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Abstract

We present various experiments in Hardware/Software design trade-
offs met in speeding up long integer multiplications. This work
spans over a year, with more than 12 different hardware designs
tested and measured.

To implement these designs, we rely on our PAM (forPro-
grammable Active Memory, see [BRV]) technology which provides
us with a 50 millisecond turn-around time silicon foundry for im-
plementing up to 50K gate logic designs fully equipped with fast
local RAM and host bus interface.

First, we demonstrate how a simple hardware 512 bits integer
multiplier coupled with a low end workstation host yields perfor-
mance on long arithmetic superior to that of the fastest computers
for which we could obtain actual benchmark figures.

Second, we specialize this hardware in order to speed-up one
specific application of long integer arithmetic, namely Rivest-
Shamir-Adleman public-key cryptography [RSA]. We demonstrate
how a single host driving 3 differently configured PAM boards
delivers RSA encryption and decryption faster than 225Kbits/sec
for 512 bits keys. This beats the best currently working VLSI
specially built for RSA by one order of magnitude.

1 Introduction

1.1 Hardware Acceleration

Many computationally intensive problems contain a relatively sim-
ple inner loop which performs the bulk of the computation. Speed-
ing up this inner loop through special purpose hardware can result
in dramatic performance improvements, and dedicated hardware
accelerators are commonly used to boost performance on critical
applications.

Perhaps the most ubiquitous is the floating-point coprocessor
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(FPU). Other examples are vector coprocessors, graphic copro-
cessors, communication units and coprocessors to accelerate lisp
computations.

1.2 Limits to hardware accelerators

With the advent of the high volume commodity market for personal
computers, it has becomecost effective to provide more specialized
accelerator cards. There are however limitations to this approach,
both economic and technical.

On the technical side, the main limit to performance achievable
by specialized accelerators comes from the available communi-
cation bandwidth to the host. Our approach faces that limit and
most of our work went into finding appropriate tradeoffs between
hardware and software processing in order to keep our application
within the available bandwidth.

Economic considerations severely limit the size and number of
available specialized hardware accelerators. This normally rules
out applications which are used infrequently on a given host, and
require significant amounts of hardware to achievea useful speedup.

For these applications, as well as all those for which no
dedicated hardware accelerator exists, one way to improve perfor-
mance is to use super-computers, a very expensive proposition.
Programmable hardware such as PAMs provide an economically
attractive alternative to super-computers, as shown here.

Furthermore, when made to competewith specializedhardware,
super-computers fare poorly: executing a given algorithm on a
general purpose large structure is almost always some orders of
magnitudeslowerthan what can be achieved with a VLSI, whose
very structure maps that of the target algorithm on a small area.
This is why, in the cases reported here, we havebeen able to achieve
performance equivalent (or superior) to those of super computers
at a much lower hardware cost.

1.3 PAM technology

Using a 5� 5 array of LCA (see [X]) chips, we have built a
40� 80' 3K bit PAM named Perle-0 on a 25� 25 cm2 printed
circuit board. Perle-0 has a VME bus interface, which makes
it a general-purpose configurable hardware co-processor tightly
coupled to a host CPU (today a 16MHz MC68020).

The configuration data for Perle-0 (about 400K bits) is down-
loaded by the host itself in 50 milliseconds. The logic controlling



the download process, as well as the host bus communication pro-
tocol areprogrammedinto two extra LCAs, statically configured at
power-up time from a PROM. By merely changing the content of
that PROM, we are able to quickly adapt to different bus protocols,
or to add extra features to the bus interface.

The PAM cycle being much faster than that of the host bus, we
added 4 Megabits of fast static RAM to Perle-0, directly connected
to the PAM (the bandwidth of that memory is up to 1.5 Gigabits
per second, while the host bus bandwidth is typically around 50
Megabits per second). Apart from a few mandatory buffers for
driving the host bus, Perle-0 is built out of just two kinds of
components: LCAs and static RAM.

PAM designs are synchronous logic circuits, each of the reg-
isters being updated on each cycle of a global clock signal. The
maximal clock speed for such a design is directly determined by
its critical combinatorial path, which varies from one design to
another. Perle-0 has a clock distribution system whose speed can
be programmedas part of the design configuration, for speeds up
to 70 MHz (the present maximum clock cycle of LCA chips).

Last but not least, we take advantage of an extra feature of
the LCA component which makes it possible to dynamicallyread
backthe content of each Programmable Active Bit (PAB). Together
with a “software stepping” facility (stop the main clock and trigger
clock cycles one at a time from the host), this provides a powerful
debugging tool which can take a snapshotof the internal state of the
design after each clock cycle; this feature has drastically reduced
the need for a-priori software simulation of our designs.

As master processor weuse aMotorola 68020basedworkstation
with VME bus. The number of boards a host can support is
limited by its available VME slots (in our current configuration
8). The accelerator boards cannot initiate bus accesses; from the
host’s standpoint they areactive memories. The communication
bandwidth between the host and boards is thus determined by the
CPU instruction issue rate and the VME bus bandwidth. Typically,
from straightline code, we can hope for at most one 32 bit transfer
each 700ns. For more details see [BRV].

1.4 Long Integer Multiplication

Traditionally, floating point computations have received the great-
est attention in the implementation of high performance arithmetic.
As a consequence, we find in a typical microprocessor with FPU
that floating point multiplications are 4 to 32 times faster than the
corresponding fixed point operations. Yet, more and more appli-
cations demand exact integer arithmetic with a precision which
exceeds that of current microprocessors. To answer such demands,
one must implement long integer arithmetic in software. The basis
for our current work is the (publicly available) BigNum software
(see [SVH]), a long integer arithmetic package whose implemen-
tation on most standard microcomputers includes highly optimized
assembly code for the critical arithmetic loops. Applications for
this package have been found in the following areas:

� Computer arithmetic, where new ground is being gained in
factoring and primality testing of very large integers.

� High level languages (such as C, Lisp, Modula, C++, Russel,
Caml, . . . ) and specialized mathematical algebra software
(such as Mapple, Macsyma, Arithmetica, . . . ) which need
to include automatic arbitrary precision integer arithmetic at
run-time.

� Signal processing, where polynomial convolution can be
reduced to long integer product.

� Exact computational geometry.

� RSA cryptography, as introduced in [RSA].

We investigate hardware acceleration of long integer multiplication
through PAM implemented slave processors attached to the bus of
a conventional engineering workstation. Our paper considers two
aspects of the utilization of such accelerators.

1. What speedups can be achieved on existing multiply inten-
sive programs by interfacing to a general purpose multiply
accelerator with no changes to the software?

2. What are the possible speedups, tradeoffs, and insights to be
gained, in redesigning specific algorithms to more fully ex-
ploit several concurrently operating slave processors? How
fast can we run RSA with 512 bits keys?

1.5 Main Results

To see what could be gained with minimal software change, we
modified BigNum’s multiply routine to use programmed hardware
in lieu of the optimized multiply loop written in the native language
of the host machine. By carefully matching the hardware to the
bus bandwidth, we were able to produce product bits at 16 Mbit/s,
faster than the best reported figures for a Cray II (see [BW]). This
hardware speeds up raw multiplication by a factor 25, and Pre-
existing BigNum applications can take advantage of it by simply
relinking with a modified BigNum library.

To investigate further the tradeoffs that are possible in our
hybrid hardware/software system we focused on one application:
the RSA cryptosystem (see [RSA]) which can be cast entirely in
terms of long multiplications. Starting with a version of RSA
from the first part of our work, we proceeded through a series of
hardware/software systems spanning two orders of magnitude in
performance to our final version using three differently programmed
accelerator boards, all operating in parallel with the host. At 226
Kbit/s coding and decoding speed, this system is faster thanany
currently existing 512 bits RSA implementation, inanytechnology,
as of February 1990. A recent survey by Brickell [Br] grants the
previous speed record for 512 bits keys RSA decryption to a VLSI
from AT&T, at 19Kbits/sec.

Our contention is that PAM is a cost-effective alternative to
provide significant performance improvements for computation-
ally intensive problems on a general purpose computer system.
Their reprogrammability makes it possible to consider hardware
acceleration for infrequently executed applications. Their rapid
turnaround and reusability encourages exploration of the vitally
important hardware/software tradeoffs, and experimentation with
designs that are too adventurous to commit to VLSI.

Our hardware organization provides opportunities for syn-
chronous parallelism within each PAM and asynchronous paral-
lelism between different PAMs and with the host itself. In the
technical development to follow, we develop a strategy for pro-
gramming such hybrid systems. Further, we demonstrate that
thinking about hardware implementation gives insights that lead to
improved software implementations. In pure performance terms,
we demonstrate that PAM can compete with ASIC technologies
which have much higher initial costs.



2 Hardware Multipliers

One of our first PAM designs was a 512 bit� 32 bit multiplier,
based on [L]. By simply recoding the assembly inner-loop for
long multiplication, we were able to interface BigNum with the
PAM multiplier, and measure a maximum speedup of 25 for raw
multiplication. In order to understand the impact of hardware
speedup on performance at the system level, we measured three
applications, previously written on top of BigNum.

1. An RSA implementation designed as a benchmark for
BigNum on various computers. Our host computes 145
bits of RSA code (512 bits keys) per second on that bench-
mark. Using the PAM multiplier, we got 955 bits of RSA
per second, a 7 fold speed-up. Hand crafting the inner loop
of RSA in order to pipeline the successive multiplies pushed
us to 1.8Kbit/s, a factor 12 speed-up.

2. A primality certification package,written by Fran¸cois Morain
at INRIA. Based on Atkin’s algorithm, this method is heavily
addicted to long multiplies [Mor]. The PAM multiplier
brought a 8 fold speed-up, and was used over 400 hours in
helping Morain certify that

23539 + 1
3

;

is prime. As of today, it is the largest (1065 decimal digits)
knownnatural1 prime.

3. An arbitrary precision real arithmetic package written and
interfaced to BigNum by Hans Boehm (see [Bo]). Measured
speed-ups on that application range from 7 for computing
5000 decimals of�, 4 for the 1000-th decimal ofsin(10),
to 1 in the straightforward binary to decimal conversion, for
printing purposes. Using an algorithm of Sch¨onhague (see
[K] p. 290) increased to 5 the speed-up on that print routine.

A problem arose from the fixed 512 bits wordlength of our mul-
tiplier. To deal with partially full words we could either pad to
a multiple of 512 bits, or do in software any incomplete words.
We found neither solution satisfactory. Instead, we built a second
version of the multiplier which supports variable length operands:
any wordlength from 64 to 512 bits in multiples of 64 can be
multiplied by an arbitrarily long sequence of 32 bits words. This
new multiplier computes 32 bit� 32 bit products within 2% of
the performance of the native CPU multiply instruction; so there is
no penalty for short multiplies, and no incentive to test and branch
to choose between different implementations for different operand
lengths. The driving software becomes simpler and performance
more predictable.

3 Successive RSA Implementations

The essence of RSA is modular exponentiation of large integers.
Modular reduction can be achievedby a fixed sequenceof multipli-
cations, using an algorithm due to Montgomery [Mon]. Thus RSA
can be computed by a long sequence of multi-precision multiplica-
tions. The security of RSA depends on the difficulty of factoring
the modulus used in the modular exponentiation. The size of this
modulusdetermines the sizeof the numberswe must multiply. With

1A primep is natural if the factorization of bothp � 1 andp + 1 is unknown.

current factoring technology 512 bits is secure, although subject to
massiveattacks such as reported in [LM]. Initially we chose to work
with a 512 bit modulus as a natural fit to our existing multiplier
hardware.

We discuss successive implementations of our RSA system
which exhibit the characteristics listed in Table 1. Performance is
indicated by the throughput of the various systems in baud—the
higher the baud rate the more blocks decrypted per second.

The names we use to denote the various versions of our
programmed hardware are as follows:

bus multiplier (512 bits fixed-length) Our very first multiplier.

bus multiplier The variable length version of the abovemultiplier,
interfaced with BigNum. We call both thesebusmultipliers
because for each operation, both operands, and the result,
must be fed across the VME bus between the host and the
PAM. The main bottleneck in these designs proves to be the
VME bus bandwidth.

register multiplier This multiplier improved on the bus multiplier
with a redesigned data path and 32 registers in the local
RAM. However implementation constraints dictated a return
to fixed size operands and a halving of word size to 256 bits.

two-bit/cycle reg. multiplier As above, but with a modified data
path which, through Booth recoding, processes two bits of
the multiplier per internal cycle. This and the preceding
design were implemented in less than three months by two
students with no previous hardware design experience (see
[LV]).

mod-prod-unit This design performs a Montgomery [Mon] re-
coded modular multiply on 256 bits operands. It has a
specially designed data path that embeds the modulus in the
ALU logic. The modular multiply takes an average of 160
internal cycles.

In the table we see over 1000 times improvement between our
very first software implementation and our current best accelerated
implementation. The speedup comes from several sources; as we
developed our successive versions we learned new techniques and
improved our basic algorithms. To be fair, we worked hard on
the software as well as on the hardware. Our software on more
powerful machines (DecStation 5000 / MIPS R3000) approaches
the speed of commercial RSA hardware. The PAM gives us a
200 times speedup over our best software on the MC68020, and a
20 times speedup over the highest performance software/machine
combination we are aware of.

We started our RSA project with a simple goal: establish a
new world record in RSA cryptography speed. RSA is an ideal
problem for demonstrating the power of our PAMs. It is very
demanding computationally and, at the same time, of sufficient
commercial interest that many people have tried to build efficient
implementations for it. Our own progress can be divided into four
phases.

3.1 Phase 1: Algorithmic Work

We were familiar with the Montgomery technique for modular
multiplication and felt it to be superior to division based methods.
We began to investigate how to map it into hardware. From our



PROJECT PHASE SPEED (baud) HARDWARE CHARACTERISTICS SOFTWARE TECHNIQUES
Morain’s original code—full exponential—modulus size of 512

145 none software bignum (MC68020)
Algorithmic 1 000 bus multiplier hardware bignum

Work 1 800 bus multiplier (512 bit fixed-length) straightline code (overlapped)
New algorithm—Chinese remainder theorem—modulus size reduced to 508

1 000 none software bignum (MC68020)
10 300 none software bignum (MIPS R3000)
2 200 bus multiplier @ 75ns hardware bignum

Bus 3 600 bus multiplier @ 75ns optimized assembly code
Multiplier 3 900 bus multiplier @ 66ns optimized assembly code

6 000 3 bus multipliers @ 66ns straightline C compiled by gcc
10 000 3 register multipliers @ 75ns naive driving code

Register 15 600 3 register multipliers @ 40ns naive driving code
Multiplier 22 000 3 two-bit/cycle reg. multipliers @ 40ns naive driving code

32 000 3 two-bit/cycle reg. multipliers @ 40ns straightline C compiled by gcc

60 000
2 mod-prod-units @ 75ns
1 register multiplier @ 50ns

partially optimized driving code
(mod-prod-units interleaved)

Modular 78 000
2 mod-prod-units @ 75ns
1 register multiplier @ 50ns

fully interleaved straight line
driving code

Product 92 000
2 mod-prod-units @ 55ns
1 register multiplier @ 50ns as above

Units 145 000
2 mod-prod-units @ 38ns
1 two-bit/cycle reg. multiplier @ 50ns as above

200 000
2 mod-prod-units @ 38ns
(enhanced carry completion detect)
1 two-bit/cycle reg. multiplier @ 50ns

as above

226 000 as above
optimized I/O
inlining and interleaving of subroutines

Table 1: The RSA Story

early designs we had a clear idea of the basic data path slice in
our modular product unit, and one thing was apparent, it was too
big. On Perle-0 we can fit a 512 bit straight multiplier; the basic
cell implementing a modular multiplier is at least twice bigger.
Fortunately the characteristics of RSA itself helped us there.

The computational needs for RSA encryption and decryption are
asymmetric. Encryption involves exponentiation by a relatively
small exponent (216 + 1 is widely used). Decryption involves
exponentiation by a number which is algorithmically derived from
the encryption exponent and the factors of the modulus; in general,
it is as long as the modulus (512 bits in our case). Because the
exponent is larger, decryption is much more time-consuming than
encryption (and for us much more interesting).

Decryption is computed with knowledge of both the short (pub-
lic) exponent and the longer derived (private) exponent. Under
reasonable assumptions on the public exponent, this knowledge is
equivalent to the factorization of the modulus. We can therefore
use the Chinese Remainder Theorem (CRT, see [K] p. 270) to
transform the modular exponentiation into two parallel exponenti-
ations modulo each of the factors2. Typically the factors will be of
roughly equal size (256 bits) allowing us to fit one such modular
product unit onto our current Perle-0 PAM. Moreover CRT, by
halving the exponent length and the word length leads to a fourfold

2Suppose we wish to computex  ad modn wheren = pq (with p,q prime).
The Chinese Remainder Theorem lets us compute this by

ap; aq  CRTin(a)

xp  a
dp

p mod p xq  a
dq

q modq

x  CRTout(xp; xq )

whereap = a modp anddp = d mod (p� 1), and similarly forq.

performance improvement3.

In light of these observations, we chose to concentrate on RSA
decryption and to incorporate the Chinese remainder technique
into our algorithms. Chinese remaindering is known in the RSA
literature, and has been used in RSA software, but does not appear
to have been widely used in RSA hardware. Indeed, this reluctance
to useCRT is due to the complexities of implementing the algorithm
in a pure hardware system. In our PAM context, conversion into
and out of the Chinese remainder representation is easily handled
by the host software driving an extra PAM loaded with standard
BigNum hardware.

We now turn our attention to the Montgomery modular multipli-
cation operation: the algorithm which ultimately maps to hardware.
Here, in contrast to the precedingdiscussionon software, simplicity
and regularity are of utmost importance especially when they can
be achieved without sacrificing performance. We modify Mont-
gomery’s algorithm in order to eliminate a comparison against the
modulus and a conditional subtraction. Its purpose is to keep
the partial result strictly less than the modulus: closer analysis
shows this subtract to be unnecessary. If the tests are omitted, the
partial results produced in repeated application of Montgomery’s
algorithm never grow larger than a few times the modulus. As a
consequence, we can compute with theseredundantinternal rep-
resentations and reduce only once to an irredundant form during
the final output stage. This redundancy requires extra space to

3The speedup is fourfold both in hardware and software, though for different
reasons. In software multiplications are four times faster; both operands are halved
and we need to compute half as many multiplications since the exponent length
is halved; we have two exponentiations to perform (4� 2=2). In hardware the
multiplication is only twice faster, with only half the area; the exponent length is still
halved and we compute the two exponentiations in parallel (2� 2).



represent intermediate values. Rather than exceed 256 bits for
the intermediate values, we reduced the modulus factors to 254
bits. In the main this was dictated by the word size of our register
multiplier, but it was also chosen so as not to unfairly penalize
pure software implementations which are naturally biased towards
working with multiples of 32 bits. As a net result, our preferred
modulus became 508 bits.

Importantly, these changes gave us a stable computational
problem which remained essentially the same throughout all the
software and hardware systems we built. As a result debugging,
and comparison with previous versions was made easier.

3.2 Phase 2: Bus Multipliers

Using our improved algorithms and the bus multiplier, we can
optimize driving code to make better and better utilization of the
VME bus. Finally we drive three boards in parallel to fully saturate
the bus with straightline code where every instruction addresses
a PAM board. The boards are chained together to implement
the sequence of three long multiplies required in Montgomery’s
algorithm. Significantly, two out of three multiplies compute the
product of the result of a previous step by a value that depends
only on the modulus. Thus, chaining in this manner allows us to
load two of the PAMs with multipliers in which the multiplicand
remains constant for the duration of an exponentiation, thereby
reducing overall bus traffic. These techniques got us to 6K baud.
Just a little faster than our software on a 14 MIPs workstation; just
a little slower than the same software on a newer 24 MIPs machine.

Interestingly we discovered that a modern compiler produced a
board driving sequence superior to the best we could craft by hand.
We happily switched to describing this sequence in C rather than
assembler.

3.3 Phase 3: Register Multipliers

To seriously address the bus bottleneck we must change to a
register-based multiplier. Such an approach is only feasible after
modifying the modular multiplication technique in to avoid the
comparison described in section 3.1. This is crucial in order to use
the register multiplier: with the intermediate results being stored in
registers internal to the PAM, they cannot be tested by the host and
operated on without extra bus cycles and a breaking of the pipeline.

Using the local storage provided by the register multipliers,
we extend our previous techniques and preload local registers with
various constants derived from the modulus and its factors. We
now have the flexibility to store all such constants during PAM
initialization and use them for the decryption of successive code
blocks. In the bus multiplier the result has to appear on the VME
bus and so it is natural for us to shunt it from one board to the next in
the computation of an exponential, finding parallelism within each
modular multiply. In the register multiplier this is no longer the
case. Instead, we keep intermediate results in the same PAM and
drive the two exponentiation sequences in parallel. A third PAM
(also configured as a register multiplier) concurrently computes the
CRT transformation of the forthcoming code block as well as the
recombination of the preceding code block.

With the bus bottleneck eliminated we immediately progress to
16K baud. Using the well known Booth recoding technique, we
change our internally bit serial multiplier into one which processes
2 bits on each cycle, for an overall factor 2 speedup. We are now

at 32K baud and the limit lies in the PAM itself.

3.4 Phase 4: Modular Product Units

Our modular product unit maps the next level of our inner loop into
hardware, and makes significantly better use of the PAMs basic
resources.

In terms of PAMs we have an organization similar to that used
with the register multipliers: two PAMs compute the modular
exponentials and a third board does the Chinese remaindering. The
modular product unit carries the idea of preloading the modulus
constants one step further: we compile them directly into the logic
equations of the data path at the time of design synthesis4. Thus our
two modular product units aregenuinely differentPAM designs;
indeed, each distinct RSA modulus factor yields a unique PAM
design for its implementation.

With the modular product units we obtain a six-fold improve-
ment to put us at 226K baud. The modular product unit collapses
the three multiplies in our earlier implementations of Montgomery
into a single operation which performs a three-way addition on each
cycle; it allows to perform a multiply step and concurrent modulo
reduce—hence a factor three speedup. In addition, intermediate
results are stored in a highly redundant carry-save form. At the end
of each modular product this gets reduced to conventional binary
form (though not entirely irredundant, as discussed in section 3.1).
In the worst case this may require a lengthy carry propagation
through the entire 256 bit result, requiring as many cycles as the
modular product itself, but in the average case just a few cycles
suffice to settle the carries. We capitalize on this observation by
building a carry completion detector, to gain another speed factor
of two, hence our overall six-fold speedup.

4 The Host to PAM interface

To better understand the host to PAM interactions, we present here
the “instruction set” for each of our hardware accelerators, and
describe how each is typically used. The PAM, seen from the host,
is active memory. Each PAM design is programmed to respond to
a range of host addresses mapping up to 24 bits of address space.
PAM instructions are encoded by the address used to access the
board and the operation, either Read or Write. The data associated
with an access allows the PAM to communicate a 32 bit data value
to or from the host, or can be ignored in the case of an instruction
which only triggers a PAM computation.

4.1 Bus Multiplier

The basic operation computed by the fixed-length bus multiplier is

Cout +P0...n+15 S0...n+15 + A0...15� B0...n�1:

Here,Cout is the carry out,P , S, A andB are BigNums and their
subscripts refers to successive 32 bit digits. To implement this
operation we build a PAM with 7 internal registers and 4 different
instructions as described in Figure 1.

There are several interesting features of this interface.

4this fully-automaticprocess takes about 30 minutes.



Registers:
Bpre 32 bits

B 32 bits
SelectA=B 1 bit

Spre 32 bits
A 512 bits
P 512 bits

Pout 32 bits
Pfinal 32 bits

Instructions:

WriteA Bpre  MemData, SelectA=B  a

WriteB Bpre  MemData, SelectA=B  b

ReadP MemData Pfinal

WriteS synchronize
Spre  MemData, Pfinal  Pout
if SelectA=B = a then
P  P + Spre � 2512 , A A + B � 2512

A A=232

if SelectA=B = b then
P  P + Spre � 2512 +A�B

Pout  P mod 232 , P  P=232

Figure 1: Bus Multiplier interface

� Only one of the instructions, WriteS, causes synchronization
between the host and the PAM, and initiates computation.
Eachof the others operate on buffer registers and can proceed
in parallel with an earlier uncompleted WriteS.

� The instruction set allows pipelining. An instruction se-
quence that takes full advantage of the multiplier pipelining
appears in figure 2. This table represents an access sequence
with time increasing from left to right and top to bottom.
Each column represents a particular type of instruction. The
column entries indicate the data item associated with the in-
struction. The left three columns contain the WriteA, WriteB
and WriteS instructions that pass arguments to the board.
The rightmost column contains the ReadP instructions that
retrieve the results. Three pipelined and overlapped multi-
plies feature in the figure. The primed data values are the
final stages of the preceding multiply, and the double primed
data valuesare first stagesof the following multiply. The hor-
izontal rules mark the boundaries between these successive
multiplications. Observe that the design produces a result
every WriteS; there are 17 WriteS/ReadP cycles of latency
between the sending first word of input data and receiving
first word of the associated results.

� Since each computation is triggered by WriteS and input
buffers are read non-destructively, WriteA, WriteB, and
ReadP instructions can be sometimes omitted. For instance
in non-pipelined use of this design a single WriteB with data
0 followed by 17 alternating WriteS and ReadP commands
will flush the current result with a saving of 16 WriteB in-
structions. In another case, one of the three multiplies in the
Montgomery operation is guaranteed to yield a result the low
half of which is zero. The corresponding ReadP’s can be
omitted to reduce bus traffic.

The variable-length bus multiplier is a straightforward extension
of the fixed-length bus multiplier. It lets the position whereP is

WriteA WriteB WriteS ReadP

...
...

...
...

— B0

n0
�1 S0n0+15 P 0

n0
�2

A0 — S0 P 0

n0
�1

A1 — S1 P 0

n0

A2 — S2 P 0

n0+1
...

...
...

...
A15 — S15 P 0

n0+14
— B0 S16 P 0

n0+15
— B1 S17 P0

...
...

...
...

— Bn�1 Sn+15 Pn�2

A00

0 — S000 Pn�1

A00

1 — S001 Pn
A00

2 — S002 Pn+1

...
...

...
...

A00

15 — S0015 Pn+14

— B00

0 S0016 Pn+15

— B00

1 S0017 P 00

0

Figure 2: Bus Multiplier pipelining

tapped intoPout be determined by the length ofA (i.e. the number
of successive WriteA’s that occurred) instead of being fixed on
the 0th bit of P as inPout  P mod 232. We have the same
four instructions, WriteA, WriteB, WriteS and ReadP; however
pipelining becomes more complex in the variable-length case and
is left out of the current discussion.

4.2 Register Multiplier

The register multiplier presents the user with 32 registers, each of
256 bits. The basic operation is

R[p1] : R[p0]  R[a] � R[b] + R[s1] : R[s0]

whereR[n] refers to registern andR[n1] : R[n0] denotes con-
catenation of registersn1 andn0 (note n0 and n1 need not be
consecutive). Host access to the register contents is in terms of 32
bit aligned segments. We denote thedth aligned segment ofR[n]
by R[n]d . Instructions encode a register specifier in 5 bits and an
aligned 32 bit segment within a register in 3 bits. Figure 3 describes
the register multiplier instruction set, in this figure, primed symbols
indicate operands whose values were specified by the preceding
instructions.

Once again, this PAM instruction set is well suited for pipelin-
ing. The multiply command is broken into two parts: Charge
provides the destination for the high 256 bits of result of the
previous multiply and specifies a portion of the operands for the
next multiply; Mult completes the operand specification, initiates
a multiply and provides the destination for the low 256 bits of the
result. For instance, to perform a 256� 768 bit multiply, we issue
the command sequence

Charge(a; s0;�)
Mult(b0; s1; p0)
Mult(b1; s2; p1)
Mult(b2; s3; p2)
Charge(�;�; p3)



Registers:
R 32� 256 bits

Instructions:

WriteR(n; d) R[n]d  MemData
ReadR(n;d) MemData R[n]d

Charge(a; s0; p1) R[p1]  (R[a0 ] �R[b0 ] + R[s10] � 2256 +R[s00])=2256

Mult(b; s1; p0) R[p0]  (R[a] �R[b] + R[s0]) mod 2256

Figure 3: Register Multiplier interface

The bus multiplier needs 97 instructions in order to compute
P  A � B + S with A, B 512 bits and P, S 1024 bits. With
arguments and results in registers the register multiplier performs
the same computation with only 6 instructions; this goes up to 102
instructions if all the operands must be transferred to and from the
host; in all intermediate cases, say where S is zero, or A is already
in a register, the register multiplier requires fewer instructions to
operate than the bus multiplier.

4.3 Modular Product Unit

The Modular Product Unit (MPU) is a dedicated PAM design
driven from a single application. As such it can afford a much more
intimate interface which demands that the driving software make
up for quirks that lead to a simpler hardware organization.

The MPU aims to compute

P  (A� B + Q�M )=�

whereM is the modulus,� is a power of two greater thanM , and
Q is chosensuch that� divides (A�B +Q�M ) as in [Mon]. At
the bit-level, this can be reduced to the following recurrence

Pi+1  (Pi + bi � A + qi �M )=2
qi = (Pi + bi � A) (mod 2); (1)

wherebi is theith bit ofB.

Our MPU instruction set appears in Figure 4. Let us consider
some aspects of this interface which are introduced to improve
performance, or to simplify the MPU implementation.

� The straightforward way to compute exponentiation is by
repeated squaring and multiplies; thus our MPU supports
MultB1 and Square instructions. PrecomputingB3 speedsup
the exponentiationBE (modM ) by about 20% (see [K]).
Larger odd powers ofB lead to further speed ups, but these
are much smaller and not worth the extra hardware. This is
why our MPU has an instruction MultB3 and associatedB3

register. We pipeline the computation ofB3 in our third PAM
(loadedwith the register multiplier designand otherwise used
for CRT).

� The speed of a direct MPU implementation of equation (1)
would be severely limited by the following critical path:
computeqt from the low order bits in the data path and
distributeqt throughout the data path so it can be used in
the computation ofqt+1 during the next cycle. To achieve an
aggressive cycle time we use a pipelined version of equation
(1). As a consequence, our final result contains 6 more
redundant bits than our multiplier based version; we use base
� = 2260. The host must then read back 9 words from the
MPU and perform a modular reduction down to 8 words by
a software table look-up.

Registers:
B1 256 bits
B3 256 bits
S 262 bits
A 262 bits
P 32 bits

Instructions:

WriteB(align) B1
 B1 + MemData� 2256

B3
 B3 + (B1 mod 232)� 2256

B3
 B3=232 , B1

 B1=232

if align then
A 2A

A;S  A

ReadP MemData P , P  S mod 232

S  S=232 , A 1
Square A;S  (A� S + Q�M )=2260

MultB1 A;S  (A� B1 +Q�M )=2260

MultB3 A;S  (A� B3 +Q�M )=2260

Figure 4: Modular Product Unit interface

� To simplify the MPU’s controller automaton and reduce the
number of cycles before which the controller can acknowl-
edgea host ReadPoperation, we makeexplicit in the interface
an output buffer misalignment and demand that the host fix
up this misalignment through an argument to the WriteB
instruction.

5 Strategies for programming PAMs

Three complementaryprinciples emerge from our experiments with
the acceleration of long integer multiplication:

� Use pipelining in the host/PAM interface. This frees the host
to do other tasks and opens the way to parallelism with other
PAMs.

� Balance the load between the host and the accelerator, and
reserve for each what each does best.

� Move control to as high a level as possible to eliminate
host/PAM interaction, and simplify PAM programming.

Our BigNum experience shows that mapping the inner loop of
a long multiply into hardware gives appreciable performance gains
over a range of applications.

Much larger gains can be achieved for a specific application by
building more specific accelerators and tailoring algorithms to the
new hardware. Our highest performance designs use straightline



driving code, to get the most useful work out of the host. Vital
to this is pipelining of the host/PAM commands. Idle PAMs
must acknowledge the host immediately and then proceed with the
requested instruction; this frees the host to issue instructions to
other PAMs or executenative instructions. Thus any value returned
by an access must be the result of a previously issued instruction.
This result is prepared in the computation started by previous access
in order to be ready for immediate return in the current access.

Excessively tight coupling between PAM and host has a draw-
back: if our PAM design can respond to a new command each
10�s, ancillary software computations can only be overlapped
with PAM operation by carefully interleaving the two instruction
sequences. This is contrary to all standard program structuring
through subroutines, and we are seeking automatic solutions to this
problem.

On the other hand, the high level control in algorithms accel-
erated through the PAM can be arbitrarily complex. The Chinese
remainder theorem, which splits the modular arithmetic over the
prime factors of the modulus (providing a fourfold speedup) is
rarely used in ASIC implementations of RSA. It is appropriate for
us because it only complicates the software component of our RSA
system. Indeed for hardware it proves a great bonus as it allows
parallelization of the exponentiation.

6 Critique

Rather than use hardware accelerators, perhaps is it better to use
a larger and more powerful computer system? Certainly! Several
months after our first multiplier, the next generation workstations
became available. They gave a 3 to 5 fold performance improve-
ment over software on the older PAM host. Moving to even larger
machines however is not the answer. Supercomputers, while giv-
ing excellent vectorized floating-point performance, do not provide
BigNum performance appreciably better than that of a modern
RISC workstation—indeed for some operations these machines
perform worse. With possibly more effort, programmable hard-
ware accelerators can give unsurmountable performance, such as
we demonstrate for RSA cryptography.

As a pleasant by product of this research on hardware designs,
we have obtained a BigNum software implementation of RSA
on the DecStation 5000 (with a 25MHz R3000 micro processor
from MIPS) which yields 10.3Kbits/sec encryption rate on 512 bits
keys. This places that machine in third position in the list of best
performance RSA hardware designs compiled by [Br].
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