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Abstract
We consider unsupervised partitioning problems
based explicitly or implicitly on the minimiza-
tion of Euclidean distortions, such as cluster-
ing, image or video segmentation, and other
change-point detection problems. We emphasize
on cases with specific structure, which include
many practical situations ranging from mean-
based change-point detection to image segmenta-
tion problems. We aim at learning a Mahalanobis
metric for these unsupervised problems, leading
to feature weighting and/or selection. This is
done in a supervised way by assuming the avail-
ability of several (partially) labeled datasets that
share the same metric. We cast the metric learn-
ing problem as a large-margin structured predic-
tion problem, with proper definition of regulariz-
ers and losses, leading to a convex optimization
problem which can be solved efficiently. Our ex-
periments show how learning the metric can sig-
nificantly improve performance on bioinformat-
ics, video or image segmentation problems.

1. Introduction
Unsupervised partitioning problems are ubiquitous in ma-
chine learning and other data-oriented fields such as com-
puter vision, bioinformatics or signal processing. They
include (a) traditional unsupervised clustering problems,
with the classical K-means algorithm, hierarchical linkage
methods (Gower & Ross, 1969) and spectral clustering (Ng
et al., 2002), (b) unsupervised image segmentation prob-
lems where two neighboring pixels are encouraged to be in
the same cluster, with mean-shift techniques (Cheng, 1995)
or normalized cuts (Shi & Malik, 1997), and (c) change-
point detection problems adapted to multivariate sequences
(such as video) where segments are composed of contigu-
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ous elements, with typical window-based algorithms (Des-
obry et al., 2005) and various methods looking for a change
in the mean of some features (Chen & Gupta, 2011).

All the algorithms mentioned above rely on a specific dis-
tance (or more generally a similarity measure) on the space
of configurations and a good metric is crucial to their per-
formance, especially in high-dimensional settings where
many dimensions may be irrelevant to the partitioning task.
While the choice of such a metric has originally been tack-
led manually (often by trial and error), recent work has
considered learning such metric directly from data. With-
out any supervision, the problem is ill-posed and methods
based on generative models may learn a metric or reduce
dimensionality (see, e.g., De la Torre & Kanade 2006), but
typically with no guarantees that they lead to better parti-
tions. In this paper, we consider the same goal as Bar-Hillel
et al. (2006), Xing et al. (2002), Bach & Jordan (2003) and
Finley & Joachims (2008), that is learning a metric for one
or several partitioning problems sharing a common met-
ric, assuming that one or several fully (or partially) labeled
partitioned datasets are available during the learning phase.
While such labeled datasets are typically expensive to pro-
duce, there are several scenarios where these datasets have
already been built, often for evaluation purposes. These
occur in video segmentation tasks (see Section 5.3), im-
age segmentation tasks (Section 5.5) as well as change-
point detection tasks in bioinformatics (see Hocking et al.
2013 and Section 4.2). This global framework is sometimes
referred to as supervised clustering (Finley & Joachims,
2005; 2008).

Related work. The need for metric learning goes far
beyond unsupervised partitioning problems. Weinberger
et al. (2006) proposed a large-margin framework for learn-
ing a metric in nearest-neighbours algorithms based on sets
of must-link/must-not-link constraints, while Goldberger
et al. (2004) considered a probability-based non-convex
formulation. For these frameworks, a single dataset is fully
labeled and the goal is to learn a metric leading to good test-
ing performance on unseen data. Metric learning has also
been considered in semi-supervised clustering of a single
dataset, where some partial constraints are given. This in-
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cludes the works of Bar-Hillel et al. (2006) and Xing et al.
(2002). As shown in Section 5, these can be used in our
setting as well by stacking several datasets into a single
one. However, our discriminative large-margin approach
outperforms these, because we consider explicitly the clus-
tering performance, for each dataset, through a structured
large-margin approach. Moreover, these approaches cannot
readily use additional prior knowledge on the partitions.

The task of learning how to partition has been tackled
by Bach & Jordan (2003) for spectral clustering. The prob-
lem set-up is the same (availability of several fully parti-
tioned datasets), however, their formulation is non-convex
and relies on the unstable optimization of eigenvectors.

Finley & Joachims (2005) considered the same convex
large-margin set-up as ours but for correlation clustering,
a clustering method based on greedy algorithms or convex
relaxations. Finley & Joachims (2008) instead considered
distortion-based clustering methods that can be applied to
large-scale problems, in particular at test time. The latter
approach can be seen as special case of our work, with an
a priori known number of clusters, approximate decoding
and does no structured priors on partitions.

Other approaches do not require any supervision (De la
Torre & Kanade, 2006), and perform simultaneous dimen-
sionality reduction and clustering, by alternating between
the computation of a low-rank matrix and clustering of the
data using the corresponding metric. However, they cannot
take advantage of the labeled information that we use.

Our approach can also be related to the work of Szummer
et al. (2008): given a small set of labeled instances, they use
a similar large-margin framework, inspired by Tsochan-
taridis et al. (2005) and Taskar et al. (2003), to learn param-
eters of Markov random fields, using graph cuts for solv-
ing the “loss-augmented inference problem” of structured
prediction. However, their segmentation framework does
not apply to unsupervised segmentation. In this paper, we
present a supervised learning framework aiming at learning
how to perform an unsupervised task.

Structured SVM have been used to solve other learning
problems, for instance to learn weights for graph match-
ing (Caetano et al., 2007) or a metric for ranking tasks
(Mcfee & Lanckriet, 2010). In computer vision, it has also
been used to build task-driven image representations (Kim
et al., 2012).

Beyond existing approaches. The existing approaches
for learning the metric in a supervised way have two
main drawbacks: (1) they are unable to deal clearly with
the common case in which the number of clusters in the
data is unknown a priori except in the case of Finley &
Joachims (2005) for which unknown number of cluster is
indirectly partly taken into account, (2) they do not incor-

porate any prior knowledge on partititions, which is a sig-
nificant limitation because in most applications, extra prior
information—hard or soft—may be used to make the clus-
tering problem less ill-defined.

Dealing with unknown number of clusters. None of
the aforementioned methods is suited for learning a penalty
term for selecting the number of clusters, as they do not
include any model selection term. However, the scenario
where the number of clusters is unknown is in practice very
common. For instance in bioinformatics for a-CGH seg-
mentation (Hocking et al., 2013), it is unrealistic to assume
to know a priori in how many segments a sequence should
be split. The same remark holds for the segmentation of
long videos: at test time, it is not realistic to assume the
number of segments is known. We explore these applica-
tions in Sections 5.3 and 5.4.

Hard priors. A common prior is the sequential structure
that can be found everywhere in signal processing, from
audio (Gillet et al., 2007) to bioinformatics with a-CGH or
EEG segmentation (Hocking et al., 2013; Brodsky & Dark-
hovsky, 1993). Our work focuses on hard-coding such a
prior by restricting the set of authorized partitions. This
leads to the well-known change-point detection problem.
In particular, we show that in that case and using a similar
structured SVM as in Finley & Joachims (2008), the loss-
augmented inference problem can now be solved exactly in
polynomial time using a dynamic programming method.

Soft priors. A popular application of clustering is im-
age segmentation. Unfortunately, simple K-means-based
algorithms do not take into account the two-dimensional
structure and do not lead to meaningful partitions. In this
paper, we consider adding a Laplacian-based penalty term
that take into account the spatial structure, thus proving an
alternative to normalized cuts, for which the metric can be
learned efficiently.

Summary. We make the following contributions:

– We propose an efficient algorithm that learns the met-
ric for some partitioning problem, given several labeled
datasets sharing the same metric. Our algorithm chooses
automatically the number of clusters at test time, and can
deal with hard or soft priors about the partitions. Exper-
iments in Section 5 show that our algorithm can signif-
icantly improve the performance compared to previous
works that can be used in our setting, on synthetic exam-
ples as well as for video and image segmentation tasks.

– When imposing that segments should be contiguous
(change-point detection) we propose a dynamic pro-
gramming algorithm that can solve the loss-augmented
inference problem in polynomial time (Algorithm 1).

– We propose an extension of our algorithm that can learn
a metric from partially labeled datasets (Section 4.1).
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– We propose in Section 4.2 a way to detect changes in
the full distribution of univariate time series, rather than
only in the mean, with application to bioinformatics.

2. Partitioning through matrix factorization
In this section, we consider T multi-dimensional observa-
tions x1, . . . , xT ∈ Rp, which may be represented in a de-
sign matrix X ∈ RT×p. Partitioning the T observations
intoK classes is equivalent to finding an assignment matrix
Y ∈ {0, 1}T×K , such that Yij = 1 if the i-th observation
is assigned to cluster j and 0 otherwise. For general par-
titioning problems, no additional constraints are used, but
for change-point detection problems, it is assumed that the
segments are contiguous and with increasing labels. That
is, the matrix Y is block-diagonal with each block equal
to 1Tj , where 1D ∈ RD is the D-dimensional vector with
constant components equal to one, and Tj is the number of
elements in cluster j. For any partition, we may re-order
(non uniquely) the data points so that the assignment ma-
trix has the same form; this is typically useful for the un-
derstanding of partitioning problems.

2.1. Distortion measure

In this paper, we consider partitioning models where each
datapoint in cluster j is modeled by a vector (often called
a centroid or a mean) cj ∈ Rp, the overall goal being
to find a partition and a set of means so that the distor-
tion measure

∑T
i=1

∑K
j=1 Yij‖xi − cj‖2 is as small as

possible, where ‖ · ‖ is the Euclidean norm in Rp. By
considering the Frobenius norm defined through ‖A‖2F =

Tr(AA>) =
∑T

i=1

∑P
j=1A

2
ij , this is equivalent to mini-

mizing ‖X−Y C‖2F with respect to an assignment matrix Y
and a centroid matrix C ∈ RK×p.

2.2. Representing partitions

Following Bach & Jordan (2003) and De la Torre & Kanade
(2006), the quadratic minimization problem in C can be
solved in closed form, with solution C = (Y >Y )−1Y >X
(found by computing the matrix gradient and setting it to
zero). So, the partitioning problem (with known number of
clusters K) of minimizing the distortion from Section 2.1,
is equivalent to:

min
Y ∈{0,1}T×K , Y 1K=1p

‖X − Y (Y >Y )−1Y >X‖2F . (1)

Thus, the problem is naturally parametrized by the T × T -
matrix M = Y (Y >Y )−1Y >. This matrix, which we refer
to as a rescaled equivalence matrix, has a specific struc-
ture. Since the matrix Y >Y is diagonal, with i-th diago-
nal element equal to the number of elements in the cluster
containing the i-th data point, Mij = 0 if i and j are in
different clusters and otherwise equal to 1/D where D is

the number of elements in the cluster containing the i-th
data point. If the points are re-ordered so that the segments
are composed of contiguous elements, then M is block-
diagonal with blocks 11>/Tj , j = 1, . . . ,K. In this paper,
we use this representation of partitions. Note the difference
with alternative representations Y Y > which has values in
{0, 1}, used for instance by Joulin et al. (2010).

We denote by MK the set of rescaled equivalence matri-
ces with K clusters, i.e., matrices M = Y (Y >Y )−1Y > ∈
RT×T for some assignment matrix Y ∈ RT×K . For situ-
ations where the number of clusters is unspecified, we de-
note byM the union of allMK for K ∈ {1, . . . , T}.

Note that the number of clusters may be obtained from M ,
since TrM = TrY (Y >Y )−1Y > = Tr(Y >Y )−1Y >Y =
K. This can also be seen by noticing that M2 =
Y (Y >Y )−1Y >Y (Y >Y )−1Y > = M , i.e., M is a projec-
tion matrix, with eigenvalues in {0, 1}, and the number of
eigenvalues equal to one is exactly the number of clusters.
Thus,MK =

{
M ∈M, TrM = K

}
.

Learning the number of clusters K. Given the number
of clusters K, we have seen from Eq.(1) that the partition-
ing problem is equivalent to

min
M∈MK

‖X −MX‖2F = min
M∈MK

Tr
[
XX>(I −M)

]
. (2)

Note that in change-point detection problems, an extra con-
straint of contiguity of segments is added (see Section 2.3).

In the common situation where the number of clusters K is
unknown, it may be estimated directly from data by penal-
izing the distortion measure with a term proportional to the
number of clusters, as usually done for instance in change-
point detection (Lavielle, 2005). This is a classical idea
that can be traced back to the AIC criterion (Akaike, 1974).
Given that the number of clusters for a rescaled equivalence
matrix M is TrM , this leads to the following formulation:

min
M∈M

Tr
[
XX>(I −M)

]
+ λTrM . (3)

Note that our metric learning algorithm of Section 3 also
learns this extra parameter λ.

Thus, the two types of partitioning problems (with fixed
or unknown number of clusters) can be cast as the prob-
lem of maximizing a linear function of the form Tr(AM)
with respect to M ∈ M, with the potential constraint
that TrM = K. In general, such optimization problems
may not be solved in polynomial time. In Section 2.3,
we present a polynomial-time dynamic programming ap-
proach that can solve the problem with additional hard con-
tiguity constraint. For general situations, the K-means al-
gorithm, although not exact, can be used to get a good par-
titioning in polynomial time. In Section 2.4, we provide a
spectral relaxation, which can be used when adding a soft
constraint.
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Algorithm 1 Dynamic programming for maximizing
Tr(AM) such that M ∈Mseq

Input: Cost matrix A ∈ RT×T and its image integral I
(Ik,j =

∑
p1≤k,p2≤j Ap1,p2

)
∀i ∈ [[1 . . . T ]], initialize C(1, i) = I(i, i)/i.
for t = 1 to T − 1 do
M = maxi≤t C(i, t)
for u = t+ 1 to T do
C(t+ 1, u) = I(t,t)+I(u,u)−I(u,t)+I(t,u)

u−t +M
end for

end for
Backtracking step:
Tc(1) = T
repeat
Tc(end+ 1) = argmaxi<Tc(end) C(i, Tc(end))

until Tc(end) > 1
Output: Time of changes Tc

2.3. Hard prior : change-point detection by dynamic
programming

The change-point detection problem is a restriction of the
general partitioning problem where the segments are com-
posed of contiguous elements. We denote byMseq the set
of partition matrices for the change-point detection prob-
lem, and Mseq

K , its restriction to partitions with K seg-
ments.

The problem is thus of solving Eq.(2) (known number of
clusters) or Eq.(3) (unknown number of clusters) with the
extra constraint that M ∈ Mseq. This may be cast as
maximizing Tr(AM) with respect to Mseq

K or MK , for
a certain matrix A. When A is positive-semidefinite and
a square root is known, the contiguity constraint leads to
exact polynomial-time algorithms based on dynamic pro-
gramming (see, e.g., Rigaill 2010; Killick et al. 2012).
However, both for Eq. (3) and more generally for all loss-
augmented inference problems in Section 3, we need to
maximize Tr(AM) where A is any symmetric matrix.

Algorithm 1 above solves maxM∈Mseq Tr(AM) for any
matrix A, potentially with negative eigenvalues. It has
complexity O(T 2).

It only requires some preprocessing of the input matrix A,
namely computing its summed area table I (or image inte-
gral), defined to have the same size as A and with Iij =∑

i′≤i, j′≤j Ai′j′ (i.e., the sum of the elements of A which
are above i and to the left of j). A similar algorithm can
be derived in the case where M ∈ Mseq

K , with complexity
O(KT 2).

2.4. Spectral relaxation for soft priors

For soft priors, instead of considering a subset of MK ,
we consider all possible rescaled equivalence matrices and

optimize the following penalized model, where L is the
Laplacian matrix of a certain graph:

min
M∈MK

‖X−MX‖2F +Tr(LM)⇔ max
M∈MK

Tr((XXT−L)M)

(4)

Since the problem of optimizing this distortion is NP-hard
(Aloise et al., 2009), we need to approximately perform
the decoding. Following Shi & Malik (1997) and Ng et al.
(2002), we now present a spectral relaxation of this prob-
lem. This is done by relaxing the setM to the set of ma-
trices that satisfy M2 = M (i.e., removing the constraint
that M takes a finite number of distinct values). When
the number of clusters is known, this leads to the classi-
cal spectral relaxation, i.e., maxM∈M, TrM=K Tr(AM) 6
maxM2=M, TrM=K Tr(AM), which is equal to the sum
of the K largest eigenvalues of A; the optimal matrix M
of the spectral relaxation is the orthogonal projector on the
eigenvectors of A with K largest eigenvalues.

When the number of clusters is unknown, we can pe-
nalize the model in Eq. (4) by the same term as in
Eq. (3) and consider the whole set M. Then we have
maxM∈M Tr(AM) 6 maxM2=M Tr(AM) = Tr(A)+,
where Tr(A)+ is the sum of positive eigenvalues of A.
The optimal matrix M of the spectral relaxation is the or-
thogonal projector on the eigenvectors of A with positive
eigenvalues. Note that in the formulation from Eq. (3), this
corresponds to thresholding all eigenvalues ofXX> which
are less than λ.

We denote by Mspec = {M ∈ RT×T , M2 = M} and
Mspec

K = {M ∈ RT×T , M2 = M, TrM = K} the
relaxed sets of rescaled equivalence matrices.

Spectral decoding. From the relaxed solution, it can
sometimes be of interest to get a hard one. This problem is
closely related to spectral clustering (Ng et al., 2002), and
one way to obtain an hard assignment is to run K-means
over the K leading eigenvectors of the spectral solution.

2.5. Metric learning

In this paper, we consider learning a Mahalanobis metric,
which may be parametrized by a positive definite matrix
B ∈ Rp×p. Equivalently, we replace the dot-products
x>i xj by x>i Bxj , and XX> by XBX>. Thus, in the case
of the sequential hardcoded prior of Section 2.3, this corre-
sponds to:

min
M∈Mseq

K

Tr
[
XBX>(I −M)

]
. (5)

When the number of segments is unknown, we penalize by
adding λTrM . In this case, note that by replacing B by
Bλ and dividing the equation by λ, we can use an equiva-
lent formulation with λ = 1, that is:

min
M∈Mspec

Tr
[
XBX>(I −M)

]
+ TrM . (6)
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For the soft prior of Section 2.4, the corresponding mod-
els become minM∈MK

Tr[XBX>(I − M) + LM ] and
minM∈M Tr[XBX>(I −M) + LM ] + TrM . The key
aspect of the partitioning problem is that it is formu-
lated as optimizing with respect to M a function linearly
parametrized by B. The linear parametrization in M will
be useful when defining proper losses and efficient loss-
augmented inference in Section 3.

Note that we may allow B to be just positive semi-definite.
In that case, the zero-eigenvalues of the pseudo-metric cor-
respond to irrelevant directions. This means in particular
we have performed dimensionality reduction on the input
data. We propose a simple way to encourage this desirable
property in Section 3.4.

3. Structured prediction for metric learning
Our goal is to learn a positive definite matrix B, in order
to improve the performance of the structured output al-
gorithm that solves the minimization problem of Eq. (5)
or Eq. (6). The partitioning problem can be cast as
maxM∈MK

〈w,ϕ(X,M)〉 or maxM∈M 〈w,ϕ(X,M)〉,
where 〈A,B〉 is the Frobenius dot product. When
the number of clusters is known (TrM = K), then
ϕ(X,M) = X>MX and w = B; otherwise, ϕ(X,M) =
1
T Diag(X>MX,M) and w = Diag(B,−I).

Let F denote the vector space where the above-defined w
lies. Our goal is to estimate w ∈ F from N pairs of ob-
servations (Xi,Mi) ∈ X ×M. This is exactly the goal
of large-margin structured prediction (Tsochantaridis et al.,
2005), which we now present. We denote by N a generic
set of matrices, which may either be M, Mspec, Mseq,
MK , Mspec

K , Mseq
K , depending on the situation (see also

Section 3.3).

3.1. Large-margin structured output learning

In the margin-rescaling framework of Tsochantaridis et al.
(2005), using a loss `: N × N → R+ between elements
of N (here partitions), the goal is to minimize with respect
tow ∈ F , 1

N

∑N
i=1 `

(
argmaxM∈N 〈w,ϕ(Xi,M)〉,Mi

)
+

Ω(w), where Ω is any (typically convex) regularizer. This
framework is standard in machine learning in general and
metric learning in particular (see, e.g, Jain et al. 2012). The
loss function w 7→ `(argmaxM∈N 〈w,ϕ(Xi,M)〉,Mi) is
not convex in M , and can be replaced by the convex sur-
rogate Li(w) = maxM∈N

{
`(M,Mi) + 〈w,ϕ(Xi,M) −

ϕ(Xi,Mi)〉
}
, leading to an estimator ŵ minimizing

1
N

∑N
i=1 Li(w) + Ω(w) . (7)

In order to apply this framework, several elements are
needed: (a) a regularizer Ω, (b) a loss function `,
and (c) the associated efficient algorithms for comput-

ing Li, i.e., solving the loss-augmented inference problem
maxM∈N

{
`(M,Mi) + 〈w,ϕ(Xi,M)− ϕ(Xi,Mi)〉

}
.

Optimization in w. Given that the objective function
is not smooth, we have used projected subgradient descent
(stochastic and non-stochastic), with convergence rates of
O(1/t) after t iterations (Shalev-Shwartz et al., 2007).

3.2. Loss between partitions

In this paper, we consider the following loss:

`(M,N) = ‖M−N‖2F = Tr(M) + Tr(N)− 2 Tr(MN),
(8)

which is practical (it is a bilinear function ofM andN ) and
corresponds to a well-known loss between partitions (Hu-
bert & Arabie., 1985; Bach & Jordan, 2003). If the parti-
tions encoded by M and N have clusters A1, . . . , AK and
B1, . . . , BL, then `(M,N) = K + L − 2

∑
k,l
|Ak∩Bl|2
|Ak|·|Bl| .

This loss is equal to zero if and only if the partitions
are equal, always larger than |K − L| and smaller than
K + L − 2. Other choices are classical in the literature
of metric learning, in particular the loss associated to the
Rand index (Hubert & Arabie., 1985; Finley & Joachims,
2005), that is, dRand = 1 − Rand where Rand(P,Q) :=

1− 1
T (T−1)

∥∥YPY T
P − YQY T

Q

∥∥2
F

for two partitions P andQ
with equivalence matrices YPY T

P and YQY T
Q respectively.

The Rand index/loss is not necessarily well suited to our
problem, since intuitively it doesn’t take into account the
size of each cluster, whereas our concern is to optimize in-
tra class variance which is a rescaled indicator.

3.3. Loss-augmented inference problem

Efficient minimization is key to the applicability of large-
margin structured prediction and this problem is a classi-
cal computational bottleneck. In our situation the cardi-
nality of N is exponential in T , but our choice for the
loss ` leads to the problem maxM∈N Tr(AiM) where
Ai = 1

T (XiBX
>
i − 2Mi + Id) if the number of clusters

is known, and Ai = 1
T (XiBX

>
i − 2Mi) otherwise. Thus,

the loss-augmented problem can be performed exactly for
the change-point problems (that is, N ∈ {Mseq,Mseq

K };
see Section 2.3) or through a spectral relaxation otherwise
(that is, N ∈ {Mspec,Mspec

K }; see Section 2.4).

3.4. Regularizer

Several regularizers Ω and parametrizations for B can be
chosen. The most popular choice for Ω is the Frobenius
norm (see, e.g, Tsochantaridis et al. 2005; Jain et al. 2012).
The following two variants are often needed depending on
the application.

Low-rank metric. A desirable property for the learned
metric is to be interpretable. Ideally, we would like to have
a pseudo-metric with a small rank. The classical relaxation
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of the rank is the sum of the singular values, that is, Ω(w) =
Tr(B) since B is symmetric positive semi-definite.

Diagonal metric. Considering only diagonal matrices
B = Diag(b) for some b ∈ Rp with b > 0 limits the num-
ber of parameters to learn, and reduces the metric learn-
ing problem to reweighting the coordinates of the data.
Then, the two proposed regularizers can be written ‖b‖22
and ‖b‖1 = 1>p b, the latter leading to variable selection.

4. Extensions
4.1. Partial labellings

The large-margin convex optimization framework relies on
fully labeled datasets (Xi,Mi)i=1,...,N where Xi is a time
series and Mi the corresponding rescaled equivalence ma-
trix. In many situations however, only partial information
is available about the partition associated to eachXi. Then,
starting from the PCA metric, we propose to iterate be-
tween (a) label all datasets using the current metric and re-
specting the constraints imposed by the partial labels and
(b) learn the metric using Section 3 from the fully labeled
datasets. See an application in Section 5.2.

4.2. Detecting changes in the distribution of temporal
signals

A priori, the approach to change-point detection presented
in Section 3.3 can only detect changes in the mean of the
distribution of the xj because it starts from the distortion
measure of Section 2.1. Nevertheless, in the literature,
change-point detection refers to the more general problem
of finding changes in the whole distribution of the xj (Bas-
seville & Nikiforov, 1993), taking into account other fea-
tures of the distribution like the variance or the kurtosis. In
order to tackle this problem when xj ∈ R, we propose to
apply our approach to the time series (fi(xj))i=1...r ∈ Rr,
j = 1 . . . T , where the fi are well-chosen functions so that
changes in the distribution of xj appear through changes
in the mean of fi(xj). For instance, in order to detect
changes in the first moments of the distribution, a naive
choice is fi(x) = xi, but the xij explode when i grows.
A way to prevent them from exploding is to use the ro-
bust Hermite moments (Welling, 2005), that is, to take

fi(x) = Hi(x) = 2
√

2iπi!e−
x2

2σ2 (−1)i2i/2e
x2

2
di

dxi

(
e
−x2
2

)
the i-th Hermite function. See an application in Section 5.4.

5. Experiments
5.1. Synthetic example.

We consider synthetic time series of dimension p = 300
and length T = 600 with K = 3 relevant changes in the
mean of a few dimensions. Among these dimensions, 10
are relevant time series with aligned ruptures in their mean

that we want to detect. The others are 290 noisy random se-
ries, either with no changes in their global mean or changes
which are not aligned with the ones we aim at detecting.
By learning a metric, we hope to obtain high weights on
the relevant coordinates and small weights on the others.

Given N = 100 instances of such time series with the
same 10 relevant coordinates, we compare the performance
of our algorithm to the Euclidean metric (that is, Eq. (6)
with B = αI and α > 0 learned on a validation set), the
PCA metric (obtained simply by performing a PCA, keep-
ing the three leading eigenvectors), and two state-of-the-
art semi-supervised metric learning algorithms for cluster-
ing (Xing et al. 2002, and the RCA approach of Bar-Hillel
et al. 2006), for which we stacked all datasets into a sin-
gle one with the corresponding supervision. Note that all
algorithms except ours are given the exact true number of
change-points K?. Results are shown on Figure 1 (points
at the extreme right of the graph), illustrating the interest of
learning a metric (Euclidean is bad and PCA only slightly
better), and showing our approach does significantly better
than RCA. Note that RCA is not directly adapted to change-
point detection, it requires moreover dimensionality reduc-
tion to work and the performance is not robust to the choice
of the number of coordinates.

5.2. Robustness to partial labelling

We extended the above experiment to the case of partial
labellings, using the approach of Section 4.1 for our algo-
rithm. Results are presented on Figure 1, where the x-axis
represents the fraction of the labels M1, . . . ,MN available
to the two existing semi-supervised clustering methods and
our algorithm, showing the same ordering between the al-
gorithms, except when the fraction of available labels is
very small.

5.3. Video segmentation

We applied our method to data coming from old TV shows
(the length of the time series in that case is about 5400, with
60 to 120 change-points) where some speaking passages al-
ternate with singing ones. The videos are from 60 up to 90
minutes long. We aim at recovering the segmentation in-
duced by the speaking parts and the musical ones. As in
Arlot et al. (2012), we use GIST features for the video part
and MFCC features for the audio (12 first standard coef-
ficients). We rescaled the videos frames to small size (64
by 64) before computing these GIST with 4 prefilters, 4
different scales (with 8 orientations at each scale and thus
32 filters in total). In the end each image was represented
by a vector of length 512. The features were aggregated
every second so that we consider time series of length a
few thousands, which is still computationally tractable us-
ing Algorithm 1. Using 4 shows for train, 3 for validation,
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Figure 1. Performances on synthetic data vs. the quantity of in-
formation available in the time series, measured in terms of the
loss ` defined by Eq. (8). Note the small error bars (90% quan-
tiles). We compare ourselves against the Euclidean metric (‘No
learning’), a metric learned by RCA (with 3 components), PCA
and Xing et al. (2002).

3 for test, we report below the test errors for each test show
with the loss ` (smaller is better).

Method Audio Video Both
PCA 23 41 34 40 55 25 29 53 37
No metric learning 29 48 33 59 55 47 40 48 36
Our algorithm 6.1 9.3 7 10 14 11 8.7 9.6 7.8

We consider three different settings: using only the image
stream, only the audio stream or both. In these three cases,
we consider using the existing metric (no learning), PCA,
or our approach. In all settings, metric learning improves
performance. Note that the performance is best with only
the audio stream; our metric learning, given both streams,
manages to do almost as well as with only the audio stream,
thus illustrating the robustness of using metric learning in
this context where the video stream is not useful.

5.4. Bioinformatics application

Detection of change-points in DNA sequences for cancer
prognosis provides a natural testbed for the approach of
Section 4.2. Indeed, researchers from this field face data
which are linked to the number of copies of each gene along
the DNA (a-CGH data as used by Hocking et al. 2013). The
presence of such changes is generally related to the devel-
opment of certain types of cancers. On the data from the
Neuroblastoma dataset (Hocking et al., 2013), some cary-
otypes with changes of distribution were manually anno-
tated. We consider the approach of Section 4.2 and com-
pare the Euclidean and a learned metric on the five first
Hermite moments of the data. Without any metric learn-
ing, just by adjusting the AIC criterion by trial and error,
we reach a global error rate in change-point identification
of 12%. By learning a diagonal metric over Hermite fea-

Table 1. Test performance on the Horses dataset according to our
loss and the standard Rand loss (1-Rand Index) Lower is better.

Loss used Constrained Unconstrained Ncuts
metric learning metric learning

` 1.51 1.73 1.81
Rand loss 0.37 0.43 0.48

tures, we reach a rate of 6.9%, thus improving significantly
the performance. Note that, in this application it is irrele-
vant to run standard metric learning like RCA, since they
are unable to do model selection and learn the parameter λ
of penalization of Eq. (3). Note that λ can be seen as the
expected level of noise in the series.

5.5. Image segmentation

Most of popular image segmentation algorithms are not
based on minimizing Euclidean distortions (even if some-
times the use of simple K-means, for instance over col-
ors features, can lead to very good segmentation, see, e.g,
Forsyth & Ponce 2002). The main drawback of such meth-
ods is that they do not push pixels which are close to belong
to the same cluster.

The normalized cuts framework (Shi & Malik, 1997),
which is popular for segmenting images, has some relation
with our framework, since it can be cast as max(Tr(WM))
where W is some variant of the normalized Lapla-
cian (Bach & Jordan, 2003).

Inspired by this connection, we propose a simple fore-
ground/background segmentation model which consists
in adding a prior term to K-means, as proposed in
Eq. (4), namely considering a decoding of the type
maxM∈MK=2

Tr(XBXTM) − Tr(LM) where L is the
normalized Laplacian (in our experiments the use of the
different versions of the Laplacian did not lead to signifi-
cantly different performances) of the graph underlying the
image. This second term permits to give to spatially con-
tiguous clusters the preference over non contiguous ones.
Note that in our experiments, we simply consider the graph
associated to the 4-connected grid.

We consider the task of segmenting images of the Weiz-
mann horses dataset (Borenstein & Ullman, 2004), using
N = 20 training images with colour and dense SIFT fea-
tures. Results are presented in Table 1, where we used both
normalized cuts and an unconstrained metric learning tech-
nique (Finley & Joachims, 2008) as baselines. In Table 2,
we present analogous results for the Oxford flowers (Nils-
back & Zisserman, 2006) dataset, for which the training set
size is bigger: 150 images. Note that the parameter of the
structured SVM is simply adjusted using a validation set.
To assess significancy of the difference between the mean
of the loss obtained with our algorithm and baselines we



Metric Learning for Constrained Partitioning Problems

Table 2. Test performance on the Flowers dataset according to our
loss and the standard (see Unnikrishnan et al. 2007) Rand loss.

Loss used Constrained Unconstrained Ncuts
metric learning metric learning

` 0.94 1.31 1.59
Rand loss 0.25 0.38 0.46

Figure 2. From left to right: original image, groundtruth seg-
mentation, image segmented with our learned metric, image seg-
mented learning just a metric with no prior, Ncuts with tuned pa-
rameters for colors and position features.

propose the boxplots of Fig. 4 in the case of the flowers
dataset (similar results hold for the Horses dataset). Finally,
in Fig. 2 and 3, we present some cases where the learning
of the metric has lead to significant improvements over the
baselines.

In these image segmentation experiments, the approach
based on unconstrained metric learning leads to inferior
performance while our approach based on appropriately
constrained metric learning leads to improvements over
normalized cuts.

6. Conclusion
In this paper we have addressed the problem of learning
a metric in a supervised way for improving the perfor-
mance of unsupervised partitioning algorithms. We have
focused on the practically important case in which a prior
over the resulting partition is available. More precisely we
have demonstrated that, for the temporal sequential prior,
such a metric can be learned in an efficient way using
a structured SVM. We explored several applications, in

Figure 3. The images are in the same order as in Fig.2
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Figure 4. Boxplots for the differences of test error, with the loss
`, between baselines and our approach. Positive values mean our
algorithm does better. Note that sometimes Ncuts outperforms
our metric learning but the standard version never beats the con-
strained one. Evaluation was performed over a test set of 653
labeled instances.

particular the detection of change-points in video streams
or DNA sequences and the problem of image segmenta-
tion, with a significant improvement in partitioning per-
formance. Then, driven by the case in which the prior is
given through a graph Laplacian, we have proposed a soft
model based on Euclidean distortion that we plugged into
a structured SVM. We demonstrated that approach is well
founded with experiments on image segmentation datasets.

For future works, following recent trends in image segmen-
tation (see, e.g., Joulin et al. 2010), it would be interest-
ing to extend our change-point framework so that it allows
unsupervised co-segmentation of several videos: each seg-
ment could then be automatically labeled so that segments
from different videos but with the same label correspond to
the same action. Another extension would be to generalize
our algorithm to kernel learning. Indeed, some recent work
(Jain et al., 2012) proved links between metric learning and
kernel learning, allowing to kernelize any Mahalanobis dis-
tance learning problem.
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