
Installing and Using Jazz, release 0.3b

Alexandre.Frey@ensmp.fr

Download

Jazz is available from http://www.cma.ensmp.fr/jazz/download.html.
Download one of the following archive files:

Windows NT/9x jazz-0.3b-x86-w32.zip
Compaq’s Tru64 UNIX∗ jazz-0.3b-alpha-osf.tar.gz
Sparc Solaris 2.6 jazz-0.3b-sparc-solaris2.tar.gz
Linux (glibc2) n/a†

∗ Formerly Digital Unix
† Available on request.

Emacs is the preferred way of editing Jazz programs. You can get it at
http://www.gnu.org/software/emacs/emacs.html. A port for Windows
NT/9x is available at http://www.cs.washington.edu/homes/voelker/ntemacs.
html. Note that Emacs version 20 is required.

Content

Release 0.3b of the Jazz system includes:

• The Jazz compiler and its libraries, version 0.3.5;

• The Blues circuit simulator, version 1.07 and its associated visualisation
tool Rhythm, version 1.05.

Installation

1. Uncompress the archive in directory dir . This will create the following
directory structure, where arch is one of x86-w32, sparc-solaris2,
alpha-osf, x86-linux:

Revision: 1.18 , Date: 1999/10/14 13:16:43 1

mailto:Alexandre.Frey@ensmp.fr
http://www.cma.ensmp.fr/jazz/download.html
http://www.gnu.org/software/emacs/emacs.html
http://www.cs.washington.edu/homes/voelker/ntemacs.html
http://www.cs.washington.edu/homes/voelker/ntemacs.html


dir

��
��

��
��
�

�
�
�

@
@
@

PP
PP

PP
PP

P

bin

arch

packages examples emacs

2. Add dir/bin/arch to your PATH environment variable1.

3. The JAZZPATH environment variable is a list of directories where the Jazz
compiler finds the libraries. Set it to dir/packages, which contains the
standard Jazz packages. You can add directories containing your own
packages2.

4. An Emacs mode for editing Jazz programs is included in the distribution.
To use it, add the following lines to your .emacs:

(setq load-path (cons "dir/emacs" load-path))
(autoload ’jazz-mode "jazz-mode" "" t)
(setq auto-mode-alist (cons ’("\\.jzz$" . jazz-mode)

auto-mode-alist))

Compilation

Here is a simple Jazz source file:

// example.jzz
import jazz.circuit.*;
import jazz.circuit.Net.*;

// a+ b+ c = 2 ∗ s+ r
fun fullAdd(a, b, c) = (s, r) {

x = a ^ b;
s = x ^ c;
r = mux(x, c, a);

}

// n-bit Ripple-Carry adder
1On Windows NT, open Control Panel, double-click on System, select the Environment

tab, click on user variable PATH and add dir/bin/x86-w32; in front of its value. On Windows
9x, add set PATH=dir/bin/x86-w32;%PATH% at the end of your autoexec.bat.

2Use ’:’ as separator on Unix and ’;’ on Windows.

Revision: 1.18 , Date: 1999/10/14 13:16:43 2



fun adder(n)(a: Net[n], b: Net[n]) = (s: Net[n+1]) {
r[0] = constant(0);
for (i < n) {
(s[i], r[i+1]) = fullAdd(a[i], b[i], r[i]);

}
s[n] = r[n];

}

N=8;

device Adder {
input a: Net[N], b: Net[N];
output s: Net[N+1];

s = adder(N)(a, b);
}

device AdderInputs {
output a: Net[N];
output b: Net[N];

// generates some arbitrary inputs
for (i < N) {

a[i] = constant(2*i+5/(6*i + 1));
b[i] = constant(8*3*i/(4*i+1));

}
}

// generate the net-lists
export Adder();
export AdderInputs();

To compile example.jzz, hit C-cC-b under Emacs or execute jazz example.jzz
in a command-line interpreter:

$ jazz example.jzz
%% The Jazz compiler version 0.3.5
%% Compilation: 1.43 s (1.56 s real)
%% Link: 0.05 s (0.04 s real)
%% Device "Adder". nets: 132, mux: 8, per: 1, ^: 16, op: 25, net/op: 5.28
%% Combinatorial depth: 9
%% Writing "./Adder.jzn"
%% Device "AdderInputs". nets: 16, per: 16, op: 16, net/op: 1.00
%% Combinatorial depth: 1

Revision: 1.18 , Date: 1999/10/14 13:16:43 3



%% Writing "./AdderInputs.jzn"
%% Execution: 0.06 s (0.07 s real)

This file contains two device exportations, so the compilation produced two
net lists: Adder.jzn and AdderInputs.jzn.

Simulation

Blues is an off-line device simulator: it takes a device net-list, simulates it for a
given number of cycles, and writes the value of the output nets for each cycle
in a simulation trace (bio). If the device has inputs, the simulator must be fed
with the outputs of another device. The connection is based on the names of
the nets.

For example:

$ blues -n 128 AdderInputs.jzn -o AdderInputs.bio
%% The Blues Simulator version 1.07
$ blues -n 128 -i AdderInputs.bio Adder.jzn -o Adder.bio
%% The Blues Simulator version 1.07

Use Rhythm to visualize the .bio files in a human-readable form. This tool
generates an HTML file:

$ rhythm < Adder.bio > Adder.html
%% Rhythm version 1.05

By default, Adder.html contains the values of all input, output, and probed
nets (see below, section “Debug”). You may select a subset of nets to trace
and customize the output by using a configuration file:

$ rhythm Adder.rcf < Adder.bio > Adder.html

where Adder.rcf contains:

columns:
a[0..7]: uint;
b[0..7]: uint;
s[0..8]: uint;

end:

The configuration file defines the content and format of all the columns. Content
is specified by an ordered list of comma separated net names. The slice notation
may also be used: a[0..7] is equivalent to a[0], a[1], . . . , a[7]. This
list of nets defines a integer for each cycle (least significant bits are on the left).
This integer is displayed according to the format keyword:

Revision: 1.18 , Date: 1999/10/14 13:16:43 4



Keyword Semantics

uint unsigned integer in decimal
int signed integer in decimal
xint unsigned integer in hexadecimal
bint unsigned integer in binary
net bit
char 8-bit ASCII character
seg7 7-segment decoder

The bit-segment mapping for 7-segment decoders is the following:

6

5

4

3

2

0

1

If you use 7-segment decoders, beware that the digits are displayed as images
in the HTML file. These images as generated on-the-fly in a directory named
images relative to the current directory.

Finally, if you simulate many cycles, Rhythm may generate unreasonably
large HTML files. You can use the following options to select the cycles you
want to display:

-start n1 Start to display at cycle number n1

-stop n2 Display only cycles below n2 (inclusive)
-step p Select every pth cycle
-enable netName Display a cycle only if the value of netName is 1

Example:

$ rhythm -start 32 -stop 64 Adder.rcf < Adder.bio > Adder.html

Debug

By default, it is only possible to visualize input or output nets. Internal nets
must be explicitely probed and given a “probe name”. The syntax is:

@Debug.probe(〈net〉,〈netName〉)

Revision: 1.18 , Date: 1999/10/14 13:16:43 5



Beware that this line may be executed several times with different nets. In this
case, you must take care to generate non-ambiguous net names. For example,
here how to probe the carries of adder:

// n bit Ripple-Carry adder
// with probed carries
fun adder(n)(a: Net[n], b: Net[n]) = (s: Net[n+1]) {
r[0] = constant(0);
for (i < n) {
(s[i], r[i+1]) = fullAdd(a[i], b[i], r[i]);

}
s[n] = r[n];

// DEBUG
for (i < n+1) {

@Debug.probe(r[i], format("r[%d]", i));
}

}

The carries may then be referred to as r[0], . . . , r[8] in .rcf files.

Feedback

Send your bug reports and comments to jazz@cma.ensmp.fr.

Revision: 1.18 , Date: 1999/10/14 13:16:43 6

mailto:jazz@cma.ensmp.fr

