− E[A]

a+b
2 is the mean degree and degrees in the graph are very

concentrated in the regime a > ln5 n. We can construct

A− a + b
2n

J =
a− b

2
σ√
n
σT
√

n
+ A− E[A]
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Spectrum of the noise matrix

The matrix A− E[A] is a symmetric random matrix with
independent centered entries having variance ∼ a

n .
To have convergence to the Wigner semicircle law, we need to
normalize the variance to 1

n .

ESD
(

A− E[A]√
a

)
→ µsc(x) =

{ 1
2π

√
4− x2, if |x | ≤ 2;

0, otherwise.



Naive spectral analysis

To sum up, we can construct:

M =
1√
a

(
A− a + b

2n
J
)

= θ
σ√
n
σT
√

n
+

A− E[A]√
a

,

with θ = a−b
2
√

a .
We should be able to detect signal as soon as

θ > 2⇔ (a− b)2

2(a + b)
> 4
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Some hope

A lower bound on the spectral radius of M = θ σ√
n
σT
√

n + W :

λ1(M) = sup
‖x‖=1

‖Mx‖ ≥ ‖M σ√
n
‖

But

‖M σ√
n
‖2 = θ2 + ‖W σ√

n
‖2 + 2〈W ,

σ√
n
〉

≈ θ2 +
1
n

∑
i,j

W 2
ij

≈ θ2 + 1.

As a result, we get

λ1(M) > 2⇔ θ > 1⇔ (a− b)2

2(a + b)
> 1.
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Baik, Ben Arous, Péché phase transition

Rank one perturbation of a Wigner matrix:

λ1(θσσT + W )
a.s→
{
θ + 1

θ if θ > 1,
2 otherwise.

Let σ̃ be the eigenvector associated with λ1(θuuT + W ), then

|〈σ̃, σ〉|2 a.s→
{

1− 1
θ2 if θ > 1,

0 otherwise.

Baik, Ben Arous, Péché ’05



Rigorous proof of the phase transition for a ≥ ln5 n

Proposition

Assume a ≥ ln5 n. Then the clustering problem is solvable by
the simple spectral method, provided

(a− b)2

2(a + b)
> 1.

Lelarge ’13
Proof: control the spectral norm thanks to Vu ’05 and adapt the
argument in Benaych-Georges, Nadakuditi ’11.
In agreement with Nadakuditi, Newman ’12.
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Spectral Algorithm

Original adjacency matrix with 2 communities. a = 120, b = 92,
θ = a−b√

2(a+b)
= 1.46385...
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Spectral Algorithm
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Spectral Algorithm: low degree

Original adjacency matrix with 2 communities. a = 20, b = 9,
θ = a−b√

2(a+b)
= 1.44437...



Spectral Algorithm: low degree

Spectrum of the original adjacency matrix (after trimming).
a = 20, b = 9, θ = a−b√

2(a+b)
= 1.44437...



Spectral Algorithm: low degree

Rank-1 approximation of the adjacency matrix. a = 20, b = 9,
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Spectral Algorithm: more communities

Original adjacency matrix with 5 communities.



Spectral Algorithm: more communities

Spectrum of the original adjacency matrix.



Spectral Algorithm: more communities

Rank-4 approximation of the adjacency matrix.



Extension: r symmetric communities

Proposition

Assume a ≥ ln5 n and r ≥ 2 symmetric communities. Then the
clustering problem is solvable by the simple spectral method,
provided

(a− b)2

r(a + (r − 1)b)
> 1.

Lelarge ’13



The sparse labeled stochastic block model

A random graph model on n nodes with two parameters,
a,b ≥ 0 and two discrete prob. distributions, µ, ν.

Independently for each
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The sparse labeled stochastic block model

A random graph model on n nodes with two parameters,
a,b ≥ 0 and two discrete prob. distributions, µ, ν.

Independently for each
edge (u, v):

if σu = σv , label the
edge with Luv ∼ µ.
if σu 6= σv , label the
edge with Luv ∼ ν.
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𝜇(𝑟) 

𝜈(𝑟) 
𝜈(𝑏) 

𝜇(𝑏) 

µ(r) = 0.6, µ(b) = 0.4
ν(r) = 0.4, ν(b) = 0.6



How to use labels?

Maximum log likelihood estimation:

max
σ

∑
(u,v)∈E(G)

σuσv log
aµ(Luv )

bν(Luv )

s.t.
∑

u

σu = 0, σu ∈ {−1,1}

Minimum bisection with edge weights w(`) = log aµ(`)
bν(`) .

Minimum bisection is NP-hard. Let’s try some statistical
physics!
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Phase transition (with labels)

Conjecture

If τL > 1, then positively correlated reconstruction is possible.
If τL < 1, then positively correlated reconstruction is impossible.

τL =
1
2

∑
`∈L

(aµ(`)− bν(`))2

aµ(`) + bν(`)
.

Heimlicher, Lelarge, Massoulié ’12
Generalize the result for (standard) stochastic block model
and τL ≥ τ .
τL comes from the local stability analysis of a fixed point of
Belief Propagation.
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Non-reconstruction

Theorem

If τL < 1, then for any fixed vertices u and v, conditional on the
spin of v, the spin of u is asymptotically uniformly distributed.

Lelarge, Massoulié, Xu, 13
It further implies that it is impossible to reconstruct a
positively correlated partition.
Proof: similar to Mossel, Neeman, Sly ’12, uses local tree
argument, conditional independence property and the Ising
spin model on labeled tree.
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Spectral method with labels

A is the weighted adjacency matrix:
Auv = 1((u, v) ∈ E(G))w(Luv ).
Spectral method as a relaxation of the minimum bisection:

max
∑
(u,v)

σuAuvσv

s.t.
∑

i

σi = 0, ‖σ‖2 = 1.

Perturbed low-rank matrix A

E[A|σ] =
aµ+ bν

2n
11> +

aµ− bν
2n

σσ>.

Curse from vertices of high degrees Ω( log n
log log n ).
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Spectral Algorithm: rigorous results

Remove nodes of degree greater than 3
2

a+b
2 .

’Optimal’ weight function:

w(`) =
aµ(`)− bν(`)

aµ(`) + bν(`)

Theorem

If τL > C
√

a + b, then w.h.p. the spectral algorithm gives a
positively correlated partition.

Proof: spectrum of truncated ER random graph, extension
of Feige Ofek ’05



Spectral Algorithm: empirical results
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Rigorous results for a ≥ ln5 n

Proposition

Assume a ≥ ln5 n and r ≥ 2 symmetric communities. Then the
clustering problem is solvable by the simple spectral method,
provided

1
r

∑
`

(aµ(`)− bν(`))2

aµ(`) + (r − 1)bν(`)
> 1

Lelarge ’13
Proved using more Random Matrix Theory.



Extensions

Some results for models with latent space allowing to relax
the low-rank assumption and overlapping communities. If
the signal strength is at least log n, then consistent
estimation of the edge label distribution is possible.
For the planted clique problem, clique of size larger than√

n are detectable by a simple spectral algorithm.
Deshpande Montanari ’13 message passing algorithm
works for sizes

√
n/e = 0.60653...

√
n.

However cliques of size 2 log2 n can be found by
exhaustive search...
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Summary

For the labeled (not too sparse) stochastic block model,
there is a phase transition between an impossible regime
and an easy regime where the simple spectral algorithm is
successful.
How well does the spectral algorithm performs in term of
’overlap’? What if parameters are unknown?
Is there a computational threshold for r ≥ 5?

THANK YOU!
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